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A SOLUTION TO DE GROOT’S ABSOLUTE CONE CONJECTURE

CRAIG R. GUILBAULT

Abstract. A compactum X is an ‘absolute cone’ if, for each of its points x, the
space X is homeomorphic to a cone with x corresponding to the cone point. In
1971, J. de Groot conjectured that each n-dimensional absolute cone is an n-cell.
In this paper, we give a complete solution to that conjecture. In particular, we show
that the conjecture is true for n ≤ 3 and false for n ≥ 5. For n = 4, the absolute
cone conjecture is true if and only if the 3-dimensional Poincaré Conjecture is true.

1. Introduction

A compactum X is an absolute suspension if for any pair of points x, y ∈ X,
the space X is homeomorphic to a suspension with x and y corresponding to the
suspension points. Similarly, X is an absolute cone if, for each point x ∈ X, the
space X is homeomorphic to a cone with x corresponding to the cone point.

At the 1971 Prague Symposium, J. de Groot [Gr] made the following two conjec-
tures:

Conjecture 1. Every n-dimensional absolute suspension is homeomorphic to the n-
sphere.

Conjecture 2. Every n-dimensional absolute cone is homeomorphic to an n-cell.

In 1974, Szymański [Sz] proved Conjecture 1 in the affirmative for n = 1, 2 or 3.
Later, Mitchell [Mi1] reproved Szymański’s results, and at the same time shed some
light on higher dimensions, by showing that every n-dimensional absolute suspension
is an ENR homology n-manifold homotopy equivalent to the n-sphere. Still, the
‘absolute suspension conjecture’ remains open for n ≥ 4.

In 2005, Nadler [Na] announced a proof of Conjecture 2 in dimensions 1 and 2.
In this paper we provide a complete solution to the ‘absolute cone conjecture’. In
particular, we verify Conjecture 2 for n ≤ 3 and provide counterexamples for all
n ≥ 5. For n = 4 we show that the conjecture is equivalent to the 3-dimensional
Poincaré Conjecture, that has recently been claimed by Perelman.
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2. Definitions, notation, and terminology

2.1. Cones. For any topological space L, the cone on L is the quotient space

cone (L) = L× [0, 1] /L× {0} .

Let q : L × [0, 1] → cone(L) be the corresponding quotient map. We refer to
q (L× {0}) as the cone point and we view L as a subspace of cone (L) via the em-
bedding L↔ L×{1} →֒ cone (L). We refer to this copy of L as the base of the cone.
For any (z, t) ∈ L× [0, 1], denote q (z, t) by t · z. Thus, 0 · z represents the cone point
and 1 · z = z for all z ∈ L.

For each z ∈ L, the cone line corresponding to z is the arc

Iz = q ({z} × [0, 1]) = {t · z | 0 ≤ t ≤ 1} ,

while the open cone line corresponding to z, denoted by
◦

Iz, is the set
◦

Iz = q ({z} × (0, 1)) = {t · z | 0 < t < 1} .

For ε ∈ (0, 1), the subcone of radius ε is the set

cone (L, ε) = q (L× [0, ε]) = {t · z | z ∈ L and 0 ≤ t ≤ ε}

Clearly, each subcone is homeomorphic to cone(L). More generally, if λ : L → (0, 1)
is continuous, the λ-warped subcone is defined by

cone (L, λ) = {t · z | z ∈ L and 0 ≤ t ≤ λ (z)} .

It also is homeomorphic to cone(L). In fact, the following is easy to prove.

Lemma 2.1. Let L be a space, ε ∈ (0, 1), and λ : L → (0, 1). Then there is
a homeomorphism (in fact, an ambient isotopy) f : cone(L) → cone(L) fixed on
L ∪ {cone point} such that f (cone (L, ε)) = cone (L, λ).

By applying the above lemma, or by a similar direct proof, we also have:

Lemma 2.2. Let L be a space and suppose t · z and t′ · z are points on the same open
cone line of cone (L). Then there is a homeomorphism (in fact, an ambient isotopy)
f : cone(L) → cone(L) fixed on L ∪ {cone point} such that f (t · z) = t′ · z.

On occasion, we will have use for the open cone on L, which we view as a subspace
of cone (L). It is defined by

opencone (L) = L× [0, 1)/L× {0} .

2.2. Suspensions and mapping cylinders. For a topological space L, the suspen-
sion of L is the quotient space

susp (L) = L× [0, 1] / {L× {0} , L× {1}} .

