
FUNDAMENTA
MATHEMATICAE

168 (2001)

A non-Z-compactifiable polyhedron
whose product with the Hilbert cube

is Z-compactifiable

by

C. R. Guilbault (Milwaukee, WI)

Abstract. We construct a locally compact 2-dimensional polyhedron X which does
not admit a Z-compactification, but which becomes Z-compactifiable upon crossing with
the Hilbert cube. This answers a long-standing question posed by Chapman and Sieben-
mann in 1976 and repeated in the 1976, 1979 and 1990 versions of Open Problems in
Infinite-Dimensional Topology. Our solution corrects an error in the 1990 problem list.

1. Introduction. In 1976, T. A. Chapman and L. S. Siebenmann
proved a Hilbert cube manifolds version of Siebenmann’s famous thesis
[Si], in which necessary and sufficient conditions were given for an open
n-manifold (n > 5) to be compactifiable by addition of a boundary (n− 1)-
manifold. Since Hilbert cube manifolds do not have intrinsically defined
boundaries (the Hilbert cube, Q = [−1, 1]∞, is itself homogeneous!), Chap-
man and Siebenmann’s first task was to determine an appropriate notion
for the “boundary” of a Hilbert cube manifold. The concept they arrived at
involved Z-sets. A closed subset A of a compact ANR Y is a Z-set if either
of the following equivalent conditions is satisfied:

• There is a homotopy H : Y ×I → Y with H0 = idY and Ht(Y )∩A = ∅
for all t > 0.

• For every open set U of Y , U \ A ↪→ U is a homotopy equivalence.

IfX is a non-compact ANR, a Z-compactification ofX is a compact ANR
X̂ containing X as an open subset and having the property that X̂ \X is a
Z-set in X̂.
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Remark 1. Actually, one need not assume that X̂ is an ANR in the
above definition. As noted in Appendix 3 of [CS], a compactification X̂ of
an ANR X such that X̂\X satisfies the Z-set criteria is necessarily an ANR.

Evidence that Z-sets and Z-compactifications are the correct analogs
of n-manifold boundaries and boundary compactifications is plentiful—the
boundary of a compact n-manifold is a Z-set in that manifold, a Z-compact-
ification of a Hilbert cube manifold always yields a Hilbert cube manifold,
and a Z-set in a Hilbert cube manifold is always contained in a collared
subset. But the ultimate proof that Z-sets are the correct “boundaries” for
Hilbert cube manifolds lies in the beautiful characterization provided by
Chapman and Siebenmann.

Theorem 1.1 (see [CS, Ths. 3 and 4]). A Hilbert cube manifold X ad-
mits a Z-compactification iff each of the following is satisfied :

(a) X is inward tame at infinity.
(b) σ∞(X) ∈ lim←−{K̃0(π1(X \A)) | A ⊂ X compact} is zero.
(c) τ∞(X) ∈ lim←−

1{Wh(π1(X \A)) | A ⊂ X compact} is zero.

We will provide definitions of the above terminology and notation in
the following section. For now, we note that conditions (a) and (b) are
direct analogs of conditions found in Siebenmann’s thesis, and condition
(c) was automatically satisfied there due to an assumption (not needed for
Theorem 1.1) that the fundamental group be “stable at infinity”.

At the end of [CS], the authors point out that the notion of Z-compact-
ification can be applied to any locally compact ANR. A theorem of R. D.
Edwards [Ed] guarantees that the product of any locally compact ANR with
the Hilbert cube is a Hilbert cube manifold. Hence it is observed that, in
order for a locally compact ANR X to be Z-compactifiable, it is necessary
that X ×Q be Z-compactifiable. Chapman and Siebenmann conclude their
paper with the question: Is it sufficient? Their question was repeated and
amplified in Open Problems in Infinite-Dimensional Topology , an appendix
to Chapman’s book on Hilbert cube manifolds, where it appears in two
equivalent versions:

Question (see [Ch, p. 123]). In order for a locally compact ANR X to
be Z-compactifiable, it is necessary that conditions (a)–(c) of Theorem 1.1
be satisfied. Is this sufficient?

Equivalent Question. If X ×Q is Z-compactifiable, is X itself Z-
compactifiable?

These questions reappeared as “Problem QM 8” in the 1979 and 1990
revisions of Open Problems in Infinite-Dimensional Topology (see [Ge] and
[We]). Included in the latter problem list is an apparently incorrect proof
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that the answer to these questions is affirmative. We will show that the
answer is, in fact, negative by proving the following:

Theorem 1.2 (Main Theorem). There exists a locally compact 2-dimen-
sional polyhedron X with the property that X × Q is Z-compactifiable but
X is not.

Although the proof is complicated, the space X is quite simple. It is just
the “infinite mapping telescope” of a direct sequence S1 θ→ S1 θ→ S1 θ→ . . .
where θ is a degree 1 map which wraps the circle around itself twice counter-
clockwise, then once back in the clockwise direction. By contrast, the proof
of Theorem 1.1 relies heavily on the fact that an infinite mapping telescope
of an inverse sequence of finite polyhedra is always Z-compactifiable. Hence,
the “double infinite mapping telescope” Y of the system . . .

θ→ S1 θ→ S1 θ→
S1 θ→ . . . (a space which occurs naturally as an infinite cyclic cover of a finite
aspherical 2-complex) has two ends—one that admits a Z-compactification
and one that does not.

In concluding this section, we note that interest in Z-compactifications
of ANRs (and especially finite-dimensional polyhedra) has experienced a re-
cent rebirth. See for example [BM], [Be], [FW], [CP] and [AG]. In light of
our Main Theorem and these current trends, a closely related open ques-
tion (also found in Open Problems in Infinite Dimensional Topology) seems
particularly relevant:

Question (CMP 1 in [Ch] and QM 7 in [Ge] and [We]). When is a lo-
cally compact polyhedron Z-compactifiable? In other words, is there a condi-
tion that can be added to conditions (a)–(c) which implies Z-compactifiability
for polyhedra?

2. Some definitions and terminology. LetQ denote the Hilbert cube,
[−1, 1]∞. A Hilbert cube manifold is a separable metric space with the prop-
erty that each of its points has a closed neighborhood homeomorphic to the
Hilbert cube.

A locally compact separable metric space X is an absolute neighborhood
retract, or ANR, if it may be embedded as a closed subset of R∞ so that
there exists a retraction r : U → X, where U is a neighborhood of X in
R∞. If a retraction r : R∞ → X exists, then X is an absolute retract, or
AR. It is well known [Mi, Th. 5.2.15] that an ANR is an AR if and only
if it is contractible. When X is finite-dimensional, we may replace R∞ in
the above definitions with a finite-dimensional Euclidean space Rn (for n
sufficiently large). An important characterization [Mi, Th. 5.5.7] states that
a finite-dimensional locally compact separable metric space is an ANR if
and only if it is locally contractible.
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A non-compact ANR X is inward tame at infinity if, for any compact
set A ⊂ X, there exists a homotopy H : (X \ A) × I → X \ A so that
H0 = id and clX(H1(X \A)) is compact. Equivalently, one may require that
X contain arbitrarily large compact subsets A such that X \ A is finitely
dominated. If this condition holds, one may define an algebraic invariant
σ∞(X) ∈ lim←−{K̃0(π1(X \ A)) | A ⊂ X compact}. Here K̃0 is the projective
class group functor and all bonding maps are induced by inclusion. The
individual “coordinates” of σ∞(X) are the Wall finiteness obstructions for
the (X \ A)’s (see [Wa1] and [Wa2]). Then σ∞(X) vanishes iff X contains
arbitrarily small neighborhoods of infinity having finite homotopy type. (A
subset of X is a neighborhood of infinity if the closure of its complement
is compact.) When σ∞(X) vanishes, we may define the second algebraic
invariant τ∞(X) ∈ lim←−

1{Wh(π1(X \ A)) | A ⊂ X compact}. Here lim←−
1

denotes the first derived limit (see [CS]) and Wh is the Whitehead group
functor (see [Co]). Again, bonding maps are induced by inclusion.

Remark 2. In defining σ∞(X) and τ∞(X) for an ANR, it is convenient
to work with the Hilbert cube manifold, X×Q. Since Hilbert cube manifolds
can be triangulated [Ch, Th. 37.2], this allows one to work in the category of
CW-complexes where the Wall finiteness obstruction and Whitehead torsion
are normally defined. For details and more definitions, see [CS].

Throughout this paper, ≈ will indicate a homeomorphism and ' will
indicate homotopic maps or homotopy equivalent spaces. A submanifold M
of a finite-dimensional manifold N is properly embedded if M ∩ ∂N = ∂M .
In particular, an arc in N is properly embedded when it meets ∂M precisely
in its endpoints.

3. The basic building block. In this section we describe, and then
prove some simple properties of, a polyhedron K which is the basic building
block for the example promised in the Main Theorem.

