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Topological properties of spaces admitting free group actions

Ross Geoghegan and Craig R. Guilbault

Abstract

In 1992, David Wright proved a remarkable theorem about which contractible open manifolds
are covering spaces. He showed that if a one-ended open manifold Mn has pro-monomorphic
fundamental group at infinity which is not pro-trivial and is not stably Z, then M does not
cover any manifold (except itself). In the non-manifold case, Wright’s method showed that when
a one-ended, simply connected, locally compact absolute neighborhood retract X with pro-
monomorphic fundamental group at infinity admits an action of Z by covering transformations,
then the fundamental group at infinity of X is (up to pro-isomorphism) an inverse sequence of
finitely generated free groups. We improve upon this latter result, by showing that X must have
a stable finitely generated free fundamental group at infinity. Simple examples show that a free
group of any finite rank is possible.

We also prove that if X (as above) admits a non-cocompact action of Z × Z by covering
transformations, then X is simply connected at infinity.

We deduce the following corollary in group theory: Every finitely presented one-ended group
G that contains an element of infinite order satisfies exactly one of the following conditions:

(1) G is simply connected at infinity;
(2) G is virtually a surface group;
(3) the fundamental group at infinity of G is not pro-monomorphic.

Our methods also provide a quick new proof of Wright’s open manifold theorem.

1. Introduction

In this paper, we address a series of questions that are of interest in both topology and geometric
group theory.

Let X be a locally finite, simply connected, one-ended CW complex (or, more generally, a
locally compact, simply connected, one-ended metric absolute neighborhood retract (ANR)).
We are interested in the fundamental group at infinity (this and several other concepts
mentioned in the introduction will be discussed in detail later in the paper) of X, and what
special properties it must have in order thatX can be a non-trivial covering space. In particular,
we consider the following questions.

Question 1. Does Z act as a group of covering transformations on X?

Question 2. Does some group G act cocompactly as a group of covering transformations
on X?

Turning the latter question around, let K be a compact ANR (for example, a finite complex)
with one-ended universal cover X. Can the fundamental group at infinity of X be arbitrary?
Or how restricted is it?
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Here are closely related manifold versions of our questions.

Question 3. If Mn is a contractible open manifold that is not homeomorphic to R
n, does

it cover any manifold non-trivially? In other words, does Mn support a properly discontinuous
free action of a non-trivial (necessarily torsion-free) group?

Question 4. Must the universal cover of a closed aspherical n-manifold be homeomorphic
to R

n?

We are certainly not the first authors to address these questions. We will begin by reviewing
some of what is known, starting with the manifold case.

Concerning Question 4

In dimensions at most 3, the universal cover of a closed aspherical manifold is indeed
homeomorphic to a Euclidean space. This is classical in dimensions at most 2 and follows
from Perelman’s solution to the Poincaré Conjecture in dimension 3. A negative answer was
obtained by Davis [3] in all dimensions at least 4. The invariant that detects Davis’s examples
is the fundamental group at infinity; specifically, Davis gave examples of a one-ended Coxeter
group Γ having a subgroup G of finite index such that the universal cover of a closed manifold
K(G, 1) is not simply connected at infinity.

Concerning Question 3

Recall that, when n � 3, a contractible open n-manifold is homeomorphic to R
n if and only

if it is simply connected at infinity. (This will be discussed further in § 6.) So one looks for
an answer among contractible manifolds that are not simply connected at infinity (that is,
with non-trivial fundamental group at infinity). Whitehead [21] gave the first example of a
contractible open 3-manifold that is not simply connected at infinity. Later, it was shown in
[13] that uncountably many pairwise non-homeomorphic such 3-manifolds exist. But until the
1980s it was not known whether any of these could cover a manifold non-trivially.

Myers [16] obtained the first notable result along these lines, proving that no member of
a certain class of Whitehead-type contractible open 3-manifolds admits an action of Z by
covering transformations. Later, Wright [22] gave a significant generalization by showing that
a contractible open n-manifold (n � 3) with pro-monomorphic (this is defined in § 2; roughly,
it means that the inverse sequence of fundamental groups of complements of larger and larger
compact submanifolds looks like a sequence of monomorphisms) fundamental group at infinity,
which admits a non-trivial action by covering transformations, is necessarily simply connected
at infinity. All the aforementioned Whitehead-type 3-manifolds have this pro-monomorphic
property, hence they do not cover manifolds non-trivially. Wright’s theorem also implies that
the interiors of compact contractible n-manifolds with non-simply connected boundaries do
not cover non-trivially.

Concerning Question 1

Wright’s method extends beyond manifold topology. (Background and more details concerning
Wright’s Theorem can be found in [6, Section 16.3].) In particular, he proved the following
theorem.

Theorem 1.1 [22, Theorem 9.1]. Let X be a simply connected, one-ended, locally compact
ANR, and assume that X has pro-monomorphic fundamental group at infinity. If Z acts by
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covering transformations on X, then the fundamental group at infinity of X is pro-free and
pro-finitely generated.

For this version of Wright’s Theorem, see [6, Theorem 16.3.4].
The conclusion of Theorem 1.1 implies that the fundamental group at infinity may be

represented by

F1 ←− F2 ←− F3 ←− · · · ,
where each Fi is a finitely generated free group. Given the pro-monomorphic hypothesis,
one may also assume that the bonding homomorphisms in this sequence are injective. The
main theorem of this paper is an improvement of Wright’s Theorem 1.1, namely the following
theorem.

Theorem 1.2. Let X be a simply connected, one-ended, locally compact ANR with pro-
monomorphic fundamental group at infinity. If Z acts as covering transformations on X, then
the fundamental group at infinity of X is stably a finitely generated free group.