In other words, the suspension of L is obtained by separately crushing out the top
and bottom levels of the product L × [0, 1]. The images of these two sets under the
quotient map are called the suspension points of susp (L).
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Given a map f : L→ K between disjoint topological spaces, the mapping cylinder
of f is the quotient space

Map (f) = ((L× [0, 1]) ⊔K)/ ∼

where ∼ is the equivalence relation on the disjoint union (L× [0, 1]) ⊔K induced by
the rule: (x, 0) ∼ f (x) for all x ∈ L. We view L and K as subsets of Map (f) via
the embeddings induced by

L↔ L× {1} →֒ (L× [0, 1]) ⊔K, and

K →֒ (L× [0, 1]) ⊔K.

In addition, for each z ∈ L, the inclusion

{z} × [0, 1] →֒ (L× [0, 1]) ⊔K

induces an embedding of an arc into Map (f). We call the image arc a cylinder line
and denote it by Ez.

Clearly, if the above range space K consists of a single point, then Map (f) =
cone (L). Similarly, cone (L) can always be obtained as a quotient space of Map (f)
by crushing K to a point. The following lemma will be useful later. It allows us to
view certain cones as mapping cylinders having one of the cone lines as the range
space.

Lemma 2.3. Let Y be a space and suppose y ∈ Y has a k-dimensional euclidean
neighborhood U in Y . Let Bk

0 and Bk
1 be (tame) k-cell neighborhoods of y lying

in U such that Bk
1 ⊆ int

(
Bk

0

)
. Then the pair (cone (Y ) , Iy) is homeomorphic to

(Map (f) , Iy) for some map f : Y − int
(
Bk

1

)
→ Iy. The homeomorphism may be

chosen to be the identity on (Y − int
(
Bk

1

)
) ∪ Iy.

Proof. Choose a homeomorphism h : Bk
0 − int

(
Bk

1

)
→ Sk−1 × [0, 1] taking ∂Bk

0 to

Sk−1 × {0} and ∂Bk
1 to Sk−1 × {0}. Then define f : Y − int

(
Bk

1

)
→ Iy by

f (x) =

{
t · y if x ∈ Bk

0 − int
(
Bk

1

)
and h (x) ∈ Sk−1 × {t}

0 · y if x ∈ Y − int
(
Bk

0

) .

Since f sends all points of Y −int
(
Bk

0

)
to the cone point 0·y, we may identify the ‘sub-

mapping cylinder’ Map
(
f |
Y−int(Bk

0 )

)
with the ‘subcone’ cone

(
Y − int

(
Bk

1

))
. In ad-

dition, it is easy to build a homeomorphism between the (k + 1)-cellMap
(
f |
Bk

0
−int(Bk

1)

)

and the (k + 1)-cell cone
(
Bk

0

)
taking Iy identically onto Iy, and each cylinder line em-

anating from an x ∈ ∂Bk
0 identically onto the corresponding cone line. Fitting these

pieces together yields the desired homeomorphism between Map (f) and cone (Y ).
See Figure 1.

�
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B1 yk

cone ( Y )Map (  f )

B0 01k .y0..y 1.y

Figure 1.

2.3. ENR homology manifolds. A space is a euclidean neighborhood retract (ENR)
if it is a retract of some open subset of euclidean space. This is equivalent to being
a finite-dimensional separable metric ANR. A space that is a retract of R

n (for some
n) is called a euclidean retract (ER). This is equivalent to being a contractible ENR.

A locally compact ENR X is an ENR homology n-manifold if, for every x ∈ X,

(†n) H∗ (X,X − x) ∼=

{
Z if ∗ = n
0 otherwise

.

We call X an ENR homology n-manifold with boundary if, for every x ∈ X,

H∗ (X,X − x) ∼=

{
0 or Z if ∗ = n
0 otherwise

.

In this case, the boundary of X is the set

∂X = {x ∈ X |H∗ (X,X − x) ≡ 0} ,

and the interior of X is the set

int (X) = X − ∂X.

In all of the above and throughout this paper, except where stated otherwise, homol-
ogy is singular with integer coefficients.

By [Mi2], ∂X is a closed subset of X; hence, int (X) is an ENR homology n-
manifold. In addition, if Borel-Moore homology is used, ∂X satisfies the algebraic
condition for being a homology (n− 1)-manifold, i.e., ∂X satisfies (†n−1). For ENRs,
Borel-Moore homology agrees with singular homology, so if ∂X is an ENR then it is
an ENR homology (n− 1)-manifold.

