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This paper is concerned with compactifications of high-dimensional manifolds. Sieben-
mann’s iconic 1965 dissertation [L. C. Siebenmann, The obstruction to finding a bound-
ary for an open manifold of dimension greater than five, Ph.D. thesis, Princeton Univ.
(1965), MR 2615648] provided necessary and sufficient conditions for an open manifold
Mm (m ≥ 6) to be compactifiable by addition of a manifold boundary. His theorem
extends easily to cases where Mm is noncompact with compact boundary; however,
when ∂Mm is noncompact, the situation is more complicated. The goal becomes a
“completion” of Mm, i.e. a compact manifold cMm containing a compactum A ⊆ ∂Mm

such that cMm\A ≈ Mm. Siebenmann did some initial work on this topic, and O’Brien
[G. O’Brien, The missing boundary problem for smooth manifolds of dimension greater
than or equal to six, Topology Appl. 16 (1983) 303–324, MR 722123] extended that
work to an important special case. But, until now, a complete characterization had yet
to emerge. Here, we provide such a characterization. Our second main theorem involves
Z-compactifications. An important open question asks whether a well-known set of con-
ditions laid out by Chapman and Siebenmann [T. A. Chapman and L. C. Siebenmann,
Finding a boundary for a Hilbert cube manifold, Acta Math. 137 (1976) 171–208, MR
0425973] guarantee Z-compactifiability for a manifold Mm. We cannot answer that
question, but we do show that those conditions are satisfied if and only if Mm × [0, 1]
is Z-compactifiable. A key ingredient in our proof is the above Manifold Completion

Theorem — an application that partly explains our current interest in that topic, and
also illustrates the utility of the π1-condition found in that theorem.
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1. Introduction

This paper is about “nice” compactifications of high-dimensional manifolds. The
simplest of these compactification is the addition of a boundary to an open manifold.
That was the topic of Siebenmann’s famous 1965 dissertation [30], the main result
of which can easily be extended to include noncompact manifolds with compact
boundaries. When Mm has noncompact boundary, one may ask for a compactifi-
cation M̂m that “completes” ∂Mm. That is a more delicate problem. Siebenmann
addressed a very special case in his dissertation, before O’Brien [26] characterized
completable n-manifolds in the case where Mm and ∂Mm are both 1-ended. Since
completable manifolds can have infinitely many (non-isolated) ends, O’Brien’s the-
orem does not imply a full characterization of completable n-manifolds. We obtain
such a characterization here, thereby completing an unfinished chapter in the study
of noncompact manifolds.

A second type of compactification considered here is the Z-compactification.
These are similar to the compactifications discussed above — in fact, those are spe-
cial cases — but Z-compactifications are more flexible. For example, a Z-boundary
for an open manifold need not be a manifold, and a manifold that admits no com-
pletion can admit a Z-compactification. These compactifications have proven to
be useful in both geometric group theory and manifold topology, for example, in
attacks on the Borel and Novikov Conjectures. A major open problem (in our
minds) is a characterization of Z-compactifiable manifolds. A set of necessary con-
ditions was identified by Chapman and Siebenmann [6], and it is hoped that those
conditions are sufficient. We prove what might be viewed the next best thing: If
Mm satisfies the Chapman–Siebenmann conditions (and m �= 4), then Mm × [0, 1]
is Z-compactifiable. We do this by proving that Mm × [0, 1] is completable — an
application that partly explains the renewed interest in manifold completions, and
also illustrates the usefulness of the conditions found in the Manifold Completion
Theorem.

1.1. The manifold completion theorem

An m-manifold Mm with (possibly empty) boundary is completable if there exists
a compact manifold M̂m and a compactum C ⊆ ∂M̂m such that M̂m\C is home-
omorphic to Mm. In this case M̂m is called a (manifold) completion of Mm. A
primary goal of this paper is the following characterization theorem for m ≥ 6.
Definitions will be provided subsequently.

Theorem 1.1. (Manifold Completion Theorem) An m-manifold Mm (m ≥ 6) is
completable if and only if

(a) Mm is inward tame,
(b) Mm is peripherally π1-stable at infinity,
(c) σ∞(Mm) ∈ lim←−{K̃0(π1(N)) |N a clean neighborhood of infinity} is zero, and
(d) τ∞(Mm) ∈ lim←−1{Wh(π1(N)) |N a clean neighborhood of infinity} is zero.



July 29, 2020 11:15 WSPC/243-JTA 1950075

Compactifications of manifolds with boundary 1075

Together, conditions (a) and (c) ensure that (nice) neighborhoods of infinity have
finite homotopy type, while Condition (d) allows one to upgrade certain, naturally
arising, homotopy equivalences to simple homotopy equivalences. These conditions
have arisen in other contexts, such as [6, 30].

Condition (b) can be thought of as “π1-stability rel boundary”; it seems unique
to the situation at hand. In the special case where Mm is 1-ended and N0 ⊇ N1 ⊇ · · ·
is a cofinal sequence of (nice) connected neighborhoods of infinity, it demands that
each sequence

π1(∂MNi ∪Ni+1)← π1(∂MNi ∪Ni+2)← π1(∂MNi ∪Ni+3)← · · ·
be stable where ∂MNi denotes ∂Mm ∩ Ni. This reduces to ordinary π1-stability
when ∂Mm is compact. A complete discussion of this condition can be found in
Sec. 4.

Remark 1. Several comments are in order:

(1) Dimensions ≤ 5 are discussed briefly in Sec. 2; our main focus is m ≥ 6.
(2) If ∂Mm is compact and Mm is inward tame then Mm has finitely many ends

(see Sec. 5), so the ends are isolated and disjoint from ∂Mm. In that case
Theorem 1.1 reduces to Siebenmann’s dissertation [30]. As such, Theorem 1.1
can be viewed as a generalization of [30].

(3) The special case of the Manifold Completion Theorem, where Mm and ∂Mm

are 1-ended, was proved by O’Brien [26]; that is where “peripheral π1-stability”
was first defined. But since candidates for completion can be infinite-ended (e.g.
let C ⊆ Sm−1 be a Cantor set and Mm = Bm\C), the general theorem is not
a corollary. In the process of generalizing [26], we simplify the proof presented
there and correct an error in the formulation of Condition (c). We also exhibit
some interesting examples which answer a question posed by O’Brien about a
possible weakening condition (b).

(4) If Condition (b) is removed from Theorem 1.1, one arrives at Chapman
and Siebenmann’s conditions for characterizing Z-compactifiable Hilbert cube
manifolds [6]. A Z-compactification theorem for finite-dimensional manifolds
is the subject of the second main result of this paper. We will describe that
theorem and the necessary definitions now.

1.2. The stable Z-compactification theorem for manifolds

To extend the idea of a completion to Hilbert cube manifolds Chapman and
Siebenmann introduced the notion of a “Z-compactification”. A compactifica-
tion X̂ = X � Z of a space X is a Z-compactification if there is a homotopy
H : X̂× [0, 1]→ X̂ such that H0 = id

bX and Ht(X̂) ⊆ X for all t > 0. Subsequently,
this notion has been fruitfully applied to more general spaces — notably, finite-
dimensional manifolds and complexes; see, for example, [2, 3, 9, 5, 11]. A completion
of a finite-dimensional manifold is a Z-compactification, but a Z-compactification
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need not be a completion. In fact, a manifold that allows no completion can still
admit a Z-compactification; the exotic universal covers constructed by Mike Davis
are some of the most striking examples (just apply [1]). Such manifolds must satisfy
Conditions (a), (c) and (d), but the converse remains open.

Question. Does every finite-dimensional manifold that satisfies conditions (a), (c)
and (d) of Theorem 1.1 admit a Z-compactification?

This question was posed more generally in [6] for locally compact ANRs, but
in [17] a 2-dimensional polyhedral counterexample was constructed. The manifold
version remains open. In this paper, we prove a best possible “stabilization theorem”
for manifolds.

Theorem 1.2. (Stable Z-compactification Theorem for Manifolds) An m-manifold
Mm (m ≥ 5) satisfies Conditions (a), (c) and (d) of Theorem 1.1, if an only if
Mm× [0, 1] admits a Z-compactification. In fact, Mm× [0, 1] is completable if and
only if Mm satisfies those conditions.

Remark 2. In [10], Ferry showed that if a locally finite k-dimensional polyhedron
X satisfies conditions (a), (c) and (d), then X × [0, 1]2k+5 is Z-compactifiable.
Theorem 1.1 can be viewed as a sharpening of Ferry’s theorem in cases where X is
a manifold.

1.3. Outline of this paper

The remainder of this paper is organized as follows. In Sec. 2, we review the status
of Theorem 1.1 in dimensions < 6. In Sec. 3, we fix some terminology and nota-
tion; then in Secs. 4–7, we carefully discuss each of the four conditions present in
Theorem 1.1. In Secs. 9–10, we prove Theorem 1.1, and in Sec. 11, we prove Theo-
rem 1.2. In Sec. 12, we provide a counterexample to a question posed in [26] about
a possible relaxation of Condition (b), and in Sec. 13, we provide the proof of a
technical lemma that was postponed until the end of the paper.