Let θ : S1 → S1 be a degree 1 map which wraps the unit circle twice
around itself in the counterclockwise direction, then once back in the clock-
wise direction. Let K be a polyhedron with subpolyhedra L and L′ so that K
is homeomorphic to the mapping cylinder Map(θ) with L corresponding to
the domain end and L′ corresponding to the range end. In particular, we may
realize K as the quotient space of the rectangle [0, 3]×[0, 1] generated by the
equivalences: (0, y) ∼ (3, y) for all y ∈ [0, 1], and (x, 0) ∼ (1+x, 0) ∼ (3−x, 0)
for each x ∈ [0, 1]. Let q′ : [0, 3]× [0, 1]→ K be the corresponding quotient
map. See Figure 1, in which the arrows indicate the identifications to be
made.

Let Σ1 be the “triangle” obtained as the quotient space [0, 3]/{0 ∼ 3}.
Then we may factor the quotient map q′ as q ◦ π where π : [0, 3]× [0, 1]→
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(3,1)

(1,0) (2,0) (3,0)

Fig. 1. A gluing diagram for K

Σ1× [0, 1] identifies (0, y) with (3, y) for all y ∈ [0, 1] and q : Σ1× [0, 1]→ K
is the quotient map induced by the diagram

[0, 3]× [0, 1] Σ1 × [0, 1]

K

q′
�

�
�

�
�

�
�

�
�

�
�

� ''

π //

q

��

Let I1 = π([0, 1] × {0}), I2 = π([1, 2] × {0}) and I3 = π([2, 3] × {0})
denote the “sides” of Σ1 × {0} with I1 and I2 oriented naturally (in the
same direction as their preimages) and I3 in the opposite direction. Then
q identifies I1, I2 and I3 according to these orientations. Let e1 = I3 ∩ I1,
e2 = I1 ∩ I2 and e3 = I2 ∩ I3 be the “vertices” of Σ1 × {0}. Note that
for each i = 1, 2, 3, q|Ii takes Ii onto L′ by identifying the endpoints of Ii.
The common image under q of e1, e2 and e3 has some important geometric
properties in K. We refer to this point as the eye of K and denote it by e.
See Figure 2.



 

Fig. 2

For each point a ∈ L′ \ {e}, q−1(a) contains three points—one in the
interior of each of the Ii’s. By a triple of equivalent points we mean a set
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{a1, a2, a3} with a1 ∈ int(I1), a2 ∈ int(I2) and a3 ∈ int(I3) such that q(a1) =
q(a2) = q(a3). (For later convenience, we treat {e1, e2, e3} as a separate
special case, and do not refer to it as a triple of equivalent points.)

Notice that the “top end” of the mapping cylinder K (the circle L) is
the homeomorphic image under q of Σ1 × {1}. The images under q of the
segments {x} × [0, 1] may be viewed as the mapping cylinder lines of K.

For later use we place a partial ordering “≺” on the set
⋃3
i=1 int(Ii).

Under≺ each interval int(Ii) is ordered according to its orientation, hence, I1

and I2 inherit the natural ordering induced by the map π and I3 receives the
reverse of the ordering suggested by π. Points which lie in different intervals
are not comparable under ≺. Notice that if {a1, a2, a3} and {b1, b2, b3} are
triples of equivalent points, then ai ≺ bi for some i if and only if ai ≺ bi for
each i = 1, 2, 3.

Lemma 3.1. Let K, L, L′ and q′ : Σ1×[0, 1]→ K be as described above.
Then each of the following maps is a homotopy equivalence:

(1) L′ ↪→ K,
(2) L ↪→ K, and
(3) q : Σ1 × [0, 1]→ K.

Proof. Since K ≈ Map(θ) with L′ as the range end of the mapping
cylinder, one can strong deformation retract K onto L′ sliding along the
mapping cylinder lines. Hence, L′ ↪→ K is a homotopy equivalence.

Let r : K → L′ be the end result of the strong deformation retraction
described above. Then r is a homotopy equivalence, and since θ is a homo-
topy equivalence and the following diagram commutes, then L ↪→ K is also
a homotopy equivalence.

L K

L′
θ

�
�

�
�

�
� ��

�� //

r

��

Since the other three maps in the following diagram are homotopy equiv-
alences, so is q.

Σ1 × {1} L

Σ1 × [0, 1] K

∩
��

q

≈
//

∩
��q //

The next result shows some symmetry in the map q : Σ1 × [0, 1] → K,
which will be used to simplify several later arguments.
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Lemma 3.2 (Symmetry Property). There is an involution ι : Σ1 × [0, 1]
→Σ1×[0, 1] for which ι(e1)=e3, ι(e2)=e2, ι(I1)=I2, ι(I3)=I3, and which
induces an involution ι : K→K so that the following diagram commutes:

Σ1 × [0, 1] Σ1 × [0, 1]

K K

q

��

ι //

q

��
ῑ //

Proof. For each y ∈ [0, 1], view Σ1 × {y} as an equilateral triangle with
vertices π(0, y), π(1, y) and π(2, y) and let `y be the line which contains
the vertex π(1, y) and bisects the opposite side. The involution ι acts by
reflecting each triangle Σ1 × {y} about the line `y.

Before proving the final lemma of this section, we describe another use-
ful picture—a “parallelogram diagram” of the space K. A parallelogram
diagram for K is obtained by cutting Σ1 × [0, 1] open along any properly
embedded arc β with one endpoint in each boundary component. Let Pβ be
the resulting “parallelogram” and qβ : Pβ → K the obvious quotient map.
Normally β will not intersect Σ1 × {0} at e1, e2 or e3, so one of the inter-
vals Ii (i = 1, 2 or 3) will be separated by β. In this case we let I ′i denote
the initial portion of Ii and I ′′i denote the final portion. Here “initial” and
“final” are determined by the direction of the arrow. See Figure 3.

Fig. 3. A parallelogram diagram

Lemma 3.3. Let {a1, a2, a3} be a triple of equivalent points from Σ1×{0}
and let α be a properly embedded arc in Σ1 × [0, 1] from ai to aj with i 6= j.
Then the loop τ = q(α) does not contract in K \ {e}.

Proof. Recall that, by definition, α is disjoint from q−1(e) = {e1, e2, e3}.
Since α cannot separate Σ1 × {0} from Σ1 × {1}, we may choose a

properly embedded arc β ⊂ Σ1× [0, 1] which is disjoint from α∪{e1, e2,e3},
and which has one endpoint in each boundary component of Σ1 × [0, 1].
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Case 1: β meets Σ1 × {0} at b1 ∈ I1. Cut Σ1 × [0, 1] open along β
to obtain a parallelogram diagram qβ : Pβ → K, as described above. Let
b1, b1

′
, β1 and β1′ denote the two copies of b1 and β in ∂Pβ . Let β2 and

β3 be arcs in Pβ which are “parallel copies of β1” beginning at b2 and b3,
respectively, let γ denote the top edge of Pβ, and let B = (

⋃3
i=1 β

i)∪β1′ ∪γ.
It is easy to construct a strong deformation retraction Ht of Pβ \{e1, e2, e3}
onto B in such a way that qβ◦Ht is constant on (qβ)−1({y}) for all y ∈ K and
t ∈ [0, 1]. See Figure 4(a). Thus we get an induced deformation retraction
H̃ : (K \ {e}) × [0, 1] → K which deformation retracts K \ {e} onto the
graph A = qβ(B) shown in Figure 4(b).

(a)

(b)

Fig. 4. A deformation retraction of K \ {ē}

Now, since α must pass over one or more of the points e1, e2, e3 in Pβ ,
the homotopy H pushes α to a path α′ ⊂ B which (up to homotopy) rises up
through a βi (or β1′), then travels in γ, before coming back down a different
βj (or β1′). It is easy to see that τ ′ = qβ(α′) does not contract in A, hence,
it does not contract in K \ {e}. Moreover, τ ′ ' τ in K \ {e} (via H̃), so τ
does not contract in K \ {e}.

Remaining cases. If β intersects Σ1× [0, 1] in I2, we can use the Sym-
metry Property to revert to the above case. If β intersects Σ1 × [0, 1] in I3,
the picture is slightly different, but the proof is essentially the same.
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4. Construction of X. Let {(Ki, Li, L
′
i)}∞i=1 be a collection of pair-

wise disjoint copies of the triple (K,L,L′). For each i, let hi : L′i →
Li+1 be a piecewise linear homeomorphism. Define X = (

⋃∞
i=1 Ki)/{x ∼

hi(x) for each x ∈ L′i, i = 1, 2, . . .}. In other words, X is obtained from a
countable collection of copies of K by gluing the range end of each mapping
cylinder Ki to the domain end of Ki+1. Our ultimate goal in this paper is
to show that X has the properties promised in the Main Theorem.

Since each includes into X as an embedding, we view the Ki’s and Li’s as
subsets (in fact subpolyhedra) of X. Since each L′i has been identified with
Li+1, we no longer need the L′i labels, and we refer to the triple (Ki, Li, L

′
i)

as (Ki, Li, Li+1). For each i ∈ Z, we let ei denote the eye of Ki (hence,
ei ∈ Li+1) and qi : Σ1 × [0, 1] → Ki be the usual quotient map. For each
1 ≤ p ≤ q, let Xp,q =

⋃q
i=pKi and let Xp,∞ =

⋃∞
i=pKi. Notice that for each

p, Xp,p = Kp and that X1,∞ = X. The following is obvious.

Lemma 4.1. Let 1 ≤ p ≤ q be integers. Then

(1) Xp,q is homeomorphic to X1,q−p+1, and
(2) Xp,∞ is homeomorphic to X.