Remark 1. There are interesting situations where, although X is an ENR homology
manifold with boundary, ∂X is not an ENR. See, for example, [AG] or [Fi]. For the
spaces of interest in this paper, existing conditions will prevent this from happening.
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3. Absolute cones

Suppose a compactum X is an absolute cone. For each x ∈ X, choose Lx ⊆ X
and a homeomorphism hx : cone (Lx) → X which is the identity on Lx and sends the
cone point to x. We will refer to Lx as the link of x in X. (Note. The choice of
Lx and hx may not be unique; however, for each x we make a choice and stick with
it.) For ε ∈ (0, 1) and λ : L → (0, 1) let N (x, ε) = hx (cone (L, ε)) and N (x, λ) =
hx (cone (L, λ)). We refer to these as the ε-cone neighborhood and the warped λ-cone
neighborhood of x, respectively. Clearly, each point of x has arbitrarily small ε-cone
neighborhoods.

In a similar vein, for any x ∈ X and z ∈ Lx, let Jx (z) and
◦

Jx (z) denote hx (Iz)

and hx(
◦

Iz), respectively. We refer to these as [open] cone lines of X with respect to
x.

The following proposition lists several easy properties of absolute cones.

Proposition 3.1. Let X be a finite dimensional absolute cone, x ∈ X and z ∈ Lx.
Then

(1) X is a compact ER,
(2) Lx is a compact ENR,

(3) H∗ (X,X − x) ∼= H̃∗−1 (Lx),
(4) Lz is contractible, and
(5) H∗ (X,X − z) ≡ 0.

Proof. Since each point of X has arbitrarily small ε-cone neighborhoods, X is locally
contractible; so by [Hu, V.7.1], X is an ENR. Since X is also contractible, it is an
ER.

Since Lx is a retract of its neighborhood X−x ≈ Lx× [0, 1) in X, it too is an ENR
[Hu, III.7.7]. Being a closed subset of X, Lx is also compact.

To prove 3), we again use X − x ≈ Lx × (0, 1]. Since X is contractible, the desired
isomorphisms may be obtained from the long exact sequence for the pair (X,X − x).

The canonical contraction of cone (Lx) along cone lines restricts to a contraction
of cone (Lx) − z, since z lies in the base. Thus, X − z is contractible. Since X − z ≈
Lz × (0, 1], it follows that Lz is contractible.

Assertion 5) follows from 3) and 4). �

The next proposition is a key ingredient in our understanding of absolute cones.

Proposition 3.2. Let X be a finite dimensional absolute cone and

BX = {z ∈ X |H∗ (X,X − z) = 0} .

Then

(1) Lx ⊆ BX for all x ∈ X,
(2) X − BX 6= ∅, and
(3) For all x ∈ X − BX, Lx = BX .
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N ( y, l )

(z)

x

y

Lx

Jy

Figure 2.

Proof. Assertion 1) just restates part of Proposition 3.1, while Assertion 2) is a basic
fact in dimension theory. In particular, if dimX = n, then there exists x ∈ X such
that Hn (X,X − x) 6= 0; see, for example, [Mi2, Lemma 2].

To prove 3), fix x ∈ X−BX and suppose y ∈ X−Lx. We must show that y /∈ BX ,
i.e., that H∗ (X,X − y) is non-trivial.

Choose ε < 1 sufficiently small that N (y, ε) ∩ Lx = ∅. Choose z ∈ Ly such that

x lies on the open cone line
◦

Jy (z). By Lemma 2.2, H∗ (X,X − x) ∼= H∗ (X,X − x′)

for all x′ ∈
◦

Jy (z). Therefore,
◦

Jy (z)∩Lx = ∅. By ‘pushing out along’
◦

Jy (z) we may
expand the ε-cone neighborhood N (y, ε) about y to a warped λ-cone neighborhood
N (y, λ) which contains x in its interior and is disjoint from Lx. See Figure 2.