2. Manifold Completions in Dimensions < 6

The Manifold Completion Theorem is true in dimensions ≤ 3, but much simpler
versions are possible in those dimensions. For example, Tucker [32] showed that a
3-manifold can be completed if and only if each component of each clean neigh-
borhood of infinity has finitely generated fundamental group — a condition that is
implied by inward tameness alone.

Since we have been unable to find the optimal 2-dimensional completion theorem
in the literature, we take this opportunity to provide such a theorem. If M2 has
finitely generated first homology (e.g. if M2 is inward tame), then by classical work
(see [24, 28]) int(M2) ≈ Σ2 − P , where Σ2 is a closed surface and P is a finite set
of points. Therefore, M2 contains a compact codimension 1 submanifold C such
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that each of the components {Ni}ki=1 of M2\C is a noncompact manifold whose
frontier is a circle onto which it deformation retracts. Complete the Ni individually
as follows:

(i) If Ni contains no portion of ∂M2, add a circle at infinity; and
(ii) If Ni contains components of ∂M2, perform the Kerékjártó-Freudenthal end-

point compactification to Ni.

Classification 9.26 of [4], applied to each Ni of type (ii), ensures that the result is
a manifold completion of M2. As a consequence, we have the following theorem.

Theorem 2.1. A connected 2-manifold M2 is completable if and only if H1(M2)
is finitely generated; in particular, Theorem 1.1 is valid when n = 2.

In dimension 5 our proof of Theorem 1.1 goes through verbatim, provided it
is always possible to work in neighborhoods of infinity with boundaries in which
Freedman’s 4-dimensional Disk Embedding Theorem holds. That issue is discussed
in [27]; [13, Sec. 11.9] in the less general setting of Siebenmann’s thesis, but the issues
here are the same. In the language of [13]: Theorem 1.1 holds provided Condition
(b) is strengthened to require the existence of arbitrarily small neighborhoods of
infinity with stable peripheral pro-π1 groups that are “good”. A caveat is that
whenever [12] is applied, conclusions are topological, rather than piecewise-linear
(PL) or smooth.

Remarkably, Siebenmann’s thesis fails in dimension 4 (see [25, 34]). Counterex-
amples to his theorem are, of course, counterexamples to Theorem 1.1 as well.

As for low-dimensional versions of Theorem 1.2: if m ≤ 3 and Mm satisfies
Condition (a) then Mm is completable (hence Z-compactifiable), so Mm × [0, 1]
is completable and Z-compactifiable. If m = 4, then M4 × [0, 1] is a 5-manifold,
which (see Sec. 11) satisfies the conditions of Theorem 1.1. Whether that leads to
a completion depends on 4-dimensional issues, in particular the “goodness” of the
(stable) peripheral fundamental groups of the ends of M4 × [0, 1]. Those groups
are determined by, but are not the same as, the fundamental groups at the ends
of M4. If desired, a precise group-theoretic condition can be formulated from [18,
Proposition 11.1].

3. Conventions, Notation, and Terminology

For convenience, all manifolds are assumed to be PL. That assumption is particu-
larly useful for the topic at hand, since numerous instances of “smoothing corners”
would be required in the smooth category (an issue that is covered nicely in [26]).
With proper attention to such details, analogous theorems can be obtained in the
smooth or topological category. Unless stated otherwise, an m-manifold Mm is
permitted to have a boundary, denoted ∂Mm. We denote the manifold interior by
intMm. For A ⊆Mm, the point-set interior will be denoted IntMm A and the fron-
tier by FrMm A (or for conciseness, IntM A and the frontier by FrM A). A closed
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manifold is a compact boundaryless manifold, while an open manifold is a non-
compact boundaryless manifold.

For q < m, a q-dimensional submanifold Qq ⊆Mm is properly embedded if it is
a closed subset of Mm and Qq ∩∂Mm = ∂Qq; it is locally flat if each p ∈ intQq has
a neighborhood pair homeomorphic to (Rm, Rq) and each p ∈ ∂Qq has a neighbor-
hood pair homeomorphic to (Rm

+ , Rq
+). By this definition, the only properly embed-

ded codimension 0 submanifolds of Mm are unions of its connected components;
a more useful type of codimension 0 submanifold is the following: a codimension
0 submanifold Qm ⊆ Mm is clean if it is a closed subset of Mm and FrM Qm is a
properly embedded locally flat (hence, bicollared) (m− 1)-submanifold of Mm. In
that case, Mm\Qm is also clean, and FrM Qm is a clean codimension 0 submanifold
of both ∂Qm and ∂(Mm\Qm).

When the dimension of a manifold or submanifold is clear, we sometimes omit
the superscript; for example, denoting a clean codimension 0 submanifold by Q.
Similarly, when the ambient space is clear, we denote (point-set) interiors and fron-
tiers by IntA and Fr A.

For any codimension 0 clean submanifold Q ⊆ Mm, let ∂MQ denote Q ∩
∂Mm; alternatively ∂MQ = ∂Q\ int(Fr Q). Similarly, we will let intM Q denote
Q ∩ intMm; alternatively intM Q = Q\∂Mm.

4. Ends, Pro-π1, and the Peripheral π1-Stability Condition

4.1. Neighborhoods of infinity, partial neighborhoods of infinity,

and ends

Let Mm be a connected manifold. A clean neighborhood of infinity in Mm is a
clean codimension 0 submanifold N ⊆ Mm for which Mm\N is compact. Equiv-
alently, a clean neighborhood of infinity is a set of the form Mm\C where C is a
compact clean codimension 0 submanifold of Mm. A clean compact exhaustion of
Mm is a sequence {Ci}∞i=1 of clean compact connected codimension 0 submanifolds
with Ci ⊆ IntM Ci+1 and ∪Ci = Mm. By letting Ni = Mm\Ci we obtain the
corresponding cofinal sequence of clean neighborhoods of infinity. Each such Ni has
finitely many components {N j

i }ki

j=1. By enlarging Ci to include all of the compact
components of Ni, we can arrange that each N j

i is noncompact; then, by drilling out
regular neighborhoods of arcs connecting the various components of each FrM N j

i

(further enlarging Ci), we can also arrange that each FrM N j
i is connected. A clean

Ni with these latter two properties is called a 0-neighborhood of infinity. Most con-
structions in this paper will begin with a clean compact exhaustion of Mm with a
corresponding cofinal sequence of clean 0-neighborhoods of infinity.

Assuming the above arrangement, an end ε of Mm is determined by a nested
sequence (Nki

i )∞i=1 of components of the Ni; each component is called a neighborhood
of ε. More generally, any subset of Mm that contains one of the Nki

i is a neighbor-
hood of ε, and any nested sequence (Wj)∞j=1 of connected neighborhoods of ε, for
which ∩Wj = ∅, also determines the end ε. A more thorough discussion of ends
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can be found in [19]. Here, we will abuse notation slightly by writing ε = (Nki

i )∞i=1,
keeping in mind that a sequence representing ε is not unique.

At times, we will have need to discuss components {N j} of a neighborhood of
infinity N without reference to a specific end of Mm. In that situation, we will refer
to the N j as a partial neighborhoods of infinity for Mm (partial 0-neighborhoods
if N is a 0-neighborhood of infinity). Clearly, every noncompact clean connected
codimension 0 submanifold of Mm with compact frontier is a partial neighborhood
of infinity with respect to an appropriately chosen compact C; if its frontier is
connected it is a partial 0-neighborhood of infinity.

4.2. The fundamental group of an end

For each end ε of Mm, we will define the fundamental group at ε by using inverse
sequences. Two inverse sequences of groups A0

α1← A1
α2← A3

α3← · · · and B0
β1←

B1
β2← B3

β3← · · · are pro-isomorphic if they contain subsequences that fit into a
commutative diagram of the form

Gi0
<

λi0+1,i1
Gi1

<
λi1+1,i2

Gi2
<

λi2+1,i3
Gi3 · · ·

���� ���
� ���� ���

� ���� ����

Hj0
<

μj0+1,j1
Hj1

<
μj1+1,j2

Hj2
<

μj2+1,j3 · · · ,
(4.1)

where the connecting homomorphisms in the subsequences are (as always) compo-
sitions of the original maps. An inverse sequence is stable if it is pro-isomorphic
to a constant sequence C

id← C
id← C

id← · · · . Clearly, an inverse sequence is pro-
isomorphic to each of its subsequences; it is stable if and only if it contains a
subsequence for which the images stabilize in the following manner:

G0 <
λ1

G1 <
λ2

G2 <
λ3

G3 · · ·
���� ���

� ���� ���
� ���� ���

�

Im(λ1) <
∼=

Im(λ2) <
∼=

Im(λ3) <
∼= · · · ,

(4.2)

where all unlabeled homomorphisms are restrictions or inclusions. (Here, we have
simplified notation by relabeling the entries in the subsequence with integer sub-
scripts.)