The next lemma compiles a few (of many) easy homotopy properties of
X and its subspaces. The primary ingredient in the proofs (which are left
to the reader) is Lemma 3.1.

Lemma 4.2. Let 1 ≤ p ≤ q be integers and X, Ki, Li, Xp,q and Xp,∞
be as defined above. Then each of these spaces has the homotopy type of a
circle, and the following inclusions are all homotopy equivalences:

(1) Lp ↪→ Xp,q,
(2) Lq+1 ↪→ Xp,q,
(3) Lp ↪→ Xp,∞,
(4) Xp,∞ ↪→ X,
(5) Xp,q ↪→ X.

Remark 3. Since the spaces involved are all ANRs (in fact, polyhedra),
each homotopy equivalence in Lemma 3.1 ((1) and (2)) and Lemma 4.2
(parts (1)–(5)) implies the existence of a strong deformation retraction of
the larger space onto the smaller.

The last two results of this section expand upon Lemma 3.3.

Lemma 4.3. Let p ≤ q be integers, let Ep,q = {ei | p ≤ i ≤ q}, and let
E′ ⊂ Ep,q. Then the inclusion induced map π1(Xp,q \ E′) → π1(X \ E′) is
injective. Hence, if r ≤ p and s ≥ q, then π1(Xp,q \ E′) → π1(Xr,s \ E′) is
also injective.

Proof. First note that X = X1,p−1 ∪Lp Xp,∞, and by Lemma 4.2 and
Remark 3, there is a strong deformation retraction of X1,p−1 onto Lp. This
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may be extended via the identity to a strong deformation retraction of X\E ′
onto Xp,∞ \ E′. The remainder of the proof breaks into two cases.

Case 1: eq 6∈ E′. By Lemma 4.2 and Remark 3, there is a strong defor-
mation retraction of Xq+1,∞ onto Lq+1. Since Xp,∞ = Xp,q ∪Xq+1,∞ and
E′ ∩Xq+1,∞ = ∅, we may combine this deformation retraction with the one
mentioned above to produce a strong deformation retraction of X \E ′ onto
Xp,q \ E′. Hence, the inclusion induced map on fundamental groups is an
isomorphism.

Case 2: eq ∈ E′. Consider the inclusion induced maps

π1(Xp,q \E′)→ π1(Xp,∞ \ E′)→ π1(X \E′).
By our initial observation, the second of these maps is an isomorphism. To
understand the first map, view Xp,∞ \ E′ as (Xp,q \ E′) ∪ (Xq+1,∞ \ E′)
where the latter two spaces intersect in the contractible space Lq+1 \ {eq}.
An application of van Kampen’s theorem (after noting that Lq+1 \ {eq} has
“nice” neighborhoods in both Xp,q \ E′ and Xq+1,∞ \ E′) then shows that
the first map is injective, thus completing the proof.

Corollary 4.4. Let {a1, a2, a3} be a triple of equivalent points from
Σ1 × {0} and let α be a properly embedded arc in Σ1 × [0, 1] from aj to ak

with j 6= k. Then the loop τ = qi(α) does not contract in X \ {ei}. Hence,
if p ≤ i ≤ q, then τ does not contract in Xp,q \ {ei}.

Proof. Combine Lemmas 3.3 and 4.3.

5. Z-Compactifiability of X×Q. In this section we do the easy part of
the Main Theorem. In particular, we offer two short proofs of the following:

Theorem 5.1. X ×Q is Z-compactifiable.

First proof. In this (more algebraic) proof, we simply verify that X
satisfies (a)–(c) of Theorem 1.1.

Notice that {Xp,∞}∞p=1 is a decreasing sequence containing arbitrarily
small neighborhoods of infinity in X. Then condition (a) follows easily from
Lemma 4.2 (conclusion (3)) and Remark 3. Since each Xp,∞ has the homo-
topy type of a circle, conditions (b) and (c) follow from the well known cal-
culations: K̃0(Z) = 0 and Wh(Z) = 0 (see [Wa1, p. 67] and [Co, Th. 11.2]).

Second proof. We now offer a proof which is more direct and more
geometric.

Recall that K ≈ Map(θ), where θ : S1 → S1 is homotopic to idS1 . A well
known theorem from the study of simple homotopy types (see [Co, Th. 5.5])
implies that Map(θ) is equivalent via a finite sequence of elementary cellular
expansions and collapses (rel ends) to Map(idS1) ≈ S1 × [0, 1].
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Applying the above observation to eachKi ⊂ X shows thatX is (infinite)
simple homotopy equivalent to S1×[0,∞). Hence, by [Ch, Th. 39.1],X×Q ≈
(S1 × [0,∞)) × Q. Since the latter space is clearly Z-compactifiable, so is
the former.

6. Embeddings of K in S1 × Bn. By choosing a sufficiently nice
triangulation of Σ1 × [0, 1] we may induce a triangulation of K so that the
quotient map q : Σ1× [0, 1]→ K is simplicial and L, L′ and {e} correspond
to subcomplexes. Moreover, every subdivision of this triangulation of K
induces a natural triangulation of Σ1 × [0, 1] so that q is still simplicial and
non-degenerate, i.e., i-simplices are taken onto i-simplices. Throughout the
remainder of this paper we assume that all triangulations of K and Σ1×[0, 1]
are of this sort.

In this section we will study maps of K into S1 × Bn. For convenience
we realize S1 ×Bn as a specific polyhedral subset of Rn+1. Let

S1 ×B1 = ([−3, 3]× [−3, 3]) \ ((−1, 1)× (−1, 1)) ⊂ R2,

and for n ≥ 2, let

S1 ×Bn = S1 ×B1 × [−1, 1]n−1 ⊂ Rn+1.

For a given n, let B−, B+ ⊂ S1×Bn denote the meridional n-disks, [−3,−1]
× {0} × [−1, 1]n−1 and [1, 3]× {0} × [−1, 1]n−1, respectively. See Figure 5.

 

Fig. 5

Give Rn+1 the usual Euclidean metric and let

H+ = {(x1, . . . , xn+1) ∈ Rn+1 | x1 ≥ 0}.
Then B+ ⊂ H+, B− ⊂ Rn+1 \ H+, dist(B−,H+) = 1 and dist(B+,
Rn+1 \H+) = 1.

Let n ≥ 4, and φ : K → int(S1 × Bn) be a piecewise linear (p.l.)
embedding which is a homotopy equivalence. Since S1 ×Bn ⊂ Rn+1, “p.l.”
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simply means that φ is linear on simplices of some triangulation T of K. By
adjusting the embedding an arbitrarily small amount, we may assume that
φ(T(0))∩(B−∪B+) = ∅. Then for each 1-simplex σ1 ∈ T, σ1∩φ−1(B−∪B+)
is either empty or a single point in int(σ1), and for each 2-simplex σ2 ∈ T,
σ2∩φ−1(B−∪B+) will be empty or a straight segment properly embedded in
σ2 with endpoints in the interiors of 1-dimensional faces. In this situation we
say the embedding is transverse to B−∪B+. Clearly, φ−1(B−) and φ−1(B+)
are disjoint 1-dimensional polyhedra in K and neither intersects {e}. If S is
the corresponding triangulation of Σ1×[0, 1], then qφ : Σ1×[0, 1]→ S1×Bn
will satisfy the same transversality properties on simplices. Moreover, since
Σ1 × [0, 1] is a manifold with boundary, (qφ)−1(B−) and (qφ)−1(B+) will
be disjoint properly embedded compact 1-manifolds, i.e., disjoint collections
of properly embedded arcs and circles in Σ1 × [0, 1]. Furthermore, neither
set intersects {e1, e2, e3}. An understanding of the arcs that arise in this
manner will be crucial to our proof of the Main Theorem. We spend the
remainder of this section studying these arcs.

Let α be a properly embedded arc in Σ1 × [0, 1] with endpoints a and b
not intersecting the set {e1, e2, e3}. We say that α is of Type I if one endpoint
lies in each component of Σ1×{0, 1}. If both endpoints lie in Σ1×{1}, then
α is of Type II . If both a and b lie in Σ1 × {0} and q(a) = q(b), then α is
of Type III . If both a and b lie in Σ1 × {0} and q(a) 6= q(b), then α is of
Type IV.

Notice that each arc α of Type II, III or IV “cuts off a disk” Dα ⊂
Σ1 × [0, 1]. More precisely, there is a unique arc J ⊂ Σ1 × {0, 1} and a
unique disk Dα ⊂ Σ1 × [0, 1] such that ∂Dα = α ∪ J . We say that α is free
if q|Dα is injective, i.e., if no points of Dα get identified under q.

Type IV arcs play a particularly important role in this paper. We sub-
divide this class of arcs as follows: α is of Type IV.0 if Dα ∩{e1, e2, e3} = ∅,
α is of Type IV.1 if Dα ∩ {e1, e2, e3} contains a single point, α is of Type
IV.2 if Dα ∩ {e1, e2, e3} contains two points, and α is of Type IV.3 if
Dα ⊃ {e1, e2, e3}. In Figure 6 a parallelogram diagram is used to illustrate
a variety of arcs.