Since the inclusions (X,Lx) →֒ (X,X − x) and (X,X −N (y, λ)) →֒ (X,X − y)
are both homotopy equivalences of pairs, we have inclusion induced isomorphisms

H∗ (X,Lx)
∼=

−→ H∗ (X,X − x) , and

H∗ (X,X −N (y, λ))
∼=

−→ H∗ (X,X − y)

The first of these can be factored via inclusions as such:

H∗ (X,Lx)
φ

−→ H∗ (X,X −N (y, λ))
ψ

−→ H∗ (X,X − x)

Then φ is necessarily injective and ψ surjective, so H∗ (X,X −N (y, λ)) is non-trivial.
Thus, H∗ (X,X − y) 6= 0. �

Corollary 3.3. For all x ∈ X −BX , H∗ (X,X − x) ∼= H̃∗−1 (BX). This homology is
finitely generated.
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Proof. Since BX = Lx, the isomorphism follows from Proposition 3.1. Since BX = Lx
is a compact ENR, it has the homotopy type of a finite CW complex [We]; hence,
finitely generated homology. �

Corollary 3.4. For any x, y ∈ X − BX , there exists a homeomorphism f : X → X
which is the identity on BX and sends x to y.

Proof. Since Lx = BX = Ly, we may let f = hy ◦ h
−1
x . �

Theorem 3.5. If X is an n-dimensional absolute cone, then

(1) X is an ENR homology n-manifold with boundary,
(2) ∂X is precisely the link Lx of any point x ∈ int(X),
(3) ∂X is an ENR homology (n− 1)-manifold homotopy equivalent to Sn−1, and
(4) for each z ∈ ∂X, Lz is a contractible ENR homology (n− 1)-manifold with

boundary.

Proof. As above, let BX = {z ∈ X |H∗ (X,X − z) ≡ 0}. By Proposition 3.1 and
Corollaries 3.3 and 3.4, X − BX is a homogeneous n-dimensional ENR with finitely
generated local homology. By an application of [Bre] or [Bry], X − BX is an ENR
homology n-manifold. Therefore, X is an ENR homology n-manifold with boundary,
and ∂X = BX .

Assertion 2) is a restatement of Proposition 3.2.
Proposition 3.1 and an application of [Mi2] (as discussed earlier) tells us that ∂X

is an ENR homology (n− 1)-manifold. Moreover, by Assertion 1) and Corollary 3.3,
for any x ∈ int (X),

H̃k−1 (∂X) ∼= Hk (X,X − x) ∼=

{
Z if k = n
0 if k 6= n

Thus, ∂X has the homology of Sn−1. If n = 1, 2 or 3 it is known that every ho-
mology (n− 1)-manifold is an actual (n− 1)-manifold [Wi, Ch.IX]; and in those
dimensions a manifold is determined by its homology. Hence ∂X is homeomorphic
to Sn−1. In higher dimensions we only claim a homotopy equivalence between Sn−1

and ∂X. This may be obtained in the usual way if we can show that ∂X is sim-
ply connected. In particular, the Hurewicz Theorem would then assure us that
πn−1 (∂X) ∼= Hn−1 (∂X) ∼= Z. A generator of πn−1 (∂X) provides a degree 1 map
from Sn−1 to ∂X. Since ∂X is an ANR—and thus has the homotopy type of a CW
complex—a theorem of Whitehead shows that this map is a homotopy equivalence.
We hold off proving simple connectivity of ∂X until after we verify Assertion 4).

To prove 4), note that the homeomorphism hz : cone (Lz) → X induces a homeo-
morphism of Lz × (0, 1] onto X − z, taking Lz × {1} onto Lz. Since Lz × (0, 1] is an
ENR homology n-manifold with boundary, Lz is an ENR homology (n− 1)-manifold
with boundary. This is an application of [Ra, Th.6]. We have already observed
(Proposition 3.1) that Lz is contractible.

Lastly we complete Assertion 3) by showing that ∂X is simply connected when
n ≥ 2. Since the above mentioned homeomorphism Lz × (0, 1] → X − z must take
(homology) boundary to boundary, it follows that ∂X − z has the structure of Lz
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with an open collar attached to ∂Lz . Thus, ∂X − z is contractible; and z has a
neighborhood in ∂X homeomorphic to a cone over ∂Lz . Therefore, ∂X may be
viewed as the union of open sets ∂X − z and U , where ∂X − z is contractible and
U is homeomorphic to the open cone on ∂Lz . Since the intersection of these sets is
connected, simple connectivity follows from Van Kampen’s theorem. �

The above proof provides some additional structure information about absolute
cones which we record as:

Theorem 3.6. If X is an n-dimensional absolute cone, then X is a contractible
ENR homology n-manifold with boundary and ∂X is a locally conical ENR homology
(n− 1)-manifold; more specifically, each point of ∂X has a neighborhood in ∂X which
is a cone over an ENR homology (n− 2)-manifold with the homology of Sn−2.