Given an end ε = (Nki

i )∞i=1, choose a ray r : [1,∞)→Mm such that r([i,∞)) ⊆
Nki

i for each integer i > 0 and form the inverse sequence

π1(Nk1
1 , r(1)) λ2← π1(Nk2

2 , r(2)) λ3← π1(Nk3
3 , r(3)) λ4← · · · , (4.3)

where each λi is an inclusion induced homomorphism composed with the change-
of-basepoint isomorphism induced by the path r|[i−1,i]. We refer to r as the base ray
and the sequence (4.3) as a representative of the “fundamental group at ε based at
r” — denoted pro-π1(ε, r). Any similarly obtained representation (e.g. by choosing
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a different sequence of neighborhoods of ε) using the same base ray can be seen to
be pro-isomorphic. We say the fundamental group at ε is stable if (4.3) is a stable
sequence. A key observation from the theory of ends is that stability of pro-π1(ε, r)
depends on neither the choice of neighborhoods nor that of the base ray. See [19]
or [14].

4.3. Relative connectedness, relative π1-stability, and the

peripheral π1-stability condition

Let Q be a manifold and A ⊆ ∂Q. We say that Q is A-connected at infinity if Q

contains arbitrarily small neighborhoods of infinity V for which A∪V is connected.

Example 1. If P is a compact manifold with connected boundary, X ⊆ ∂P is a
closed set, and Q = P\X , then Q has one end for each component of X but Q

is ∂Q-connected at infinity. More generally, if B is a clean connected codimension
0 manifold neighborhood of X in ∂P and A = B\X , then Q is A-connected at
infinity.

The following lemma is straightforward.

Lemma 4.1. Let Q be a noncompact manifold and A a clean codimension 0 sub-
manifold of ∂Q. Then Q is A-connected at infinity if and only if Q\A is 1-ended.

If A ⊆ ∂Q and Q is A-connected at infinity: let {Vi} be a cofinal sequence of
clean neighborhoods of infinity for which each A ∪ Vi is connected; choose a ray
r : [1,∞) → intQ such that r([i,∞)) ⊆ Vi for each i > 0; and form the inverse
sequence

π1(A ∪ V1, r(1))
μ2← π1(A ∪ V2, r(2))

μ3← π1(A ∪ V3, r(3))
μ4←− · · · , (4.4)

where bonding homomorphisms are obtained as in (4.3). We say Q is A-π1-stable
at infinity if (4.4) is stable. Independence of this property from the choices of {Vi}
and r follows from the traditional theory of ends by applying Lemmas 4.1 and 4.2.

Lemma 4.2. Let Q be a noncompact manifold and A a clean codimension 0
submanifold of ∂Q for which Q is A-connected at infinity. Then, for any cofi-
nal sequence of clean neighborhoods of infinity {Vi} and ray r : [1,∞) → Q as
described above, the sequence (4.4) is pro-isomorphic to any sequence representing
pro-π1(Q\A, r).

Proof. It suffices to find a single cofinal sequence of connected neighborhoods of
infinity {Ni} in Q\A for which the corresponding representation of pro-π1(Q\A, r)
is pro-isomorphic to (4.4). Toward that end, for each i let C1 ⊇ C2 ⊇ · · · be a
nested sequence of relative regular neighborhoods of A in Q such that ∩Ci = A. By
“cleanness” of the Vi, each Ci can be chosen so that Ci ∪ Vi is a clean codimension
0 submanifold of Q which deformation retracts onto A ∪ Vi. Then Ni = (Ci∪Vi)\A
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is a clean neighborhood of infinity in Q\A and Ni ↪→ Ci ∪ Vi is a homotopy
equivalence. For each i there is a canonical isomorphism αi : π1(A ∪ Vi, r(i)) →
π1(Ni, r(i)) which is the composition

π1(A ∪ Vi, r(i))
∼=→ π1(Ci ∪ Vi, r(i))

∼=← π1(Ni, r(i)).

These isomorphisms fit into a commuting diagram

π1(A ∪ V1, r(1))
μ2←− π1(A ∪ V2, r(2))

μ3←− π1(A ∪ V3, r(3))
μ4←− · · ·

α1 ↓∼= α2 ↓∼= α3 ↓∼=
π1(N1, r(1)) λ2←− π1(N2, r(2)) λ3←− π1(N3, r(3)) λ4←− · · ·

completing the proof.

Remark 3. In the above discussion, we allow for the possibility that A = ∅. In
that case, A-connectedness at infinity reduces to 1-endedness and A-π1-stability to
ordinary π1-stability at that end.

Definition 4.3. Let Mm be a manifold and ε an end of Mm.

(1) Mm is peripherally locally connected at infinity if it contains arbitrarily small
0-neighborhoods of infinity N with the property that each component N j is
∂MN j-connected at infinity.

(2) Mm is peripherally locally connected at ε if ε has arbitrarily small 0-
neighborhoods P that are ∂MP -connected at infinity.

An N with the property described in condition (1) will be called a strong
0-neighborhood of infinity for Mm, and a P with the property described in con-
dition (2) will be called a strong 0-neighborhood of ε. More generally, any connected
partial 0-neighborhood of infinity Q that is ∂MQ-connected at infinity will be called
a strong partial 0-neighborhood of infinity.

Lemma 4.4. Mm is peripherally locally connected at infinity iff Mm is peripherally
locally connected at each of its ends.

Proof. Clearly, the initial condition implies the latter. For the converse, let N ′

be an arbitrary neighborhood of infinity in Mm and for each end ε, let Pε be a
0-neighborhoods of ε, contained in N ′, which is ∂MPε-connected at infinity. By
compactness of the Freudenthal boundary of Mm, there is a finite subcollection
{Pεk

}nk=1 that covers the end of Mm; in other words, C = Mm −⋃n
k=1 Pεk

is
compact. If the Pεk

are pairwise disjoint, we are finished; just let N =
⋃n

k=1 Pεk
.

If not, adjust the Pεk
within N ′ so they are in general position with respect to one

another, then let {Qj}sj=1 be the set of components of
⋃n

k=1 Pεk
and note that each

Qj is a ∂MQj-connected partial 0-neighborhood of infinity.

Remark 4. In the next section, we show that every inward tame manifold Mm is
peripherally locally connected at infinity. As a consequence, that condition plays
less prominent role than the next definition.
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Definition 4.5. Let Mm be a manifold and ε an end of Mm.

(1) Mm is peripherally π1-stable at infinity if contains arbitrarily small strong
0-neighborhoods of infinity N with the property that each component N j is
∂MN j-π1-stable at infinity.

(2) Mm is peripherally π1-stable at ε if ε has arbitrarily small strong 0-
neighborhoods P that are ∂MP -π1-stable at infinity.

It is easy to see that peripheral π1-stability at infinity implies peripheral
π1-stability at each end; and when Mm is finite-ended, peripheral π1-stability at
each end implies peripheral π1-stability at infinity. An argument could be made
for defining peripheral π1-stability at infinity to mean “peripherally π1-stability at
each end”. For us, that point is moot; in the presence of inward tameness the two
alternatives are equivalent.

Lemma 4.6. An inward tame manifold Mm is peripherally π1-stable at infinity if
and only if it is peripherally π1-stable at each of its ends.

Proof of this lemma is technical, and not central to the main argument. For that
reason, we save the proof for later (see Sec. 13). Although it is not needed here, it
would be interesting to know whether Lemma 4.6 holds without the assumption of
inward tameness.

5. Finite Domination and Inward Tameness

A topological space P is finitely dominated if there exists a finite polyhedron K

and maps u : P → K and d : K → P such that d ◦ u � idP . If choices can be made
so both d ◦ u � idP and u ◦ d � idK , i.e. P � K, we say P has finite homotopy
type. For simplicity, we will restrict our attention to cases where P is a locally finite
polyhedron — a class that contains the PL manifolds, submanifolds, and subspaces
considered here.

Lemma 5.1. Let Mm be a manifold and A ⊆ ∂M . Then Mm is finitely dominated
[respectively, has finite homotopy type] if and only if Mm\A is finitely dominated
[respectively, has finite homotopy type].

Proof. Mm\A ↪→Mm is a homotopy equivalence, and these properties are homo-
topy invariants.

Lemma 5.2. A locally finite polyhedron P is finitely dominated if and only if there
exists a homotopy H : P × [0, 1]→ P such that H0 = idP and H1(P ) is compact.

Proof. Assuming a finite domination, as described above, the homotopy between
idP and d ◦ u has the desired property. For the converse, let K be a compact
polyhedral neighborhood of H1(P ), u : K ↪→ P , and d = H1 : P → K.
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A locally finite polyhedron P is inward tame if it contains arbitrarily small
polyhedral neighborhoods of infinity that are finitely dominated. Equivalently, P

contains a cofinal sequence {Ni} of closed polyhedral neighborhoods of infinity each
admitting a “taming homotopy” H : Ni × [0, 1]→ Ni that pulls Ni into a compact
subset of itself. By an application of the Homotopy Extension Property (similar to
[20, Lemma 3.4]) we can require taming homotopies to be fixed on FrNi. From there,
it is easy to see that, in an inward tame polyhedron, every closed neighborhood of
infinity admits a taming homotopy.a

Lemma 5.3. Let Mm be a manifold and A a clean codimension 0 submanifold of
∂Mm. If Mm is inward tame then so is Mm\A.