Type I

Type III

Type II

Type IV.2
Type IV.0

Fig. 6. Arcs in Σ1 × [0, 1]
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The following easy lemma utilizes the partial ordering ≺ defined in Sec-
tion 3. We leave the proof for the reader to check.

Lemma 6.1. All Type II and Type IV.0 arcs are free. No Type III ,
IV.2 or IV.3 arcs are free. A Type IV.1 arc α is free if and only if Da ∩
{e1, e2, e3} = {e2} and the endpoints a1 ∈ I1 and b2 ∈ I2 of α determine
the inequality b2 ≺ a2.

In each of the remaining lemmas in this section we begin with a p.l.
embedding φ : K → int(S1 × Bn) which is a homotopy equivalence and
is transverse to B− ∪ B+. Throughout the section we let A− = φ−1(B−),
A+ = φ−1(B+), C− = (φq)−1(B−) and C+ = (φq)−1(B+).

Lemma 6.2. In the above setup:

(1) If {a1, a2, a3} is a triple of equivalent points in Σ1×{0} and one of
these points lies in C− [resp. C+], then so do the other two.

(2) Each loop in A− or A+ contracts in K.
(3) C− and C+ each contain an arc of Type I.

Proof. The first assertion is obvious. For the second, let τ be a loop in
A− or A+. Then φ(τ) lies in B− ∪ B+ and is therefore null homotopic in
S1 ×Bn. Since φ is a homotopy equivalence, τ is null homotopic in K.

For the third assertion, assume that C− contains no Type I arc. Then we
may find a loop ω in Σ1 × [0, 1] disjoint from C− so that ω ↪→ Σ1 × [0, 1] is
a homotopy equivalence. But then φq(ω) ⊂ (S1×Bn) \B−, so φq(ω) is null
homotopic in S1×Bn. Since φq is a homotopy equivalence (see Lemma 3.1),
this is impossible. The same argument guarantees that C+ also contains a
Type I arc.

The next lemmas show that when certain (geometrically motivated) hy-
potheses are in place, the configuration of arcs found in C+ (or C−) is
significantly limited. To make the proofs more readable, we use the follow-
ing notational conventions. Points of C− ∩ (Σ1×{0}) and C+ ∩ (Σ1×{0})
will be labelled as ai, bi, ci or di with i = 1, 2 or 3 denoting the interval
Ii in which the point lies. In this case a symbol αi, βi, γi or δi will denote
the corresponding arc of C− and C+. Of course, the label for an arc is not
unique—an arc with endpoints a1 and c3 could be labelled as α1 or γ3. An
arc of C− or C+ with undetermined endpoints will be given a neutral label
such as λ or µ.

Lemma 6.3. Given the original setup, assume that C+ [resp. C−] con-
tains no arcs of Type IV.0. Then for every component arc λ of C+ [resp.
C−] which is of Type IV.1 , Dλ ∩ {e1, e2, e3} = {e2}.

Proof. Suppose that λ ⊂ C+ is of Type IV.1 and that Dλ ∩ {e1, e2, e3}
6= {e2}.
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Case 1: Dλ ∩ {e1, e2, e3} = {e1}. Then λ has endpoints a3 ∈ I3 and
b1 ∈ I1. Since a3 and b1 are not in the same equivalence class, we have
either a1 ≺ b1 or b1 ≺ a1.

If a1 ≺ b1 then a1 ∈ Dλ, and since C+ contains no Type IV.0 arcs, a1

lies on a Type IV.1 arc α1 which begins at a1, ends at c3 ∈ I3, and cuts off
a smaller disk Dα1 ⊂ Dλ. Since c3 ≺ a3 it follows that c1 ≺ a1, and we may
apply the same argument to find yet another Type IV arc inside of Dα1 .
This process never ends, and since C+ contains finitely many components
we have a contradiction. See Figure 7.

If b1 ≺ a1 then b3 ≺ a3, so b3 ∈ Dλ, and we may proceed as above.

Fig. 7

Case 2: Dλ∩{e1, e2, e3} = {e3}. By symmetry (Lemma 3.2), the above
argument also rules out this case.

Remark 4. A precise way in which symmetry may be used to handle
Case 2 is the following. Replace φ by the p.l. embedding φι : K → Σ1×[0, 1].
Then, by Lemma 3.2, ((φι)q)−1 = (φ(qι))−1 = ι(φq)−1. Since ι transposes
e1 and e3 while leaving e2 fixed, the original Case 2 is transformed into
Case 1.

Lemma 6.4. Given the original setup, assume that C+ [resp. C−] con-
tains no arcs of Type III or Type IV.0. Then all Type IV arcs in C+ [resp.
C−] are of Type IV.1 and free.

Proof. We break the proof into three claims.

Claim 1. Each Type IV.1 arc λ ⊂ C+ is free.

By Lemma 6.3, Dλ ∩ {e1, e2, e3} = {e2}, thus, λ has endpoints a1 ∈ I1
and b2 ∈ I2. By Lemma 6.1, we need only show that b2 ≺ a2. Suppose to
the contrary that a2 ≺ b2. Then a1 ≺ b1 and, since C+ contains no arcs
of Type III or IV.0, b1 is the endpoint of an arc β1 whose other endpoint
lies in I2. This other endpoint c2 of β1 cannot equal a2, otherwise we would
have a loop q(λ ∪ β1) ⊂ A+ which is easily seen not to contract in K, thus
violating Lemma 6.2. Therefore, a2 ≺ c2 ≺ b2 or c2 ≺ a2.

Assume that a2 ≺ c2 ≺ b2 (the situation shown in Figure 8). Then there
exists another Type IV.1 arc γ1 beginning at c1 (where a1 ≺ c1 ≺ b1) and
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ending at d2 with c2 ≺ d2 ≺ b2. This gives rise to yet another Type IV.1
arc δ1 beginning at d1 and ending between c2 and d2. Clearly, an infinite
pattern has been established, and since C+ contains only finitely many arcs
we have a contradiction.

Fig. 8

The remaining possibility is that c2 ≺ a2. But then a2 is the endpoint of
a Type IV.1 arc whose other endpoint d1 satisfies a1 ≺ d1 ≺ b1. We are now
back to the (impossible) situation of the previous case, thus completing the
proof of Claim 1.

Claim 2. C+ contains no arc of Type IV.2.

Suppose that µ is a Type IV.2 arc in C+. Assume further that µ has
been chosen to be innermost with this property, i.e., Dµ contains no other
Type IV.2 arcs from C+.

Case (i): Dµ ∩ {e1, e2, e3} = {e1, e2}. Then µ has endpoints a3 ∈ I3
and b2 ∈ I2, and Dµ contains I1.

If b3 ≺ a3, then b3 ∈ Dµ and we may obtain a contradiction. Indeed, b3

must be the endpoint of a Type IV arc lying in Dµ. If the other endpoint
lies in I1, we contradict Lemma 6.3, and if it lies in I2, we contradict the
choice of µ as “innermost”. See Figure 9(a).

Now suppose that a3 ≺ b3. Then a2 ≺ b2, so a2 and a1 both lie in Dµ.
Let α1 be the arc of C+ containing a1. By hypotheses and Lemma 6.3, the
other endpoint c2 of α1 must lie in I2. By Claim 1, c2 ≺ a2. But now a2 also
lies on a Type IV arc α2 of C+. If α2 ends in I3 we contradict the choice of µ
as innermost, otherwise α2 ends at d1 ∈ I1 with d1 ≺ a1 and this contradicts
Claim 1. See Figure 9(b). Therefore, we have ruled out Case (i).

Case (ii): Dµ ∩ {e1, e2, e3} = {e1, e3}. Then µ has endpoints a2 ∈ I2
and b1 ∈ I1, and Dµ contains I3. Therefore a3 lies in Dµ and is the endpoint
of an arc α3 ⊂ C+. By hypothesis α3 cannot be of Type III or Type IV.0
so, since it lies in Dµ, it must be of Type IV.1 (see Figure 9(c)). But this
violates Lemma 6.3 since e2 6∈ Dµ, thus ruling out Case (ii).
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(a)

(b)

(c)

Fig. 9

Case (iii): Dµ∩{e1, e2, e3} = {e2, e3}. By symmetry (Lemma 3.2), this
is equivalent to Case (i) and therefore impossible.

Claim 3. C+ contains no arc of Type IV.3.

Suppose to the contrary that C+ contains a Type IV.3 arc µ, and assume
that µ has been chosen to be innermost with this property. One of the
intervals I1, I2 or I3 will contain both endpoints of µ.

(a)

(b)

Fig. 10

Case (i): The endpoints of µ lie in I3. Let a3 ≺ b3 be the endpoints
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of µ. Then, by Claims 1 and 2, a1 is an endpoint of a free Type IV.1 arc
α1 ⊂ Dµ. Hence the other endpoint c2 of α1 must lie in I2 with c2 ≺ a2.
Then c3 ≺ a3, so c3 lies on a Type IV arc γ3 ⊂ Dµ (see Figure 10(a)). By
hypothesis, Lemma 6.3, and Claim 2, γ3 cannot be of Type IV.0, IV.1 or
IV.2. Furthermore, since µ is innermost, γ3 cannot be of Type IV.3, thus
proving the impossibility of this case.