Proof. By the above proof, each z ∈ ∂X has a neighborhood in ∂X homeomorphic
to cone (∂Lz). Since this cone lies in ∂X, ∂Lz must be an ENR. Moreover, since Lz
is an ENR homology (n− 1)-manifold with boundary, then ∂Lz is an ENR homology
(n− 2)-manifold. Lastly, since ∂X has the local homology of an (n− 1)-manifold at
z, the homology type of ∂Lz must be that of an (n− 2)-sphere. �

Corollary 3.7. If X is an n-dimensional absolute cone and n ≤ 3, then X is an
n-cell. The same is true for n = 4, provided the 3-dimensional Poincaré Conjecture
is true.

Proof. If n ≤ 3, we have already observed in the proof of Theorem 3.5 that BX = ∂X
is homeomorphic to Sn−1. Thus, X ≈ cone (Sn−1) ≈ Bn.

If n = 4, we have shown that ∂X is an ENR homology 3-manifold homotopy
equivalent to S3. In addition, we know that each point of ∂X has a neighborhood
in ∂X homeomorphic to the cone over an ENR homology 2-manifold having the
homology of S2. As above, such ENR homology 2-manifolds are 2-spheres. Thus, ∂X
is an actual 3-manifold. Assuming the 3-dimensional Poincaré Conjecture, ∂X ≈ S3;
so X is a 4-cell. �

Remark 2. At the conclusion of the next section, we will show that if there exists a
homotopy 3-sphere H3, not homeomorphic to S3, then cone (H3) is a 4-dimensional
absolute cone that is not a 4-cell.

4. Counterexamples in higher dimensions

The main goal of this section is to construct, for all n ≥ 5, n-dimensional absolute
cones which are not n-cells. In all cases, we begin with a non-simply connected k-
manifold Σk having the same Z-homology as Sk. Existence of such manifolds for all
k ≥ 3 is well-known. Our counterexamples are obtained by first coning over Σk, then
suspending that cone. This section is primarily devoted to proving that the resulting
spaces are absolute cones, but not cells.

For completeness, we will conclude this section by showing that—if there is a
counterexample to the 3-dimensional Poincaré—then there is also a 4-dimensional
absolute cone that is not a 4-cell.
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We begin our construction of counterexamples in dimensions ≥ 5 with a very
general lemma.

Lemma 4.1. For any space Y , the following are homeomorphic.

(1) susp (cone (Y ))
(2) cone (susp (Y ))
(3) cone (cone (Y ))
(4) cone (Y ) × [0, 1].

Before proving this lemma, consider the map f : cone (Y )×[0, 1] → cone (Y )×[0, 1]
defined by

f (t · z, s) = ((st) · z, s) .

This map takes cone (Y ) × {1} identically onto cone (Y ) × {1}, and each level set
cone (Y )×{s} to the subcone of radius s contained in cone (Y )×{s}; finally cone (Y )×
{0} is taken to the cone point of cone (Y )×{1}. This map induces a level-preserving
embedding of cone (cone (Y )) into cone (Y )× [0, 1]. The image of the embedding is a
particularly nice realization of cone (cone (Y )) which we will denote by C2 (Y ).

A similar map g : cone (Y ) × [0, 1] → cone (Y ) × [0, 1] can be used to induce an
embedding of susp (cone (Y )) into cone (Y )× [0, 1]. We will denote the image of that
map by SC (Y ). Each of the spaces cone (Y ) × [0, 1], C2 (Y ) and SC (Y ) contain as a
subspace {cone point} × [0, 1], which we call the axis and denote by A. In addition,
the points (cone point, 0), (cone point,1), and (cone point, 1

2
) will be denoted p0, p1

and p∗, respectively. See Figure 3.

Proof of Lemma 4.1. We first show that cone (cone (Y )) ≈ cone (Y ) × [0, 1] by il-
lustrating a homeomorphism from cone (Y ) × [0, 1] to C2 (Y ). Each cone line Iy of
cone (Y ) determines a ‘square’ Sy = Iy × [0, 1] in cone (Y ) × [0, 1]. Similarly, Iy de-
termines a ‘right triangle’ Ty in C2 (Y ) such that Ty and Sy have two common sides:
Iy × {1} and A. See Figure 4. For a given y choose a homeomorphism

ky : Sy → Ty

which is the identity on their common sides. By using the ‘same’ homeomorphism
for each y ∈ Y , we may combine these into a single homeomorphism.

k : cone (Y ) × [0, 1] → C2 (Y ) .