Proof. For an arbitrarily small clean neighborhood of infinity N in Mm, let H be
a taming homotopy that fixes Fr N . Then H extends via the identity to a homotopy
that pulls A ∪ N into a compact subset of itself, so A ∪ N is finitely dominated.
Arguing as in Lemma 4.2, Mm\A has arbitrarily small clean neighborhoods of
infinity homotopy equivalent to such an A ∪N .

Remark 5. Important cases of Lemma 5.3 are when A = ∂Mm and when V is a
clean neighborhood of infinity (or a component of one) and A = ∂MV . Notice that
Lemma 5.3 is valid when Mm is compact and H is the “empty map”.

A finitely dominated space has finitely generated homology, from which it can
be shown that an inward tame manifold with compact boundary is finite-ended
(see [21, Proposition 3.1]). That conclusion fails for manifolds with noncompact
boundary; see item (3) of Remark 1. The following variation is crucial to this paper.

Proposition 5.4. If a noncompact connected manifold Mm and its boundary each
have finitely generated homology, then Mm has finitely many ends. More specifically,
the number of ends of Mm is bounded above by dimHm−1(Mm, ∂Mm; Z2) + 1.

Proof. Let C be a clean connected compact codimension 0 submanifold of Mm,
with the property that N = Mm\C is a 0-neighborhood of infinity, and let
{N j}kj=1 be the collection of connected components of Nn. It suffices to show that
k ≤ dimHm−1(Mm, ∂Mm; Z2) + 1. For the remainder of this proof (and only this
proof), all homology is with Z2-coefficients.

Note that ∂C is the union of clean codimension 0 submanifolds ∂MC and FrC,
which intersect in their common boundary ∂(Fr C). So by a generalized version of
Poincaré duality [23, Theorem 3.43] and the Universal Coefficients Theorem, for all
i, we have

Hi(C, ∂MC) ∼= Hm−i(C, Fr C). (5.1)

Claim 1. dimHm−1(C, ∂MC) ≥ k − 1.

aFor a discussion of “tameness” terminology and its variants, see [19, Sec. 3.5.5].
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By the long exact sequence for the pair (C, Fr C), we have

· · · → H1(C, Fr C) � H̃0(Fr C) → H̃0(C)
� �

(Z2)k−1 0.

So the claim follows from identity (5.1).

Claim 2. rankHm−1(N, ∂MN) ≥ k.

This claim follows from the long exact sequence for the triple (N, ∂N, ∂MN):

→ Hm(N, ∂N)→ Hm−1(∂N, ∂MN) � Hm−1(N, ∂MN)→
� �

0 (Z2)k,

where triviality of Hm(N, ∂N) is due to the noncompactness of all components of
N , and the middle equality is from excision.

The relative Mayer–Vietoris Theorem for pairs [23, Sec. 2.2], applied to (Mm,

∂Mm) expressed as (C ∪N, ∂MC ∪ ∂MN), contains

Hm−1(Fr C, ∂ FrC)→ Hm−1(C, ∂MC)⊕Hm−1(N, ∂MN)→ Hm−1(Mm, ∂Mm)

(5.2)

from which we can deduce

dim(Hm−1(C, ∂MC)⊕Hm−1(N, ∂MN))

≤ dim Hm−1(Fr C, ∂ FrC) + dim Hm−1(Mm, ∂Mm).

Since Hm−1(Fr C, ∂ Fr C) ∼= (Z2)k (from excision), then by Claims 1 and 2, we have

(k − 1) + k ≤ k + dimHm−1(Mm, ∂Mm).

So k ≤ dimHm−1(Mm, ∂Mm) + 1.

Corollary 5.5. If Mm is inward tame, then Mm is peripherally locally connected
at infinity.

Proof. By Lemma 4.1, it suffices to show that each compact codimension 0 clean
submanifold D ⊆Mm is contained in a compact codimension 0 clean submanifold
C ⊆ Mm so that if N = Mm\C, then each component N j of N has the property
that N j\∂Mm is 1-ended.

Since Mm is inward tame, each of its clean neighborhoods of infinity is finitely
dominated, so Mm\D has finitely many components, each of which is finitely
dominated. Let P l be one of those components. Then, Fr P l is a compact clean
codimension 0 submanifold of ∂D, whose interior is the boundary of P l\∂Mm.
Since int(Fr P l) and P l\∂Mm each have finitely generated homology (P l\∂Mm

is finitely dominated), then by Proposition 5.4, P l\∂Mm has finitely many ends.
Choose a compact clean codimension 0 submanifold Kl of P l\∂Mm that intersects
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int(Fr P l) non-trivially and has exactly one (unbounded) complementary compo-
nent in P l\∂Mm for each of those ends. After doing this for each of the component
P l of Mm\D, let C = D ∪ (∪Kl).

6. Finite Homotopy Type and the σ∞-Obstruction

Finitely generated projective left Λ-modules S and T are stably equivalent if there
exist finitely generated free Λ-modules F1 and F2 such that S⊕F1

∼= T ⊕F2. Under
the operation of direct sum, the stable equivalence classes of finitely generated
projective modules form a group K̃0(Λ), the reduced projective class group of Λ.
In [33], Wall associated to each path connected finitely dominated space P a well-
defined σ(P ) ∈ K̃0(Z[π1(P )]) which is trivial if and only if P has finite homotopy
type. (Here Z[π1(P )] denotes the integral group ring corresponding to π1(P ). In the
literature, K̃0(Z[G]) is sometimes abbreviated to K̃0(G).) As one of the necessary
and sufficient conditions for completability of a 1-ended inward tame open manifold
Mm (m > 5) with stable pro-π1, Siebenmann defined the end obstruction σ∞(Mm),
to be (up to sign) the finiteness obstruction σ(N) of an arbitrary clean neighborhood
of infinity N whose fundamental group “matches” the stable pro-π1(ε(Mm)).b

In cases where Mm is multi-ended or has non-stable pro-π1 (or both), a more
general definition of σ∞(Mm), introduced in [6], is required. Its definition employs
several ideas from [30, Sec. 6]. First note that there is a covariant functor K̃0 from
groups to abelian groups taking G to K̃0(Z[G]), which may be composed with the
π1-functor to get a functor from path connected spaces to abelian groups; here
we use an observation by Siebenmann allowing base points to be ignored. Next
extend the functor and the finiteness obstruction to non-path-connected P (abusing
notation slightly) by letting

K̃0(Z[π1(P )]) =
⊕

K̃0(Z[π1(P j)]),

where {P j} is the set of path components of P , and letting

σ(P ) = (σ(P 1), . . . , σ(P k))

recalling that P is finitely dominated and, hence, has finitely many components —
each finitely dominated.

Now, for an inward tame locally finite polyhedron P (or more generally
locally compact ANR), let {Nj} be a nested cofinal sequence of closed polyhedral

bThe main theorem of [26] incorrectly uses σ(Mm) — the finiteness obstruction of the entire
manifold Mm — in place of σ∞(Mm). The mistake is an erroneous application of Siebenmann’s
Sum Theorem to conclude that triviality of σ(Mm) implies triviality of σ(N) for each clean
neighborhood of infinity N . Siebenmann [30] (correctly) used the Sum Theorem to show that, in
the case of stable pro-π1, it is enough to check the obstruction once — for a well-chosen clean
neighborhood of infinity. He denoted that obstruction σ(ε). In our situation (and O’Brien’s) such a
simplification is not possible. We use the subscripted “∞” to help distinguish the general situation
from Siebenmann’s special case.
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neighborhoods of infinity and define

σ∞(P ) = (σ(N1), σ(N2), σ(N3), . . .) ∈ lim←−{K̃0[Z[π1(Ni)]]}.
The bonding maps of the target inverse sequence

K̃0[Z[π1(N1)]]← K̃0[Z[π1(N2)]]← K̃0[Z[π1(N3)]]← · · ·
are induced by inclusion, with the Sum Theorem for finiteness obstructions [30,
Theorem 6.5] assuring consistency. Clearly, σ∞(P ) vanishes if and only if each Ni

has finite homotopy type; by another application of the Sum Theorem, this happens
if and only if every closed polyhedral neighborhood of infinity has finite homotopy
type.

Remark 6. Alternatively, we could define σ∞(P ) to lie in the inverse limit of
the inverse system corresponding to all closed polyhedral neighborhoods of infinity,
partially ordered by inclusion. These inverse limits are isomorphic, and in either
case, the combination of Conditions (a) and (c) of Theorem 1.1 is equivalent to the
requirement that all clean neighborhoods of infinity have finite homotopy type —
a property referred to as absolute inward tameness in [19].

We close this section with an observation that builds upon Lemma 5.3. Both
play key roles in the proof of Theorem 1.1.

Lemma 6.1. Let Mm be a manifold and A a clean codimension 0 submanifold of
∂Mm. If Mm is inward tame and σ∞(Mm) vanishes, then Mm\A is inward tame
and σ∞(Mm\A) also vanishes.