Case (ii): The endpoints of µ lie in I2. Let a2 ≺ b2 denote the end-
points of µ. Then a3 ∈ Dµ, however, our hypotheses along with Lemma 6.3
and Claim 2 rule out all components of C+ which could possibly contain a3

(see Figure 10(b)), rendering this case impossible.

Case (iii): The endpoints of µ lie in I1. By symmetry, this case is ruled
out by Case (ii), completing the proof of Claim 3 and hence of the lemma.

Lemma 6.5. Given the original setup, assume that

(1) C+ contains no Type III arcs, and
(2) C+ contains no arcs of Type IV.0.

Then, for every triple {a1, a2, a3} of equivalent points lying in C+, a3 and
at least one of a1 or a2 are endpoints of Type I arcs in C+. An equivalent
result may be obtained by replacing each “+” with a “−”.

Proof. By our hypotheses and Lemma 6.4, each point of {a1, a2, a3} is
the endpoint of an arc of Type I or a free arc of Type IV.1. Since each free
arc of Type IV.1 has endpoints in I1 and I2 (see Lemma 6), a3 must lie on
a Type I arc, α3.

It remains to show that a1 and a2 cannot both lie on a free arc of
Type IV.1. Suppose a1 is the endpoint of a free Type IV.1 arc α1. Then the
other endpoint b2 of α1 lies in I2 and b2 ≺ a2. Cut Σ1 × [0, 1] open along

Fig. 11

α3 to obtain Figure 11. It is now impossible for a2 to lie on a free arc of
Type IV.1 since the only points in I1 which are accessible from a2 are less
than a1.
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Lemma 6.6. Given the original setup, assume that

(1) C+ contains no Type III arcs,
(2) neither C− nor C+ contains an arc of Type IV.0 , and
(3) if C− contains a free Type IV.1 arc λ then Dλ contains an arc

component of C+.

Then for every triple {a1, a2, a3} of equivalent points lying in C−, at
least one element of {a1, a2, a3} is the endpoint of a Type I arc in C−.

An equivalent result may be obtained by reversing the roles of “+” and
“−”.

Proof. By Lemma 6.2, C+ contains a Type I arc, so there is a triple of
equivalent points {c1, c2, c3} ⊂ C+. By Lemma 6.5 and symmetry, we may
assume without loss of generality that c2 and c3 are endpoints of Type I
arcs γ2, γ3 ⊂ C+.

Case 1: c1 is also the endpoint of a Type I arc γ1. Then γ1, γ2 and γ3

cut Σ1 × [0, 1] into three “chambers” as shown in Figure 12(a).

(a)

(b)

Fig. 12

Subcase (1a): a1 ≺ c1. Then a1 and a3 each lie in the left-hand cham-
ber of our parallelogram diagram q′′ : Pγ3 → K. By Lemma 6.3, this cham-
ber contains no Type IV arcs. Therefore, a1 and a3 are each endpoints of
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Type I arcs (and thus, our conclusion is satisfied) or else a1 and a3 are the
endpoints of a Type III arc α1. In this latter case, consider a2 which lies
in the middle chamber. If a2 lies on a Type I arc, our desired conclusion is
satisfied. Otherwise, a2 is the endpoint of a Type IV.1 arc α2 with second
endpoint b1 ∈ I1 and c1 ≺ b1. Then a2 ≺ c2 ≺ b2, so α2 is free. Further-
more, if Dα2 contains an arc component δ ⊂ C+, then δ is of Type IV.1,
and therefore has an endpoint d2 ∈ I2 with d2 ≺ a2. But then d3 ∈ C+ lies
in Dα1 , and this is impossible by hypotheses (1) and (2) and Lemma 6.3.
Therefore δ cannot exist. But this violates hypothesis (3), completing the
proof of Subcase (1a). This scenario is pictured in Figure 12(a).

Subcase (1b): c1 ≺ a1. Then a2 and a3 both lie in the right-hand cham-
ber of our parallelogram and a1 lies in the middle chamber. The argument
just used in Subcase (1a) may now be used.

Case 2: c1 is not the endpoint of a Type I arc. Then by Lemma 6.4, c1

is the endpoint of a free Type VI.1 arc γ1 ⊂ C+. Let d2 ∈ I2 be the other
endpoint of this arc. By Lemma 6.5, d1 ∈ I1 is the endpoint of a Type I
arc δ1 ⊂ C+. We now break the remainder of the proof into three subcases,
each beginning with the parallelogram diagram in Figure 12(b).

Subcase (2a): a1 ≺ d1. Then both a1 and a3 lie to the left of δ1 in
Figure 12(b), and a2 lies beneath γ1. We may now apply the same argument
used in Subcase (1a).

Subcase (2b): d1 ≺ a1 ≺ c1. Then a3 lies to the left of δ1 in Figure
12(b), and a1 and a2 both lie to the right of δ1. By Lemma 6.3, a3 must lie
on a Type I arc.

Subcase (2c): c1 ≺ a1. Then a2 and a3 each lie to the right of γ2 in
our diagram and the situation is the same as in Subcase (2a).

7. Embeddings of Xp,q in S1×Bn. In this section we expand our focus
to study embeddings ofXp,q =

⋃q
i=pKi into S1×Bn. SinceXp,q ≈ X1,q−p+1,

we simplify notation by working with the spaces X1,j =
⋃j
i=1 Ki. Recall that

for each i = 1, . . . , j, ei denotes the eye of Ki and qi : Σ1 × [0, 1] → Ki is
the usual quotient map. We may choose triangulations of X1,j so that each
Ki, Li and {ei} is a subcomplex, and so that each qi : Σ1 × [0, 1] → Ki

is a non-degenerate simplicial map. (We may have a different triangulation
of Σ1 × [0, 1] for each i.) By Lemma 4.2, we know that X1,j is homotopy
equivalent to a circle. For n ≥ 4, each homotopy equivalence φ : X1,j →
int(S1×Bn) may be adjusted to a p.l. embedding which is transverse to the
disks B− and B+ in the sense described in Section 6. Then we let A−, A+ ⊂
X1,j denote the disjoint 1-dimensional polyhedra φ−1(B−) and φ−1(B+),
and for each i, A−i = A−∩Ki and A+

i = A+∩Ki. The latter will be disjoint
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1-dimensional polyhedra in Ki, neither containing ei. Also (as discussed in
Section 6), each map φqi : Σ1 × [0, 1]→ S1 ×Bn is transverse to B− ∪B+,
hence, for a given i, the sets C−i = (φqi)−1(B−) and C+

i = (φqi)−1(B+)
will be disjoint properly embedded compact 1-manifolds in Σ1 × [0, 1]. All
of the above will be the starting point for the results in this section.

In addition to the standard setup just described, the results in this sec-
tion each involve a partition {E+, E−} of the set E = {e1, . . . , ej} ⊂ X1,j .
Although the source of these partitions is not important yet, the reader
may be interested in knowing how they will arise. For a given embedding
φ : X1,j → int(S1×Bn), E+ will be the collection of eyes of X1,j which are
sent into the “right half” of S1×Bn and E− will be those sent into the “left
half”. More precisely, E+ = {ei ∈ X1,j | φ(ei) ∈ H+} and E− = E \ E+.
Recall Figure 5.

The first two lemmas in this section utilize geometric moves to simplify
a given embedding φ : X1,j → int(S1 ×Bn) while preserving key properties
of that embedding.

Lemma 7.1. Given the standard setup described above, suppose that
{E−, E+} is a partition of {e1, . . . , ej} with the property that loops in A−

contract in X1,j \ E+ and loops in A+ contract in X1,j \ E−. Suppose also
that

(†) C−1 or C+
1 contains an arc of Type IV.0.

Then we may choose a new p.l. embedding φ̂ : X1,j → int(S1 × Bn) which
is a homotopy equivalence, transverse to B− ∪ B+, and which satisfies the
following conditions:

(1) loops in Â− = (φ̂)−1(B−) contract in X1,j \E+,
(2) loops in Â+ = (φ̂)−1(B+) contract in X1,j \E−,
(3) φ̂|L1 = φ|L1 , and
(4) |φ̂(L2) ∩ (B− ∪B+)| < |φ(L2) ∩ (B− ∪B+)|.
Proof. We begin by assuming that j ≥ 2. A proof of the j = 1 case will

be contained in the j ≥ 2 argument.

Step 1: Eliminating circle components of C−1 ∪ C+
1 . In this step we

use standard cut and paste techniques to alter φ so that neither C−1 nor
C+

1 contains circle components. This will make the rest of the proof less
complicated.

Let τ be a circle component of C−1 . Then τ bounds a disk Dτ ⊂ Σ1 ×
(0, 1), and τ = q1(τ) is a circle component of A− bounding the disk Dτ =
q1(Dτ ) ⊂ K1 − {e1}. Let N (Dτ ) be a small 2-disk neighborhood of Dτ

in K1. Then φ(∂N (Dτ )) is a circle lying to one side of B− in S1 × Bn.
Let D∗ be a disk near to (but disjoint from) B− with ∂D∗ = φ(∂N (Dτ )),
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and by general position arrange that D∗ ∩ φ(X1,j) = ∂D∗. Redefine φ to
send N (Dτ ) onto D∗. This eliminates τ from C−1 , along with any other
components of C−1 lying in Dτ . Clearly, our new map still satisfies all of
the original hypotheses. Repeat this process until all circle components of
C−1 are removed, then perform the same procedure near B+ to eliminate all
circle components from C+

1 .