A similar strategy produces a homeomorphism of cone (Y )× [0, 1] onto SC (Y ). Thus
we have cone (cone (Y )) ≈ cone (Y ) × [0, 1] ≈ susp (cone (Y )).

Lastly, we show that susp (cone (Y )) ≈ cone (susp (Y )) by observing that SC (Y )
may be given a cone structure with base S (Y ) and cone point p∗. To this end, we
view SC (Y ) as the union of its ‘suspension triangles’ intersecting in A; each triangle
being the suspension of a cone line. To place a cone structure on SC (Y ) we place the
obvious common cone structure on each of these triangles, with p∗ serving as cone
point. See Figure 5.

�
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Figure 3.
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p1
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p*
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A

Figure 5.

Notation 1. For convenience, we denote the each of the homeomorphic topological
spaces described by 1)-4) of Lemma 4.1 by Θ (Y ).

The following lemma will be useful later. We include it now because its proof is
similar to the last part of the above argument.

Lemma 4.2. For any map f : Y → K, the pair
(
Map (f) × [0, 1] , K ×

{
1

2

})
is

homeomorphic to (Map (F ) , K) for some map F : (Y × [0, 1])∪(Map (f)×{0, 1}) →
K. The homeomorphism may be chosen to take each point

(
k, 1

2

)
∈ K ×

{
1

2

}
to k.

Proof. To simplify matters, we assume that f is surjective. If it is not, the argument
requires only minor adjustments.

By surjectivity, Map (f) is the union of its cylinder lines {Ey | y ∈ Y }. Hence,
Map (f) × [0, 1] is a union of ‘squares’ {Sy | y ∈ Y }, where Sy denotes Ey × [0, 1].
Furthermore, each Sy intersects the proposed domain of our map F in three of its
four boundary edges. More precisely,

Sy ∩ ((Y × [0, 1]) ∪ (Map (f) × {0, 1})) = ({y} × [0, 1]) ∪ (Ey × {0, 1}) .

Due to its shape, we denote the right-hand side of the above equation by Cy. Then
(Y × [0, 1]) ∪ (Map (f) × {0, 1}) is the union of the collection {Cy | y ∈ Y } and, for
all y, y′ ∈ Y , Cy ∩ Cy′ = ∅ unless f(y) = f (y′).

Define F by sending each point of Cy to f (y). Then

F : (Y × [0, 1]) ∪ (Map (f) × {0, 1}) → K

is continuous, and for each y ∈ Y , the sub-mapping cylinder Map
(
F |Cy

)
is simply

cone(Cy), with cone point f (y) ∈ K. Thus, Map (F ) is a union of the collection
{cone (Cy) | y ∈ Y }. To produce the desired homeomorphism from Map (f) × [0, 1]
to Map (F ), choose a coherent collection of homeomorphisms from the squares {Sy}
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making upMap (f)×[0, 1] to the cones {cone(Cy)} making upMap (F ). In particular,
for each y, define a homeomorphism hy : Sy → cone(Cy) which: takes

(
f (y) , 1

2

)
to

the cone point f (y), is the identity on Cy, and is linear on segments in between these
subspaces. The union of these homeomorphisms is the desired homeomorphism from
Map (f) × [0, 1] to Map (F ). �

We are now ready to prove the main theorem of this section.

Theorem 4.3. If Σk is a closed k-manifold with the same Z-homology as the k-sphere,
then Θ

(
Σk

)
is a (k + 2)-dimensional absolute cone. If Σk is not simply connected,

then Θ
(
Σk

)
is not homeomorphic to an (k + 2)-cell.

Proof. We begin by observing that Θ
(
Σk

)
is ENR homology (k + 2)-manifold with

boundary. To experts on homology manifolds, this may be obvious; otherwise, pro-
ceed as follows. First note that cone

(
Σk

)
is an actual (k + 1)-manifold with boundary

at all points except the cone point p. At that point

H∗

(
cone

(
Σk

)
, cone

(
Σk

)
− p

)
∼= H∗

(
cone

(
Σk

)
,Σk

)

∼= H̃∗−1

(
Σk

)

∼= H̃∗−1

(
Sk

)
∼=

{
Z if ∗ = k + 1
0 otherwise

Thus, cone
(
Σk

)
is an ENR homology (k + 1)-manifold with boundary; moreover,

int
(
cone

(
Σk

))
= opencone

(
Σk

)
. By [Ra] or straightforward calculation, cone

(
Σk

)
×

[0, 1] is an ENR homology (k + 2)-manifold with boundary, and

int
(
cone

(
Σk

)
× [0, 1]

)
= opencone

(
Σk

)
× (0, 1) .