Proof. Lemma 5.3 assures us that if Mm is inward tame, then so too is Mm\A.
The latter ensures that σ∞(Mm\A) is defined. Arguing as we did in the proof of
Lemma 5.3, Mm\A contains arbitrarily small neighborhoods of infinity which are
homotopy equivalent to A∪N , where N is a clean neighborhood of infinity in Mm.
If σ∞(Mm) = 0, then N has finite homotopy type; and since A ∪N = A\N ∪N ,
where A\N is a compact (m − 1)-manifold, then A ∪ N has finite homotopy
type (by a direct argument or easy application of the Sum Theorem for the
finiteness obstruction). The vanishing of σ∞(Mm\A) then follows from the above
discussion.

7. The τ∞-Obstruction

The τ∞ obstruction in Condition (d) of Theorem 1.1 was first defined in [6] and
applied to Hilbert cube manifolds; the role it plays here is similar. It lies in the
derived limit of an inverse sequence of Whitehead groups. For a more detailed
discussion, the reader should see [6].
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The derived limit of an inverse sequence

G0
λ1← G1

λ2← G2
λ3← · · ·

of abelian groups is the quotient group:

lim←−
1{Gi, λi} =

( ∞∏
i=0

Gi

)/
{(g0 − λ1g1, g1 − λ2g2, g2 − λ3g3, . . .) | gi ∈ Gi}.

It is a standard fact that pro-isomorphic inverse sequences of abelian groups
have isomorphic derived limits.

Suppose a manifold Mm contains a cofinal sequence {Ni} of clean neighborhoods
of infinity with the property that each inclusion Fr Ni ↪→ Ni is a homotopy equiv-
alence.c Let Wi = Ni\Ni+1 and note that Fr Ni ↪→ Wi is a homotopy equivalence.
See Fig. 1.

Since FrNi and Wi are finite polyhedra, the inclusion determines a Whitehead
torsion τ(Wi, Fr Ni) ∈Wh(π1(Fr Ni)) (see [7]). As in the previous section, we must

Fig. 1. Decomposition of Mm into {Wi}∞i=1.

cA manifold admitting such sequence of neighborhoods of infinity is called pseudo-collarable. See
[16, 21, 22] for discussion of that topic.
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allow for non-connected FrNi so we define

Wh(π1(Fr Ni)) =
⊕

Wh(π1(FrN j
i )),

where {FrN j
i } is the (finite) set of components of Fr Ni and

τ(Wi, Fr Ni) = (τ(W 1
i , Fr N1

i ), . . . , τ(W k
i , Fr Nk

i )).

These groups fit into and inverse sequence of abelian groups

Wh(π1(N1))←Wh(π1(N2))←Wh(π1(N3))← · · ·
where the bonding homomorphisms are induced by inclusions. (To match [6],
we have substituted π1(Ni) for the canonically equivalent π1(Fr Ni).) Let τi =
τ(Wi, Fr Ni) ∈Wh(π1(Ni)). Then

τ∞(Mm) = [(τ1, τ2, τ3, . . .)] ∈ lim←−
1{Wh(π1(Ni))},

where [(τ1, τ2, τ3, . . .)] is the coset containing (τ1, τ2, τ3, . . .).
If τ∞(Mm) is trivial, it is possible to adjust the choices of the Ni so that

each inclusion Fr Ni ↪→ Wi has trivial torsion, and hence is a simple homotopy
equivalence. Roughly speaking, the adjustment involves “lending and borrowing
torsion to and from immediate neighbors of the Wi”. The procedure is as described
in [6, Sec. 6], except that a Splitting Theorem for finite-dimensional manifolds (see
[26, pp. 318]) replaces [6, Lemma 6.1]. The reader is warned that the procedure
described in [26, Sec. 4] is flawed; we recommend [6].

8. Geometric Characterization of Completable Manifolds
and a Review of h- and s-Cobordisms

The following geometric characterization of completable manifolds, which has
analogs in [26, 32], paves the way for the proof of Theorem 1.1. It leads natu-
rally to the consideration of h- and s-cobordisms, which we will briefly review for
later use.

Lemma 8.1. (Geometric characterization of completable manifolds) A non-
compact manifold with boundary Mm is completable iff Mm =

⋃∞
i=1 Ci where, for

all i:

(i) Ci is a compact clean codimension 0 submanifold of Mm,

(ii) Ci ⊂ IntCi+1, and
(iii) if Wi denotes Ci+1\Ci, then (Wi, Fr Ci) ≈ (Fr Ci × [0, 1], FrCi × {0}).

Proof. For the forward implication, suppose M̂m is a compact manifold, A is
closed subset set of ∂M̂m, and Mm = M̂m\A. Write A as

⋂
i Fi, where {Fi}∞i=1 is a

sequence of compact clean codimension 0 submanifolds of ∂M̂m with Fi+1 ⊆ IntFi.
Let c : ∂M̂m×[0, 1]→ M̂m be a collar on ∂M̂m with c(∂M̂m×{0}) = ∂M̂m and, for
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each i, let Ci = M̂m\c(Int(Fi)× [0, 1/i)). Assertions (i) and (ii) are clear. Moreover,

Wi ≈ Fi × [0, 1/i]\(Int Fi+1 × [0, 1/(i + 1)])

≈ Fi × [0, 1/i]

via a homeomorphism taking c(Fi × {1/i}) onto Fi × {1/i}. Then, since FrCi =
c(Fi × {1/i} ∪ ∂Fi × [0, 1/i]) ≈ Fi, an application of relative regular neighbor-
hood theory allows an adjustment of that homeomorphism so that FrCi is taken
onto Fi × {1/i}. A reparametrization of the closed interval completes the proof of
assertion (iii). (Note that this works even when the Fi have multiple and varying
numbers of components. See Fig. 2.)

For the converse, we reverse the above procedure to embed Mm in a copy of
C1. Details can be found in [32, Lemma 1].

The above lemma shows that a strategy for completing a manifold is to fill up a
neighborhood of infinity in Mm with a sequence of cobordisms, then modify those
cobordisms (when possible) so they become products.

Recall that an (absolute) cobordism is a triple (W, A, B), where W is a manifold
with boundary and A and B are disjoint manifolds without boundary for which
A ∪ B = ∂W . The triple (W, A, B) is a relative cobordism if A and B are dis-
joint codimension 0 clean submanifolds of ∂W . In that case, there is an associated
absolute cobordism (V, ∂A, ∂B), where V = ∂W\(intA ∪ intB). We view absolute
cobordisms as special cases of relative cobordisms where V = ∅. A relative cobor-
dism is an h-cobordism if each of the inclusions A ↪→ W , B ↪→ W , ∂A ↪→ V , and

Fig. 2. Decomposing completed Mm into product cobordisms.
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∂B ↪→ V is a homotopy equivalence; it is an s-cobordism if each of these inclu-
sions is a simple homotopy equivalence. (For convenience, ∅ ↪→ ∅ is considered
a simple homotopy equivalence.) A relative cobordism is nice if it is absolute or
if (V, ∂A, ∂B) ≈ (∂A × [0, 1], ∂A × {0}, ∂A × {1}). The crucial result, proof (and
additional discussion) of which may be found in [29] , is the following theorem.

Theorem 8.2. (Relative s-cobordism Theorem) A compact nice relative cobordism
(W, A, B) with dimW ≥ 6 is a product, i.e. (W, A, B) ≈ (A×[0, 1], A×{0}, A×{1}),
if and only if it is an s-cobordism.

Remark 7. A situation similar to a nice relative cobordism occurs when ∂W =
A∪B′, where A and B′ are codimension 0 clean submanifolds of ∂W with a common
non-empty boundary ∂A = ∂B′. By choosing a clean codimension 0 submanifold
B ⊆ B′ with the property that B′\ IntB ≈ ∂B × [0, 1] we arrive at a nice relative
cobordism (W, A, B). When this procedure is applied, we will refer to (W, A, B) as
a corresponding nice relative cobordism. For notational consistency, we will always
adjust the term B′ on the far right of the triple (W, A, B′), leaving A alone.

For our purposes, the following lemma will be crucial.

Lemma 8.3. Let W be a compact manifold with ∂W = A ∪ B′, where A and B′

are codimension 0 clean submanifolds of ∂W with a common boundary. Suppose
A ↪→ W is a homotopy equivalence and that there is a homotopy J : W × [0, 1]→W

such that J0 = idW , J is fixed on ∂B′, and J1(W ) ⊆ B′. Then B′ ↪→ W is a
homotopy equivalence, so the corresponding nice relative cobordism (W, A, B) is an
h-cobordism.

Proof. Choose p ∈ ∂A = ∂B′, to be used as the basepoint for A, B′ and W .
Let i : A ↪→ W and ι : B′ ↪→ W denote inclusions and define f : A → B′ by
f(x) = J1(x). Then

ι ◦ f = J1 ◦ i. (8.1)

Clearly, J1 : W →W induces the identity isomorphism on π1(W, p), and since i is a
homotopy equivalence, it induces a π1-isomorphism. So, from (8.1), we may deduce
that f∗ : π1(A, p)→ π1(B′, p) is injective. Moreover, since f restricts to the identity
function mapping ∂A onto ∂B′, [8] allows us to conclude that f∗ is an isomorphism.
From there it follows that ι∗ : π1(B′, p)→ π1(W, p) is also an isomorphism.