Step 2: Main setup. By Step 1, we may assume that neither C−1 nor C+
1

contains circle components. Choose a Type IV.0 arc λ which is innermost in
the set C−1 ∪C+

1 , i.e., choose λ so that Dλ contains no other components of
C−1 ∪C+

1 . Without loss of generality, assume that λ ⊂ C+
1 . Now ∂Dλ = λ∪J

where J ⊂ Σ1×{0} is an arc contained in the interior of one of the intervals
I1, I2, I3, and q−1

1 q1(J) = J ∪J ′∪J ′′ where J ′ and J ′′ are arcs—one in each
of the remaining Ii’s. A fourth “copy” of the arc J lies in the preimage of
the map q2 : Σ1 × [0, 1]→ K2. In particular, let J ′′′ = q−1

2 h1(q1(J)), where
h1 is the homeomorphism used to glue K1 to K2.

Let (N,N0) be a relative regular neighborhood of the pair (φq1(Dλ),
φq1(Dλ)) in (S1 × Bn, φ(X1,j)). Then N is an (n + 1)-ball and N0 = N ∩
φ(X1,j) may be realized as φq1(D∪R′∪R′′)∪φq2(R′′′), where D, R′ and R′′

are regular neighborhoods of Dλ, J ′ and J ′′ in Σ1×[0, 1], and R′′′ is a regular
neighborhood of J ′′′ in a separate copy of Σ1 × [0, 1]. See Figure 13 where

Fig. 13

we have cut each Σ1× [0, 1] open to produce parallelogram diagrams. In this
figure, we only show relevant parts of C− and C+ and we have arbitrarily
placed J ⊂ I2, J ′ ⊂ I1 and J ′′ ⊂ I3. In addition, we have reduced the size of
the second copy of Σ1 × [0, 1] (the domain of q2) to more accurately reflect
the geometry after identifications.

For later use let N0 denote φ−1(N0). Thus N0 is a regular neighborhood
of q1(Dλ) in X1,j .
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Step 3: Construction of φ̂. To obtain the desired embedding φ̂, we
perform an isotopy of S1 × Bn, fixed outside of N , which rearranges N0

to our specifications. Let λ0 be an arc in D which is disjoint from λ and
cuts off a disk D0 ⊂ D which contains Dλ. Let J0 = D0 ∩ (Σ1 × {0}). Let
Γ : N × [0, 1]→ N be an isotopy, fixed on ∂N , which slides the arc φq1(J0)
(rel endpoints) through the disk φq1(D0) and onto the arc φq1(λ0). This
isotopy squeezes φq1(D0) into the disk φq1(D \ int(D0)) and stretches the
φq1-images of “rectangles” R′ and R′′ and the φq2-image of R′′′ along disks
parallel to φq1(D0) so that their common edge is moved “upwards” to the
arc λ0. Extend Γ via the identity outside of N , and define φ̂ = Γ1 ◦ φ.

Step 4: Verification of conditions (1)–(4). The effect of the above move
on the sets A− and A+ (now Â− and Â+) is most easily seen back in Ĉ−1 ,
Ĉ+

1 , Ĉ−2 and Ĉ+
2 . Roughly speaking, Ĉ+

2 is obtained from C+
2 by pushing λ

from C+
1 down into C+

2 . Thus the components of C+
2 which had intersected

Σ1×{1} at the endpoints of J ′′′ are now joined together by an arc λ′′′ before
they reach Σ1 × {1}. (λ′′′ corresponds to λ in that its image under φ̂q2 is
nearly the same as the image of λ under φq1.) The effect on C+

1 is that λ has
disappeared and the arc components of C+

1 which had intersected Σ1×{0}
at the endpoints of J ′ and J ′′, respectively, are now joined together by arcs
λ′ and λ′′ before reaching Σ1×{0}. Lastly, Ĉ−2 and Ĉ−1 are left unchanged.
See Figure 14.

'''

'''

Fig. 14

By construction φ̂|L1 = φ|L1 , and by the above analysis, we see that
|φ̂(L2) ∩ (B− ∪ B+)| = |φ(L2) ∩ (B− ∪ B+)| − 2, hence conditions (3) and
(4) are satisfied. To check condition (1), notice that Â− = A−.

To verify condition (2), let τ be any embedded loop in Â+. (Since Â+ is
a graph, we may restrict our attention to embedded loops.) We must show
that τ contracts in X1,j \ E−. Since φ̂|X1,j\int(N0) = φ|X1,j\int(N0), we have

τ \ int(N0) ⊂ A+. By construction, τ ∩ N0 ⊂ q1(λ′ ∪ λ′′ ∪ λ′′′) and, since
N0 is contractible, each arc q1(λ′), q1(λ′′) and q1(λ′′′) may be homotoped
(rel endpoints) within N 0 into A+ ∩N0. See Figure 15. Since e1 6∈ N0, this
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'

''

'''

'

''

'''

Fig. 15

shows that τ may be homotoped within X1,j \ E− to a loop τ ′ ⊂ A+. By
hypothesis τ ′ contracts in X1,j \ E−, hence, so does τ .

Lastly, note that for the j = 1 case, the same strategy works. The proof
only becomes easier since Â−1 = Â− and Â+

1 = Â+.

Remark 5. The map φ̂ could also have been defined (without reference
to an isotopy) by cutting and pasting 2-dimensional disks inside of N . Back
in the domain spaces, the disk D0 is cut from the “first copy” of Σ1 × [0, 1]
along λ0 and sewn to the “second copy” of Σ1× [0, 1]. Copies D′0 and D′′0 of
D0 are sewn to the top copy of Σ1× [0, 1] along slightly lengthened copies of
J ′ and J ′′. Then φ̂ is defined to send these “new disks” D′0 and D′′0 to parallel
copies of φq1(D0) which are disjoint except that the edges λ′0 and λ′′0 are
each sent to the arc φq′1(λ0) where the new “seam” in φ(K1) is located. This
strategy, along with the effects on C+

1 and C+
2 , is described by Figure 16.

Fig. 16



188 C. R. Guilbault

The next lemma, while similar to its predecessor, has some significant
differences. It involves a geometric move which takes place in a neighborhood
of the eye of K1 ⊂ X1,j . For this reason, the main hypothesis (‡) is not
symmetric with respect to “+” and “−” and is thus more delicate than (†).

Lemma 7.2. Given the standard setup, suppose that {E−, E+} is a par-
tition of {e1, . . . , ej} and that loops in A− contract in X1,j \ E+ and loops
in A+ contract in X1,j \E−. Suppose also that

(‡) e1 ∈ E− and C−1 contains a free Type IV.1 arc λ with the property
that Dλ contains no arc component of C+.

Then we may choose a new p.l. embedding φ̂ : X1,j → int(S1 × Bn) which
is a homotopy equivalence, transverse to B− ∪ B+, and which satisfies the
following conditions:

(1) loops in Â− = (φ̂)−1(B−) contract in X1,j \E+,
(2) loops in Â+ = (φ̂)−1(B+) contract in X1,j \E−,
(3) φ̂|L1 = φ|L1 , and
(4) |φ̂(L2) ∩ (B− ∪B+)| < |φ(L2) ∩ (B− ∪B+)|.
The same result is true if the roles of “−” and “+” are reversed.

Proof. Begin by assuming that j ≥ 2. As in the previous lemma, a proof
of the j = 1 case is implicit in our argument.

Step 1: Eliminating circle and Type IV.0 arc components from C−1 ∪
C+

1 . Circle components may be removed from C−1 ∪ C+
1 by using the pro-

cedure described in Step 1 of Lemma 7.1. If C−1 ∪C+
1 contains a Type IV.0

arc component we may apply Lemma 7.1 directly to produce the desired
map φ̂.

Step 2: Main setup. By Step 1, we may assume that neither C−1 nor
C+

1 contains components which are circles or arcs of Type IV.0.
Let λ be the Type IV.1 arc promised by (‡). Notice that any Type

IV.1 arc contained in Dλ also satisfies (‡), hence, we may assume that λ
is innermost with that property, and therefore, Dλ ∩ (C−1 ∪ C+

1 ) = λ. Now
∂Dλ = λ ∪ J , where J ⊂ Σ1 × {0} is an arc containing e2 and having
endpoints a1 ∈ I1 and b2 ∈ I2 in common with λ and such that b2 < a2

(see Lemma 6). Then q−1
1 q1(J) = J ∪ J ′ ∪ J ′′ where J ′ ⊂ Σ1×{0} contains

e1 and has endpoints b3 and b1, while J ′′ ⊂ Σ1 × {0} contains e3 and has
endpoints a2 and a3. Another relevant arc J ′′′ = q−1

2 h1(q1(J)) lies in the
preimage of the map q2 : Σ1 × [0, 1]→ K2.