Claim 1. ∂
(
Θ

(
Σk

))
is not a (k + 1)-manifold. Therefore Θ

(
Σk

)
is not an (n+ 2)-

cell.
Under the realization of Θ

(
Σk

)
as susp(cone

(
Σk

)
), the boundary is susp

(
Σk

)
. If

susp
(
Σk

)
were an actual (k + 1)-manifold, then removing a finite collection of points

would not change its fundamental group. But susp
(
Σk

)
is simply connected, and

susp
(
Σk

)
− {p0, p1} ≈ Σk × (0, 1) is not simply connected. The claim follows.

We now work toward showing that Θ
(
Σk

)
is an absolute cone. For each x ∈ Θ

(
Σk

)
,

we must identify a subspace Lx of Θ
(
Σk

)
and a homeomorphism of cone (Lx) onto

Θ
(
Σk

)
taking the cone point to x. The proof splits into the following three cases:

• x ∈ int
(
Θ

(
Σk

))
,

• x = p0 or p1,
• x ∈ ∂

(
Θ

(
Σk

))
− {p0, p1}

Case 1. x ∈ int
(
Θ

(
Σk

))
.
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In this case we know from Theorem 3.5 that, if Lx exists, it must equal ∂
(
Θ

(
Σk

))
.

By applying Lemma 4.1 to realize Θ
(
Σk

)
as cone

(
susp

(
Σk

))
, we see that Θ

(
Σk

)

is indeed homeomorphic to the cone over ∂
(
Θ

(
Σk

))
. Let p∗ ∈ int

(
Θ

(
Σk

))
be the

corresponding cone point and hp∗ : cone(∂
(
Θ

(
Σk

)
)
)
→ Θ

(
Σk

)
the homeomorphism.

We must show that all other elements of int
(
Θ

(
Σk

))
can be viewed similarly. The

following is the essential ingredient.

Claim 2. int
(
Θ

(
Σk

))
is an actual (k + 2)-manifold. In fact, int

(
Θ

(
Σk

))
≈ R

k+2.

As noted earlier, we may view int
(
Θ

(
Σk

))
as opencone

(
Σk

)
× (0, 1). That this

space is a (k + 2)-manifold is a direct application of work by J.W. Cannon and R.D.
Edwards on the ‘double suspension problem’ [Ca], [Ed]. A nice exposition of the
relevant result may be found in [Da, Cor. 24.3D]. Once we know that int

(
Θ

(
Σk

))
is

a manifold, an application of [St] gives us the homeomorphism to R
k+2.

Now let x be an arbitrary element of int
(
Θ

(
Σk

))
. By a standard homogeneity

argument for manifolds, there is a homeomorphism u : int
(
Θ

(
Σk

))
→ int

(
Θ

(
Σk

))

taking p∗ to x. Moreover, we may choose u to be the identity outside some compact
neighborhood of {p∗, x}. This allows us to extend u to a homeomorphism u of Θ

(
Σk

)

to itself. The homeomorphism u ◦ hp∗ : cone(∂
(
Θ

(
Σk

)
)
)
→ Θ

(
Σk

)
now realizes x as

the cone point.

Case 2. x = p0 or p1.

Use Lemma 4.1 to view Θ
(
Σk

)
as cone

(
cone

(
Σk

))
(or more precisely C2

(
Σk

)
).

Then p0 corresponds to the cone point; and the base, cone
(
Σk

)
, serves as Lp0. Fur-

thermore, the realizations of Θ
(
Σk

)
provided by 1) or 3) of Lemma 4.1 reveal an

involution of Θ
(
Σk

)
interchanging p0 and p1. Thus, p1 also may be viewed as a cone

point.

Case 3. x ∈ ∂
(
Θ

(
Σk

))
− {p0, p1}.