Let p : W̃ → W be the universal covering projection, Ã = p−1(A), and B̃′ =
p−1(B′). Since i∗ and ι∗ are both π1-isomorphisms these are the universal covers of
A and B′, respectively. By generalized Poincaré duality for non-compact manifolds,

Hk(W̃ , B̃′; Z) ∼= Hn−k
c (W̃ , Ã; Z),

where cohomology is with compact supports. Since Ã ↪→ W̃ is a proper homotopy
equivalence, all of these relative cohomology groups vanish, so Hk(W̃ , B̃′; Z) = 0
for all k. By the relative Hurewicz theorem, πk(W̃ , B̃′) = 0 for all k, so the same is
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true for πk(W, B′). An application of Whitehead’s theorem allows us to conclude
that B′ ↪→ W is a homotopy equivalence.

9. Proof of the Manifold Completion Theorem: Necessity

We will prove necessity of the conditions in Theorem 1.1 by a straightforward
application of Lemma 8.1.

Proof of Theorem 1.1. (necessity) Suppose M̂m is a compact manifold and A is
closed subset set of ∂M̂m such that Mm = M̂m\A. As in the proof of Lemma 8.1
write A =

⋂
i Fi, where {Fi} is a sequence of compact clean codimension 0 sub-

manifolds of ∂M̂m with Fi+1 ⊆ IntFi, and let c : ∂M̂m× [0, 1] → M̂m be a collar
on ∂M̂m with c(∂M̂m×{0}) = ∂M̂m. For each i, let N̂i = c(Fi× [0, 1/i]) and Ni =
N̂i\A. Then {Ni} is cofinal sequence of clean neighborhoods of infinity in Mm with
Fr Ni = c(Fi×{1/i}∪∂Fi× [0, 1/i]). Since Fi×{1/i}∪∂Fi× [0, 1/i] ↪→ Fi× [0, 1/i]
and Ni ↪→ N̂i are both homotopy equivalences, then so is Fr Ni ↪→ Ni; and since
each Ni has finite homotopy type, conditions (a) and (c) of Theorem 1.1 both hold
(by the discussion in Secs. 5 and 6).

If we let Wi = Ni\Ni+1, then τ∞(Mm) is determined by the Whitehead torsions
of inclusions Fr Ni ↪→ Wi (see Sec. 7). Associate Wi with Fi× [0, 1/i] and Fr Ni with
Fi × {1/i} ∪ ∂Fi × [0, 1/i], as in the proof of Lemma 8.1. Then, the fact that both
Fi × {1/i} ↪→ Fi × [0, 1/i] and Fi × {1/i} ↪→ Fi × {1/i} ∪ ∂Fi × [0, 1/i] are simple
homotopy equivalences ensures that τ(Wi, Fr Ni) = 0. So condition (d) is satisfied.

It remains to verify the peripheral π1-stability condition. Fix i ≥ 1 and let F j
i

be one component of Fi, N̂ j
i = c(F j

i × [0, 1/i]) and N j
i = N̂ j

i \A. Then ∂MN j
i =

c(Fi ×{0})\A and N j
i is clearly ∂MN j

i -connected at infinity. For each k > i, let F ′
k

be the union of all components of Fk contained in F j
i , N̂ ′

k = c(F ′
k × [0, 1/k]) and

N ′
k = N̂ ′

k\A. By definition, we may consider the sequence

π1(∂MN j
i ∪N ′

i+1)
μ2← π1(∂MN j

i ∪N ′
i+2)

μ3← π1(∂MN j
i ∪N ′

i+3)
μ4← · · · , (9.1)

where basepoints are suppressed and bonding homomorphisms are compositions of
maps induced by inclusions and change-of-basepoint isomorphisms. Each of those
inclusions is the top row of a commutative diagram

∂MN j
i ∪N ′

k ←↩ ∂MN j
i ∪N ′

k+1

↓ incl ↓ incl
∂MN j

i ∪ N̂ ′
k ∂MN j

i ∪ N̂ ′
k+1

↓ ≈ ↓ ≈
(F j

i × {0}) ∪ (F ′
k × [0, 1/k])←↩ (F j

i × {0}) ∪ (F ′
k+1 × [0, 1/k + 1]),

where the bottom row is an obvious homotopy equivalence, as are all vertical
maps. It follows that the initial inclusion is a homotopy equivalence as well. As
a result, all bonding homomorphisms in (9.1) are isomorphisms, so the sequence is
stable.
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10. Proof of the Manifold Completion Theorem: Sufficiency

Throughout this section {Ci}∞i=1 will denote a clean compact exhaustion of Mm

with a corresponding cofinal sequence of clean 0-neighborhoods of infinity {Ni}∞i=1,
each of which has a finite set of connected components {N j

i }ki

j=1. For each i we will
let Wi = Ni\Ni+1, a compact clean codimension 0 submanifold of Mm. Note that
∂Wi may be expressed as Fr Ni ∪ (∂MWi ∪ Fr Ni+1), a union of two clean codimen-
sion 0 submanifolds of ∂Wi intersecting in a common boundary ∂(FrNi). (Figs. 1
and 2 contain useful schematics.) The proof of Theorem 1.1, will be accomplished
by gradually improving the exhaustion of Mm so that ultimately, conditions (i)–(iii)
of Lemma 8.1 are all satisfied.

Lemma 10.1. If Mm is inward tame and σ∞(Mm) vanishes, then for each i, σ(Ni)
and σ(Ni\∂Mm) are both zero.

Proof. By our discussion in Sec. 6, if Mm is inward tame and σ∞(Mm) = 0, then
each Ni has finite homotopy type. Since Ni ↪→ Ni\∂Mm is a homotopy equivalence,
so does Ni\∂Mm.

Proposition 10.2. If Mm satisfies Conditions (a)–(c) of Theorem 1.1 then the
{Ci} and the corresponding {Ni} can be chosen so that, for each i,

(1) FrNi ↪→ Ni is a homotopy equivalence, and
(2) ∂MWi ∪ FrNi+1 ↪→ Ni is a homotopy equivalence; therefore,
(3) the nice relative cobordisms corresponding to (Wi, Fr Ni, ∂MWi ∪ Fr Ni+1) are

h-cobordisms.

Proof. By Lemma 10.1 and the definition of peripheral π1-stability at infinity, we
can begin with a clean compact exhaustion {Ci}∞i=1 of Mm and a corresponding
sequence of neighborhoods of infinity {Ni}∞i=1, each with a finite set of connected
components {N j

i }ki

j=1, so that for all i ≥ 1 and 1 ≤ j ≤ ki,

(i) N j
i is inward tame,

(ii) N j
i is (∂MN j

i )-connected and (∂MN j
i )-π1-stable at infinity, and

(iii) σ∞(N j
i ) = 0.

By Lemmas 5.3, 4.2, and 6.1, this implies that

(i′) N j
i \∂MN j

i is inward tame,
(ii′) N j

i \∂Mm is 1-ended and has stable fundamental group at infinity, and
(iii′) σ∞(N j

i \∂Mm) = 0.

These are precisely the hypotheses of Siebenmann’s Relativized Main Theorem
[30, Theorem 10.1], so N j

i \∂Mm contains an open collar neighborhood of infin-
ity V j

i ≈ ∂V j
i × [0,∞). Following the proof in [30] (similar to what is done in

[26, Theorem 3.2]), this can be done so that ∂N j
i \∂Mm (= int(FrN j

i )) and ∂V j
i
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Fig. 3. V j
i ≈ ∂V j

i × [0, 1) contained in Nj
i \∂Mm.

contain clean compact codimension 0 submanifolds Aj
i and Bj

i , respectively, so that
(∂N j

i \∂Mm)\ intAj
i = ∂V j

i \ intBj
i ≈ ∂Aj

i × [0, 1). See Fig. 3.

Then Kj
i = N j

i \V j
i is a clean codimension 0 submanifold of Mm which intersects

Ci in Aj
i . To save on notation, replace Ci with Ci ∪ (∪Kj

i ), which is still a clean
compact codimension 0 submanifold of Mm, but with the added property that

Ni\∂Mm ≈ int(Fr Ni)× [0,∞). (10.1)

Since adding ∂MNi back in does not affect homotopy types, we also have that

FrNi ↪→ Ni is a homotopy equivalence. (10.2)

Having enlarged the Ci, pass to a subsequence if necessary to regain the property
that Ci ⊆ IntCi+1 for all i.

Letting Ni = Mm\Ci gives a nested cofinal sequence of clean neighborhoods
of infinity {Ni} with the property that each inclusion Fr Ni ↪→ Ni is a homotopy
equivalence; in other words, we have obtained a pseudo-collar structure on Mm.
For each i ≥ 1, let Wi = Ni\Ni+1, a clean compact codimension 0 submanifold of
Mm with ∂Wi = Fr Ni ∪ (∂MWi ∪ Fr Ni+1).

Claim 1. FrNi ↪→Wi is a homotopy equivalence.

Condition (10.2) applied to Ni ensures the existence a strong deformation retraction
Ht of Ni onto FrNi. That same condition applied to Ni+1 ensures the existence of
a retraction r : Ni+1 → Fr Ni+1, which extends to a retraction r̂ : Ni → Wi. The
composition r̂Ht, restricted to Wi, gives a deformation retraction of Wi onto FrNi.