Since q1|Dλ is injective, φq1(Dλ) is a disk in int(S1 × Bn). Let (N,N0)
be a relative regular neighborhood of the pair (φq1(Dλ), φq1(Dλ)) in (S1 ×
Bn, φ(X1,j)). Then N is an (n + 1)-ball and N0 = N ∩ φ(X1,j) may be
realized as φq1(D ∪ R′ ∪ R′′) ∪ φq2(R′′′), where D, R′ and R′′ are regular
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neighborhoods of Dλ, J ′ and J ′′ in are Σ1 × [0, 1], and R′′′ is a regular
neighborhood of J ′′′ in a separate copy of Σ1 × [0, 1]. See Figure 17. For
later use let N0 ⊂ X1,j denote φ−1(N0).

Fig. 17

Step 3: Construction of φ̂. To obtain the desired embedding φ̂, we
perform an isotopy of S1 × Bn, fixed outside of N , which rearranges N0

to our specifications. Let λ0 be an arc in D which is disjoint from λ and
cuts off a disk D0 ⊂ D which contains Dλ. Let J0 = D0 ∩ (Σ1 × {0}).
Let Γ : N × [0, 1] → N be an isotopy, fixed on ∂N , which slides the arc
φq1(J0) (rel endpoints) through the disk φq1(D0) and onto the arc φq1(λ0).
This isotopy squeezes φq1(D0) into the disk φq1(D \ int(D0)) and drags
the φq1-images of R′ and R′′ and the φq2-image of R′′′ through portions of
φq1(D0) so that, at the end, the arcs along which these pieces meet (which
include e1) all lie on λ0. Extend Γ via the identity outside of N , and define
φ̂ = Γ1 ◦ φ. For later use let γ denote the preimage in D0 of the track of
φq1(e1) under Γ .

Step 4: Verification of conditions (1)–(4). Condition (3) is clearly sat-
isfied, and since Â+ is unchanged, condition (2) follows as well. To verify
the other conditions, we must examine Â−. Begin by considering the sets
Ĉ−1 and Ĉ−2 . The most obvious effect of Γ is that λ has been pushed down
into Ĉ−2 . More precisely, λ has disappeared from Ĉ−1 and the arcs of C−2
which previously contained the endpoints of J ′′′ are now joined in Ĉ−2 by an
arc λ′′′ before they reach Σ1 × {1}. (λ′′′ corresponds to λ in that its image
under φ̂q2 is nearly the same as the image of λ under φq1.)

To describe the remaining changes to C−1 , recall that γ ⊂ D0 is the
preimage of the track of e1 under Γ . For convenience, we can arrange that
γ intersect λ at a single point p, thus separating λ into subarcs λa and λb,
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where λa has endpoints a1 and p while λb has endpoints b2 and p. The arcs
of C−1 which previously contained the endpoints of J ′ are now joined in Ĉ−1
by an arc µb whose image in S1 × Bn lies close to the image of the path
λb ∗ λ−1

b . A similar change near J ′′, but with µa having image close to the
image of λa ∗ λ−1

a , completes the transition of C−1 into Ĉ−1 . See Figure 18.

'''

Fig. 18

Note. Although this figure is similar to Figure 14, the way the tran-
sition occurs in S1 × Bn is quite different. Much of this can be seen by
comparing Figures 15 and 19.

It is now clear that |φ̂(L2) ∩ (B− ∪ B+)| = |φ(L2) ∩ (B− ∪ B+)| − 2,
hence condition (4) is satisfied, and we need only verify condition (1).

Let τ be any embedded loop in Â−. (Since Â− is a graph, we may
restrict our attention to embedded loops.) We must show that τ contracts
in X1,j \E+. Since φ̂|X1,j\int(N0) = φ|X1,j\int(N0), we have τ \ int(N0) ⊂ A−.

By construction, τ ∩ N0 ⊂ q1(µa ∪ µb ∪ λ′′′) and, since N0 is contractible,
each arc q1(µa), q1(µb) and q1(λ′′′) may be homotoped (rel endpoints) within
N0 into A− ∩ N0. See Figure 19. These homotopies may pass through e1,

'

'''

''

'''

Fig. 19
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but since e1 ∈ E−, it follows that N0 ∩E+ = ∅. Thus τ may be homotoped
within X1,j \E+ to a loop τ ′ ⊂ A−. By hypothesis τ ′ contracts in X1,j \E+,
hence, so does τ .

For the j = 1 case we use the same strategy with the proof becoming
somewhat simpler.

Remark 6. As with Lemma 7.1, the map φ̂ just constructed could also
be defined by cutting and pasting 2-dimensional disks inside of N . Back in
the domain spaces, the disk D0 is cut from the “first copy” of Σ1 × [0, 1]
along λ0 and sewn to the “second copy” of Σ1 × [0, 1]. Disks D′0 and D′′0
are sewn to the top copy of Σ1 × [0, 1] along slightly lengthened copies
of J ′ and J ′′. Then q1 “folds” each of D′0 and D′′0 along center-lines and
identifies points along the outer boundary arcs. The map φ̂ now takes D′0
(after fold and identification) into S1 × Bn parallel to the half of φq1(D0)
which contains the image of λb. In doing so, the “crease” is sent near the
image of γ and the arc of identification points is sent to the φq1-image of
λb. Similarly, φ̂ takes the folded and identified “disk”, D′′0 , near to the half
of φq1(D0) containing the image of λa, with the crease being sent near the
image of γ and the arc of identification points being sent to the φq1-image
of λa. By general position, we may arrange that φ̂ be an embedding. This
strategy is described in Figure 20.

Fig. 20

The next result is the culmination of our efforts in the last two sections.
It will be a key ingredient in our proof of the non-Z-compactifiability of X.

Proposition 7.3. Given the standard setup, suppose that {E−, E+} is
a partition of E = {e1, . . . , ej} with the property that loops in A− contract in
X1,j \E+ and loops in A+ contract in X1,j \E−. Then |φ(L1)∩B−| ≥ 2|E

+|

and |φ(L1) ∩B+| ≥ 2|E
−|.

Proof. The proof will be by induction on j. For each j we will focus
our attention on φ|K1 : K1 → S1 × Bn. Since φ and K1 ↪→ X1,j are ho-
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motopy equivalences (Lemma 4.2(5)), we see that φ|K1 is also a homotopy
equivalence.

Case 1: j = 1. Without loss of generality, we may assume that E− =
{e1} and E+ = ∅.

Since φ(L1) is a non-trivial loop in S1 ×Bn it must intersect B−, hence
|φ(L1) ∩ B−| ≥ 1 = 2|E

+|. To see that |φ(L1) ∩ B+| ≥ 2, we assume that a
counterexample exists. Suppose further that this counterexample has been
chosen so that |φ(L2) ∩ (B− ∪ B+)| is minimal. Then by Lemma 7.1, C+

1
contains no Type IV.0 arcs and, since loops in A+ contract in K1 \ {e1},
Lemma 3.3 implies that C+

1 contains no Type III arcs. Hence, by an appli-
cation of Lemma 6.5, C+

1 contains at least two Type I arcs, contradicting
our assumption that |φ(L1) ∩B+| < 2.

Case 2: j ≥ 2. Assume that our claim is true for integers less than
j, but that a counterexample φ : X1,j → S1 × Bn exists and that, of all
counterexamples, we have chosen one for which |φ(L2) ∩ (B− ∪ B+)| is
minimal. Then, by Lemma 7.1, neither C−1 nor C+

1 contains a Type IV.0
arc. We break the remainder of the proof into two subcases.

Subcase (2a): e1 ∈ E−. By utilizing Lemma 4.3, we may apply
the inductive hypothesis to φ|X2,j : X2,j → S1 × Bn to conclude that
|φ(L2)∩B−| ≥ 2|E

+| and |φ(L2)∩B+| ≥ 2|E
−\{e1}| = 2(|E−|−1). Since loops

in A+ contract in X1,j \E−, by Corollary 4.4, C+
1 contains no Type III arcs.

Now, for every point of φ(L2)∩B+ there is a triple {a1, a2, a3} of equiv-
alent points lying in C+

1 and, by Lemma 6.5, at least two of these points lie
on Type I arcs in C+

1 . Thus,

|φ(L1) ∩B+| ≥ 2 · |φ(L2) ∩B+| ≥ 2 · 2|E−|−1 = 2|E
−|.

Next we focus on C−1 . Since e1 ∈ E−, we may not rule out the existence of
Type III arcs in C−1 ; however, by Lemma 7.2 and minimality, C−1 contains no
free Type IV.1 arc λ with the property that Dλ contains no arc component
of C+. Now, for every point of φ(L2) ∩ B− there is a triple {a1, a2, a3} of
equivalent points lying in C−1 and, by Lemma 6.6, at least one of these points
lies on a Type I arc of C−1 . Thus,

|φ(L1) ∩B−| ≥ |φ(L2) ∩B−| = 2|E
+|.

Hence φ was not a counterexample to our claim, so we are finished.

Subcase (2b): e1 ∈ E+. The proof is the same, except that the roles
of “−” and “+” are reversed.

8. The non-Z-compactifiability of X. We are now ready to prove
the following:
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Theorem 8.1 (Non-Z-compactifiability of X). The space X is not Z-
compactifiable.