By realization 1) of Lemma 4.1, Θ
(
Σk

)
− {p1, p0} ≈ cone

(
Σk

)
× (0, 1), which by

another application of Cannon-Edwards, is a (k + 2)-manifold with boundary. That
boundary corresponds to Σk× (0, 1). By another standard homogeneity argument for
manifolds, any two points of Σk × (0, 1) can be interchanged by a homeomorphism
of cone

(
Σk

)
× (0, 1). This homeomorphism can be arranged to be the identity off a

compact set; and, thus, extends to a self-homeomorphism of susp
(
cone

(
Σk

))
. This

means that it suffices to find a single point x0 ∈ ∂
(
Θ

(
Σk

))
−{p1, p0} at which Θ

(
Σk

)

is conical.
To this end, we return to the realization of Θ

(
Σk

)
as cone

(
Σk

)
× [0, 1] and choose

x0 ∈ Σk ×
{

1

2

}
. Choose nice k-cell neighborhoods Bk

1 ⊆ Bk
0 of x0 in Σk ×

{
1

2

}
and,

by a mild abuse of notation, let Ix0
denote the corresponding cone line as a subset of

cone(Σk) ×
{

1

2

}
. By a combination of Lemmas 2.3 and 4.2,

(
cone

(
Σk

)
× [0, 1] , Ix0

)
≈ (Map (F ) , Ix0

)
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for some map

F : ((Σk − int(Bk
1 )) × [0, 1]) ∪

(
cone

(
Σk

)
× {0, 1}

)
→ Ix0

.

Crushing out the range end of the mapping cylinder yields the cone over its domain.
Hence,

(‡) cone
(
Σk

)
× [0, 1] /Ix ≈ cone

(
((Σk − int(Bk)) × [0, 1]) ∪

(
cone

(
Σk

)
× {0, 1}

))
.

Note that, as a subspace of the manifold with boundary cone
(
Σk

)
× (0, 1), Ix0

is a
tame arc intersecting the boundary in a single end point. (Local tameness for this
arc is obvious at all except the interior end point of Ix. This can be seen from the
nice tubular neighborhood provided by the obvious structure of cone

(
Σk

)
× [0, 1].

But, since our manifold has dimension ≥ 4, Ix0
cannot have a wild set consisting of

a single point (see [CE] or [Ru, Th.3.2.1]). Thus Ix0
is tame in cone

(
Σk

)
× (0, 1).)

The tameness of Ix0
in cone

(
Σk

)
× [0, 1] ensures that

cone
(
Σk

)
× [0, 1] /Ix0

≈ cone
(
Σk

)
× [0, 1] .

This homeomorphism can to chosen to take the equivalence class of Ix0
to x0.

Combining this homeomorphism with (‡) induces the necessary cone structure on
cone

(
Σk

)
× [0, 1] with x0 corresponding to the cone point and

Lx0
= cone

(
((Σk − int(Bk) × [0, 1]) ∪

(
cone

(
Σk

)
× {0, 1}

))
.

Note. By the equivalence of tame (k + 1)-cells in a (k + 1)-manifold, Lx0
may be

more easily visualized as the complement of any tame open (k + 1)-cell neighborhood
of x0 in the manifold portion of ∂

(
Θ

(
Σk

))
. �

Lastly, we show that the 4-dimensional version of the absolute cone conjecture is
equivalent to the 3-dimensional Poincaré Conjecture.

Theorem 4.4. Every 4-dimensional absolute cone is the cone over a homotopy 3-
sphere; moreover, if H3 is a 3-manifold homotopy equivalent to S3, then cone (H3) is
an absolute cone. If H3 is not homeomorphic to S3, then cone (H3) is not a 4-cell.

Proof. We have already shown that, if X is a 4-dimensional absolute cone, then ∂X
is a 3-manifold homotopy equivalent to S3; thus X is homeomorphic to the cone
over a homotopy 3-sphere. The last statement of the theorem is obvious. Therefore,
it remains only to show that cone (H3) is, indeed, an absolute cone. Our proof
utilizes Freedman’s breakthrough work on 4-dimensional manifolds. Aside from that
application, the proof is just a simpler version of work we have already done.

Claim. cone (H3) is an absolute cone.
By [Fr, Cor.1.3], H3 × R ∼= S

3 × R. It follows that cone (H3) is a 4-manifold with
boundary—that boundary being the base H3. By a homogeneity argument similar to
one used earlier, any point of the interior, opencone (H3), may be realized as a cone
point with H3 as its link.

If x0 ∈ H3, use Lemma 2.3 to realize cone (H3) as a mapping cylinder with Ix0
cor-

responding to the ‘range end’. As before, this arc is tame in the manifold cone (H3).
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Therefore, cone (H3) /Ix0
≈ cone (H3); moreover, cone (H3) /Ix0

is also homeomor-
phic to a cone with the equivalence class of Ix0

as its cone point (and the complement
of an open 3-cell as its base). These homeomorphisms yield a cone structure on
cone (H3) with x0 as the cone point. �
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