Claim 2. ∂MWi ∪ FrNi+1 ↪→Wi is a homotopy equivalence.
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By applying Lemma 8.3, it is enough to show that there exists a homotopy
H : Wi × [0, 1]→Wi, fixed on ∂(Fr Ni), with the property that H1(Wi) ⊆ ∂MWi ∪
Fr Ni+1. Toward that end, let B be a collar neighborhood of ∂MWi in Wi and let
D = Wi\B. Use the collar structure on Ni\∂Mm to obtain a homotopy K : Ni ×
[0, 1]→ Ni, fixed on ∂(FrNi), which pushes Ni into the complement of D; in other
words K1(Ni) ⊆ B∪Ni+1. Compose this homotopy with the retraction r̂ : Ni →Wi

used in the previous claim to get a homotopy r̂Kt of Wi (still fixed on ∂(FrNi)) with
r̂K1(Wi) ⊆ B ∪ Fr Ni+1. Follow this with a homotopy that deformation retracts B

onto ∂MWi while sending Fr Ni+1 into itself to complete the desired homotopy and
prove Claim 2.

We can now write Mm = C1 ∪W1 ∪W2 ∪W3 ∪ · · · where, for each i,

• Wi is a compact clean codimension 0 submanifold of Mm,
• ∂Wi = FrNi ∪ (∂MWi ∪ Fr Ni+1), and
• both Fr Ni ↪→ Wi and ∂MWi ∪ FrNi+1 ↪→Wi are homotopy equivalences.

As such, the corresponding nice relative cobordisms (as described in Remark 7) are
h-cobordisms.

Proposition 10.3. If Mm satisfies conditions (b)–(d) of Theorem 1.1 the con-
clusion of Proposition 10.2 can be improved so that, for each i, the nice relative
cobordisms corresponding to (Wi, Fr Ni, ∂MWi ∪ Fr Ni+1) are s-cobordisms. In that
case, (Wi, FrNi) ≈ (Fr Ni × [0, 1], FrNi × {0}) for all i, and Mm is completable.

Proof. By the triviality of τ∞(Mm), it is possible to adjust the choices of the Ni so
that each inclusion FrNi ↪→Wi has trivial Whitehead torsion, i.e. τ(Wi, Fr Ni) = 0,
and hence is a simple homotopy equivalence. As was discussed in Sec. 7, the adjust-
ment involves “lending and borrowing torsion to and from immediate neighbors
of the Wi” as described in [6, Sec. 6], except that a Splitting Theorem for finite-
dimensional manifolds (see [26, p. 318]) replaces [6, Lemma 6.1].

To complete the proof, apply the Relative s-cobordism Theorem to each Wi

then apply Lemma 8.1.

11. Z-Compactifications and the Proof of Theorem 1.2

In this section, we prove Theorem 1.2. Since Mm× [0, 1] satisfies conditions (a), (c)
and (d) of Theorem 1.1 if and only if Mm satisfies those same conditions (see [6]),
it suffices to prove the following proposition which is based on work found in [18].

Proposition 11.1. If a manifold Mm is inward tame at infinity, then Mm× [0, 1]
is peripherally π1-stable at infinity.

Proof. Apply Corollary 5.5 to obtain a cofinal sequence {Ni} of clean neighbor-
hoods of infinity for Mm with the property that, for all i, each component N j

i of
Ni is ∂MN j

i -connected at infinity. Since {Ni × [0, 1]} is a cofinal sequence of clean
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neighborhoods of infinity for Mm × [0, 1] it suffices to show that the correspond-
ing connected components, N j

i × [0, 1], are all ∂M×[0,1](N
j
i × [0, 1])-connected and

(∂M×[0,1](N
j
i × [0, 1]))-π1-stable at infinity. By Lemmas 4.1 and 4.2, that is equiva-

lent to showing that, for each N j
i , intM (N j

i )×(0, 1) is 1-ended and has stable pro-π1

at that end. Every connected topological space becomes 1-ended upon crossing with
(0, 1), so that condition is immediate. The π1-stability property is proved with a
small variation on the main technical argument from [18]; in particular, Corol-
lary 3.6 from that paper. The “small variation” is necessary because the earlier
argument assumed the product of an open manifold with (0, 1). That issue is easily
overcome by arranging that the analog of homotopy Kt used in [18, Proposition 3.3]
sends the manifold interior of IntM (N j

i ) into itself and sends Fr N j
i into itself for

all t. That is easily accomplished since Fr N j
i has an open collar neighborhood at

infinity.

12. A Counterexample to a Question of O’Brien

We now give a negative answer to a question posed by O’Brien [26, pp. 308].

Question. (For a 1-ended manifold Mm with 1-ended boundary) Let {Vi} be a
cofinal sequence of clean 0-neighborhoods of infinity. If {π1(∂Mm∪Vi)}i≥1 is stable,
does it follow that Mm is peripherally π1-stable at infinity?

The key ingredient in our counterexamples is a collection of contractible open
n-manifolds Wn (one for each n ≥ 3), constructed by Sternfeld in his dissertation
[31] (see also [15]). Each Wn has the property that it cannot be embedded in any
compact n-manifold. Although these Wn have finite homotopy type, they are not
inward tame, since they contain arbitrarily small clean connected neighborhoods of
infinity with non-finitely generated fundamental groups. Our counterexamples will
be the (n + 1)-manifolds Wn × [0, 1). First a general observation.

Proposition 12.1. Let Wn be a connected open n-manifold. If Wn has finite
homotopy type, then Wn × [0, 1) is 1-ended and inward tame, with σ∞(Wn ×
[0, 1))=0.

Proof. It suffices to exhibit arbitrarily small connected clean neighborhood of infin-
ity in Wn with finite homotopy type. Let N ⊆Wn be a clean neighborhood of infin-
ity and a ∈ (0, 1). By choosing N small and a close to 1, we can obtain arbitrarily
small neighborhoods of infinity in Wn × [0, 1) of the form

V (N, a) = (N × [0, 1)) ∪ (Wn × [a, 1)).

Since V (N, a) deformation retracts onto Wn × {a}, it is connected and has finite
homotopy type.

Example 2. Consider the (n +1)-manifold Mn+1 = Wn× [0, 1), where Wn is the
Sternfeld n-manifold (n ≥ 3) described above. Then ∂Mn+1 = Wn × {0}. A stan-
dard duality argument shows that every contractible open manifold of dimension
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≥ 2 is 1-ended. Let {Ni} be a cofinal sequence of clean connected neighborhoods of
infinity in Wn, and for each i ≥ 1, let Vi = V (Ni,

i
i+1 ), as defined in the previous

proof. By Seifert-van Kampen, each Vi∪∂Mn+1 is simply connected, so the inverse
sequence {π1(∂Mn+1 ∪ Vi)}i≥1 is pro-trivial, hence, stable.

To see that Mn+1 is not peripherally π1-stable at infinity, first assume that
n ≥ 5. Then, if Mn+1 were peripherally π1-stable at infinity, it would be completable
by Theorem 1.1. (The triviality of τ∞(Mn+1) is immediate since Mn+1 is simply
connected at infinity, which follows from the simple connectivity of the Vi.) But, if
M̂n+1 were a completion, then Wn×{0} ↪→ ∂M̂n+1would be an embedding into a
closed n-manifold, contradicting Sternfeld’s theorem.

To obtain analogous examples when n = 3 or n = 4, we cannot rely on the
Manifold Completion Theorem. But a direct analysis of the fundamental group
calculations in Sternfeld’s proof reveals that the peripheral pro-π1-systems arising
in Wn × [0, 1) are nonstable in those dimensions as well.

13. Proof of Lemma 4.6

We now return to Lemma 4.6, which asserts that the two natural candidates for
the definition of “peripherally π1-stable at infinity” (the global versus the local
approach) are equivalent for inward tame manifolds. The intuition behind the
lemma is fairly simple. If Mm contains arbitrarily small 0-neighborhoods of infinity
N with the property that each component N j is ∂MN j-π1-stable at infinity, then
those components provide arbitrarily small neighborhoods of the ends satisfying
the necessary π1-stability condition. Conversely, if each end ε has arbitrarily small
strong 0-neighborhoods P that are ∂MP -π1-stable at infinity, we can use the com-
pactness of the set of ends (in the Freudenthal compactification) to find, within
any neighborhood of infinity, a finite collection {P1, . . . , Pk} of such neighborhoods
which cover the end of Mm. If we can do this so the Pi are pairwise disjoint, we
are finished — just let N = ∪Pi. That is not as easy as one might hope, but we are
able to attain the desired conclusion by proving the following proposition.

Proposition 13.1. Suppose Mm is inward tame and each end ε has arbitrarily
small strong 0-neighborhoods Pε that are ∂MPε-π1-stable at infinity. Then every
strong partial 0-neighborhood of infinity Q ⊆Mm is ∂MQ-π1-stable at infinity.

Our proof requires that we break the stability condition into a pair of weaker
conditions. An inverse sequence of groups is:

• semistable (sometimes called pro-epimorphic) if it is pro-isomorphic to an inverse
sequence of surjective homomorphisms;
• pro-monomorphic of it is pro-isomorphic to an inverse sequence of injective homo-

morphisms.