Our proof will be by contradiction. Toward that end, suppose there exists
a Z-compactification X̂ = X ∪ Z. For each p, let X̂p,∞ = Xp,∞ ∪ Z. Then
X̂p,∞ is a neighborhood of Z in X̂; moreover, for each neighborhood U of Z
in X̂, there exists p such that X̂p,∞ ⊂ U . Easy applications of the definition
of Z-set and Lemma 4.2 imply the following:

• X ↪→ X̂ is a homotopy equivalence (hence X̂ ' S1),
• for every p, q ∈ Z (1 ≤ p ≤ q), the inclusionsXp,q ↪→ X̂ and X̂p,∞ ↪→ X̂

are homotopy equivalences,
• for each p there is a strong deformation retraction rp : X̂ → X̂p,∞.

Before beginning the proof, we introduce some more notation and then
review an important fact from dimension theory.

Let Ωn,k denote the cubification of Rn whose n-cells are of the form∏n
i=1[pi/2k, (pi + 1)/2k], where p1, . . . , pn ∈ Z. Note that for each r, the

r-skeleton, Ω(r)
n,k, of Ωn,k consists of all points (x1, . . . , xn) ∈ Rn for which

at least n − r of the xi’s are of the form si/2k with si ∈ Z. Note also that
each coordinate hyperplane Rm ⊂ Rn corresponds to a subcomplex of Ωn,k
with cubification Ωm,k.

For all k ≥ 0, S1×Bn, B− and B+ (as realized in Section 6) correspond
to subcomplexes of Ωn+1,k.

Recall from dimension theory the universal 1-dimensional Nöbeling
space, N 3

1 = {(x1, x2, x3) ∈ R3 | at most one of the xi’s is rational}. This
space has the important property that for any compact, 1-dimensional, sep-
arable metric space Z, the space E(Z,N 3

1 ) of embeddings of X into N 3
1

is dense in the space C(Z,R3) of continuous maps of Z into R3 (see [En,
Section 1.11]).

Proof of Theorem 8.1. Suppose thatX admits a Z-compactification X̂ =
X ∪ Z. We break the proof into two steps.

Step 1: We construct an embedding φ : X̂ → int(S1 × B4) with the
following properties:

(1) φ is a homotopy equivalence,
(2) φ|X is a p.l. embedding transverse to B− and B+, and
(3) φ(Z) ∩Ω(3)

5,k = ∅ for all k.

To get started, we will need the following:

Claim (a). dim(Z) = 1.

By the definition of a Z-set, for every ε > 0, there exists an ε-map
of X̂ into X. Since X is a 2-dimensional polyhedron, a standard result
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from dimension theory [Mi, Th. 4.5.13] implies that dim X̂ = 2. Then [BM,
Prop. 2.6] guarantees that dim(Z) ≤ 1.

Claim (b). There exists a homotopy equivalence G : X̂ → int(S1 ×B2)
so that G|Z embeds Z in N 3

1 .

Begin with a homotopy equivalence F : X̂ → int(S1 × B2). By the
dimension theoretic result mentioned earlier, we may approximate f = F |Z
arbitrarily closely by an embedding g : Z → N 3

1 . Since int(S1 × B2) is
an ANR and since Z has arbitrarily small neighborhoods in X̂ of the form
X̂p,∞, it follows that g may be extended to a map g : X̂p,∞ → int(S1×B2).
By precomposing with a strong deformation retraction rp : X̂ → X̂p,∞ we
may extend g to G : X̂ → int(S1 ×B2).

By choosing g sufficiently close to f and p sufficiently large in the above
paragraph, we can make g arbitrarily close to f = F |

X̂p,∞
. Since suffi-

ciently close maps of a compactum into int(S1 × B2) are homotopic (by
the straight-line homotopy), we may assume that g is homotopic to f . Now
F and X̂p,∞ ↪→ X̂ are both homotopy equivalences, hence, f is a homo-
topy equivalence. It follows that g is a homotopy equivalence, and since rp
is a homotopy equivalence, so is G = g ◦ rp. This completes the proof of
Claim (b).

Next, recall that (by the convention established in Section 6), S1×B4 =
(S1 × B2) × [−1, 1]2. Choose a small irrational number r0 ∈ (0, 1) and
define ψ : X̂ → S1 × B4 = (S1 × B2) × [−1, 1]2 by ψ(x) = (G(x), (r0, r0)).
Clearly, ψ is a homotopy equivalence and, since ψ(Z) ⊂ N 3

1 × {(r0, r0)} ⊂
R3×R2, at most one R5-coordinate of each point in ψ(Z) is rational. Thus,
ψ(Z) ∩Ω(3)

5,k = ∅ for all k.
To complete Step 1, we use basic general position to adjust ψ to the

desired map. Begin by choosing a cover U of ψ(X̂) by round open n-balls
each contained in int(S1×B4). Then choose a triangulation T of X so that
each Ki (and hence, each Xp,∞) corresponds to a subcomplex, and for each
simplex σ ∈ T, there exists Uσ ∈ U such that ψ(σ) ⊂ Uσ. In addition,
choose T so that mesh(T|Xp,∞)→ 0 as p→∞ (here the mesh is measured
in X̂).

Begin by defining φ on the vertex set T(0) so that the following properties
are satisfied:

(i) for each σ ∈ T, φ(σ(0)) ⊂ Uσ,
(ii) if v ∈ T(0)|Xp,∞ , then dist(φ(v), ψ(v)) < 1/p,
(iii) {φ(v) | v ∈ T(0)} is in general position in R5,
(iv) {φ(v) | v ∈ T(0)} ∩ (B− ∪B+) = ∅, and
(v) if v ∈ T(0) and φ(v) = (x1, . . . , x5) ∈ R5, then x5 > r0.
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Extend φ linearly over each simplex of T, then extend to all of X̂ by
letting φ|Z = ψ|Z . Condition (i) ensures that φ sends X̂ into int(S1 × B4)
and that φ is homotopic to ψ. Condition (ii) guarantees that φ is continuous,
while conditions (iii) and (iv) ensure that φ|X is a p.l. embedding transverse
to B−∪B+. Condition (v) makes φ an embedding by arranging that φ(X)∩
φ(Z) = ∅.

Step 2: Deriving a contradiction. Let A−1,∞ denote the 1-dimensional
polyhedron (φ−1(B−))∩X, and for integers 1 ≤ p ≤ q, let A−p,q = A−1,∞∩Xp,q

and A−p,∞ = A−1,∞ ∩Xp,∞. Define A+
1,∞, A+

p,q and A+
p,∞ similarly. Also, let

E1,∞ = {ei | i = 1, 2, . . .} and Ep,q = {ei | p ≤ i ≤ q}. Then define
E+

1,∞ = {ei ∈ E∞ | φ(ei) ∈ H+}, E−1,∞ = E1,∞ \ E+
1,∞, E+

p,q = Ep,q ∩ E+
1,∞

and E−p,q = Ep,q ∩E−1,∞.

Since φ(X̂) is a compact ANR, there exists ε > 0 so that loops in φ(X̂)
of diameter less than ε bound singular disks in φ(X̂) having diameter less
than 1. Since φ(X̂) may be pushed into φ(X) by arbitrarily small homo-
topies, it follows that loops in φ(X) having diameter less than ε bound
singular disks in φ(X) having diameter less than 1.

Choose k sufficiently large that mesh(Ω5,k) < ε. Since φ(Z) ∩Ω(3)
5,k = ∅,

sufficiently small neighborhoods of φ(Z) miss Ω(3)
5,k. Hence, there exists p0 ∈

Z so that φ(X̂p0,∞) ∩ Ω(3)
5,k = ∅. Since B− \ Ω(3)

5,k and B+ \ Ω(3)
5,k consist of

finite collections of pairwise disjoint open 4-cubes, each having diameter less
than ε, loops in φ(Xp0,∞)∩B− and φ(Xp0,∞)∩B+ bound singular disks in
φ(X) having diameters less than 1.

Pulling the above information back into X, and noting that

dist(B−, φ(E+
∞)) > 1 and dist(B+, φ(E−∞)) > 1,

we deduce that loops in A−p0,∞ contract in X \ E+
∞ and loops in A+

p0,∞
contract in X \ E−∞. By Lemma 4.3, if q ≥ p0, then loops in A−p0,q contract
in Xp0,q \E+

p0,q and loops in A+
p0,q contract in Xp0,q \E−p0,q.

Now, for each q ≥ p0, the map φ|Xp0,q
: Xp0,q → int(S1 × B4) satisfies

all hypotheses of Proposition 7.3. We may conclude that

|φ(Lp0) ∩B−| ≥ 2|E
+
p0,q
| and |φ(Lp0) ∩B+| ≥ 2|E

−
p0,q
|.

But as q →∞, at least one of |E+
p0,q| or |E−p0,q| approaches infinity, and since

φ(Lp0) is a p.l. embedded circle which intersects B− ∪ B+ transversely at
finitely many points, this gives a contradiction.

9. Questions. Along with the open question at the conclusion of Sec-
tion 1, some interesting questions remain.
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Question. Does there exist a finite n such that X × [−1, 1]n is Z-
compactifiable?

Question. Does there exist an open n-manifold Mn for which Mn ×Q
is Z-compactifiable but Mn is not?

Question (motivated by [Be, p. 135]). If Y is a finite K(G, 1), does its
universal cover admit a Z-compactification?

Note. The universal cover of the finite aspherical 2-complex discussed
near the end of Section 1 is Z-compactifiable.
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