It is an elementary fact that an inverse sequence is stable if and only if it is both
semistable and pro-monomorphic.
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We will make use of the following topological characterizations of the above
properties, when applied to pro-π1. In these theorems, a “space” should be locally
compact, locally connected, and metrizable.

Proposition 13.2. Let X be a 1-ended space and r : [0,∞) → X a proper ray.
Then pro-π1(X, r) is

(1) semistable if and only if, for every compact set C ⊆ X, there exists a larger
compact set D ⊆ X such that for any compact set E with D ⊆ E ⊆ X, every
loop in X\D with base point on r can be pushed into X\E by a homotopy with
image in X\C keeping the base point on r, and

(2) pro-monomorphic if and only if X contains a compact set C with the property
that, for every compact set D with C ⊆ D ⊆ X, there exists a compact set
E ⊇ D with the property that every loop in X\E that contracts in X\C also
contracts in X\D.

These are standard. See, for example [14] or [19]. In the case that pro-π1(X, r)
is pro-monomorphic, the compact set C in the above proposition is called a π1-core
for X . Notice that by Proposition 13.2, the property of (1-ended) X having pro-
monomorphic pro-π1(X, r) is independent of the choice of r.

It is a non-obvious (but standard) fact that having semistable pro-π1(X, r) is
also independent of the choice of r. As for the characterization of semistable pro-
π1(X, r), we are mostly interested in the following easy corollary.

Corollary 13.3. If X is a 1-ended space and pro-π1(X, r) is semistable for some
(hence every) proper ray r, then for each compact set C ⊆ X, there is a larger
compact set D ⊆ X such that, for every compact set E ⊆ X and every path λ :
[0, 1] → X\D with λ({0, 1}) ⊆ E, there is a path homotopy in X\C taking λ to a
path λ′ in X\E.

We are now ready for our primary task.

Proof of Proposition 13.1. Let Q be a strong partial 0-neighborhood of infinity
in Mm. By Lemma 4.2, proving that Q is ∂MQ-π1-stable at infinity is equivalent to
proving that the 1-ended space Q\∂Mm has stable pro-π1. We will take the latter
approach.

By Lemma 5.3 Q\∂Mm is inward tame, so a modification of the argument in
[21, Proposition 3.2] ensures that pro-π1(Q\∂Mm, r) is semistable. It is therefore
enough to show that pro-π1(Q\∂Mm, r) is pro-monomorphic. We will do that by
verifying the condition described in Proposition 13.2, i.e. we will show that Q\∂Mm

contains a π1-core.
By hypothesis, each end ε of Q has a strong 0-neighborhood Pε which is ∂MPε-

π1-stable at infinity and lies in IntM Q. Since the set of ends of Q is compact in the
Freudenthal compactification, there is a finite subcollection {Pεi}ki=1 whose union
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is a neighborhood of infinity in Q. Place the collection of submanifolds {Pεi}ki=1 in
general position.

Claim 1. For each Ω ⊆ {1, . . . , k} the set
⋂

j∈Ω Pεj has finitely many components,
each of which is a clean codimension 0 submanifold of Mm.

General position ensures that each component is a clean codimension 0 submanifold
of Mm. Since each Pεj is a closed subset of Mm each component T of

⋂
j∈Ω Pεj

is closed in Mm, and since T cannot also be open in Mm it must have non-empty
frontier. Since {Pεj}j∈Ω is in general position, so also is the collection of (compact)
frontiers, {FrPεj}j∈Ω. So, for each i �= j in Ω, Δi,j = Fr Pεi ∩ Fr Pεj is a clean
codimension 1 submanifold of Fr Pεi and Fr Pεj . The union of these Δi,j separate
∪k

j=1 Fr Pεj into finitely many pieces, and since the frontier of each T is a union of
these pieces, there can only be finitely many such T .

Choose an embedding b : ∂Mm× [0, 1]→Mm with b(x, 0) = x for all x ∈ ∂Mm

and whose image B is a regular neighborhood of ∂Mm in Mm. With some additional
care, arrange that B intersects: Q in b(∂MQ× [0, 1]); each Pεi in b(∂MPεi × [0, 1]);
and (more specifically) each component T of each finite intersection

⋂
j∈Ω Pεj in

b(∂MT × [0, 1]). For each 0 ≤ s < t ≤ 1, let B[s,t] = b(∂Mm × [s, t]), B(s,t) =
b(∂Mm × (s, t)), etc. For A ⊆ ∂Mm, let BA = b(A× [0, 1]) and define B

[s,t]
A , B

(s,t)
A ,

etc. analogously.
By hypothesis and Proposition 13.2, we can choose a clean codimension 0 com-

pact π1-core Ci for each Pεi\∂Mm. Then choose t so small that B[0,t]∩(
⋃k

i=1 Ci) =

∅. Let C′
0 ≡ Q\⋃k

i=1 Pεi , then let C0 = C′
0\B[0,t) so that C0 is a compact clean

codimension 0 submanifold of Q\∂Mm. Let C =
⋃k

i=0 Ci ⊆ Q\∂Mm. Notice that
the collection {B[0,t]

∂M Q, Pε1 , . . . , Pεk
} covers Q\ IntQ C.

Choose a clean codimension 0 compact submanifold of D′ ⊆ Q\∂Mm so large
that

(i) IntQ D′ ⊇ C,
(ii) D′ contains every compact component of

⋂
j∈Ω Pεj for all Ω ⊆ {1, . . . , k}, and

(iii) for any compact set E ⊆ Q\∂Mm such that D′ ⊆ E, if λ is a path in T \∂Mm,
where T is an unbounded component of Pεi ∩ Pεj for some i, j ∈ {1, . . . , k},
and λ lies outside D′ with endpoints outside E, then there is a path homotopy
of λ in (T \∂Mm)\C pushing λ outside E. (This uses Corollary 13.3 and the
fact that each T , being a clean partial neighborhood of infinity in Mm, has the
property that T \∂Mm has finitely many ends, each with semistable pro-π1.)

Now, choose a compact set D ⊆ Q\∂Mm such that

(i′) D ⊇ D′.
(ii′) for every Ω ⊆ {1, . . . , k} and every unbounded component T of

⋂
j∈Ω Pεj , each

x ∈ (T \∂Mm)\D can be pushed to infinity in (T \∂Mm)\D′. (This is possible
since there are only finitely such T .)

(iii′) if x = b(y, t0) ∈ B\D, then b(y × [0, t0]) ∩D′ = ∅.
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Claim 2. D is a π1-core for Q\∂Mm.

Toward that end, let F be a compact subset of Q\∂Mm containing D, then choose
G ⊆ Q\∂Mm to be an even larger compact set with the following property:

(†) for each i ∈ {1, . . . , k}, loops in Pεi\∂Mm lying outside G which contract in
(Pεi\∂Mm)\C, also contract in (Pεi\∂Mm)\F .

Let α : [0, 1]× [0, 1]→ (Q\∂Mm)\D. The interiors of sets {B[0,t]
∂M Q, Pε1 , . . . , Pεk

}
cover (Q\∂Mm)\D, so we can subdivide [0, 1]2 into subsquares {Rt} so small that
the image of each Rt lies in B(0,t) or one of the Pεi\∂Mm and hence, in B(0,t)\D or
one of the (Pεi\∂Mm)\D. Since each vertex of this subdivision is sent to a point x

in B(0,t)\D and/or T \D, where T is an unbounded component of the intersection
of the Pεi which contain the images of the subsquares containing that vertex, then
by the choice of D we can push x into (Q\∂Mm)\G along a path that does not
leave T and does not intersect D′. In those cases where x = b(y, t0) ∈ B(0,t)\D,
push x out of G along b(y × (0, 1)), so that the track also stays in B(0,t)\D′, by
property (iii′).

Doing the above for each vertex adjusts α up to homotopy in (Q\∂Mm)\D′ so
that each vertex of the subdivision is taken into (Q\∂Mm)\G and each Rt is still
taken into the same Pεi (or B(0,t)) as before.

Next, we move to the 1-skeleton of our subdivision of [0, 1]2. If an edge e is the
intersection Rt ∩Rt′ of two squares, i.e. e is not in ∂([0, 1]2), we use property (iii)
to adjust α up to homotopy so e is mapped into (Q\∂Mm)\G, noting that this
homotopy may causes the “new” α to drift into (Q\∂Mm)\C. (If e is sent into
B(0,t), we can use (iii′) to ensure that the push stays in B(0,t)\D′ as well.)

Do the above for each edge until the entire 1-skeleton of the subdivision of [0, 1]2

is mapped into (Q\∂Mm)\G. The image of α now lies in (Q\∂Mm)\C. Notice that
the restriction of α to each Rt is a map of a disk into a single Pεi (or B(0,t)) missing
Ci with boundary being mapped into Pεi\G. So by the choice of G, we may redefine
α on Rt to be the same on its boundary, but to take Rt into Pεi\F or B(0,t)\F .
Assembling the α|Rt we get a map α′ : [0, 1] × [0, 1] → (Q\∂Mm)\F that agrees
with α on ∂([0, 1]2).
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