The conclusion of Theorem 1.2 means that the finitely generated free groups Fi all can be
taken to have the same rank, and the bonding morphisms can be taken to be isomorphisms.

Remark 1. ‘Stable’ means, roughly, that the inverse sequence of fundamental groups
of complements of larger and larger compacta looks like a sequence of isomorphisms. Thus,
‘stable’ is equivalent to ‘pro-monomorphic and pro-epimorphic’. ‘Pro-epimorphic’ is also known
as ‘semistable’ or ‘Mittag-Leffler’. Thus, Theorem 1.2 improves on Wright’s Theorem by
establishing semistability.

Example 1. As a simple illustration, let X be a simply connected polyhedron with
‘solenoidal’ fundamental group at infinity; that is, having the form

Z
×2←− Z

×2←− Z
×2←− · · · .

(Such spaces are easy to construct.) Our theorem prohibits X from admitting an action of Z

by covering transformations.

On the other hand, there exist contractible spaces that have stable free fundamental groups
at infinity of any finite rank, and that admit actions of Z by covering transformations.

Example 2. Let Kn be a wedge of n rays with a common vertex and let X = Kn × R.
Then X has stable fundamental group at infinity that is free of rank n− 1. Moreover, the
homeomorphism j : X → X induced by a translation in the R-factor generates an action of Z

by covering transformations. As a variation, one may combine translation in the R-coordinate
with a permutation of the rays of Kn. By doing so, it is possible to obtain quotient spaces
with different numbers of ends and various fundamental group behaviors at those ends. These
examples will be useful to keep in mind when reading § 3 (Figure 1).

When X admits a free (Z× Z)-action, we are able to prove a stronger result.
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Figure 1. K3 × R.

Theorem 1.3. Let X be a simply connected, one-ended, locally compact ANR with pro-
monomorphic fundamental group at infinity. If X admits an action of Z× Z by covering
transformations, then either that action is cocompact or X is simply connected at infinity.

Concerning Question 2

Let G be a finitely presented one-ended group having an element of infinite order, and let K
be a finite complex whose fundamental group is isomorphic to G. The universal cover X of K
has fundamental group at infinity represented by an inverse sequence

G1 ←− G2 ←− G3 ←− · · · ,

where each Gi is the fundamental group of the complement of a compact subcomplex of X.
No example is known where this sequence fails to be semistable. Easy examples occur where
this sequence (up to pro-isomorphism) has or does not have pro-monomorphic fundamental
group at infinity. Here, we only consider the case where X has pro-monomorphic fundamental
group at infinity. Theorem 1.2 implies that, letting j be an element of infinite order, the
infinite cyclic group 〈j〉 acts as covering transformations on X, hence X has a stable finitely
generated free fundamental group at infinity. In other words, one may assume the groups
Gi are all free and finitely generated of the same rank and the bonding morphisms are
isomorphisms. But in this case more is known. As explained in the proof of Geoghegan [6,
Theorem 16.5.6], for homological reasons a theorem of Farrell [4] implies that this rank must
be either 0 or 1. Moreover, in the rank 1 case, Bowditch [1] has shown that G is virtually
a surface group, meaning that G contains a finite index subgroup that is the fundamental
group of a closed surface. In other words, a consequence of our main theorem is the following
theorem.

Theorem 1.4. Let the one-ended, finitely presented group G have pro-monomorphic
fundamental group at infinity and assume that G contains an element of infinite order. Then
G is either simply connected at infinity or G is virtually a surface group.

Remark 2. The advance, here, over [6, Theorem 16.5.6] is that we do not have to make
semistability of G part of the hypothesis.

Remark 3. The one-ended examples of Davis, mentioned above, where G is a torsion-
free subgroup of finite index in a suitable Coxeter group, show that the universal cover X in
Theorem 1.4 does not always have pro-monomorphic fundamental group at infinity when it is
the universal cover of a finite complex.

A similar application of Theorem 1.2 applies to CAT(0) groups.
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Theorem 1.5. If the CAT(0) group G acts geometrically on a one-ended proper CAT(0)
space X such that ∂∞X is one-dimensional and X has pro-monomorphic fundamental group
at infinity, then G is virtually a surface group.

Proof. Swenson [20, Theorem 11] ensures the existence of an infinite order element in G,
thus permitting an application of Theorem 1.2. Then [8, Main Theorem] rules out the possibility
of X being simply connected at infinity when ∂∞X is one-dimensional.

This paper also includes some manifold theoretic results, most notably, a brief new proof of
Wright [22, Main Theorem] and a new proof of a theorem from [7].

A special case of the Borel Construction. The starting point of our argument is the following
useful observation.

Proposition 1.6. Let Y be a connected, locally path-connected space on which an infinite
cyclic group J = 〈j〉 acts as covering transformations. Then (J\X)× R is homeomorphic to
the mapping torus Tj(X).

Remark 4. In [7], Proposition 1.6 is proved using bundle theory; the authors cite an earlier
paper by Farrell [4]. Another proof is given in [6, Proposition 13.7.4]. A new and elementary
proof of Proposition 1.6 is contained within our proof of Theorem 1.2; see Remark 11 in § 8.

Proposition 1.6 provides two pictures of the same space. Those pictures yield canonical, but
very different, families of neighborhoods of infinity: rectangular neighborhoods of infinity in
the case of (J\X)× R and mapping torus neighborhoods of infinity in the case of Tj(X) (see
§§ 3 and 4). By comparing the fundamental group systems arising from these different pictures,
we are sometimes able to coax out information about the original space X, as was done, for
example, in [7]. The delicate nature of that task accounts for much of the work found here.

Layout. The layout of this paper is as follows. In § 2, we provide most of the necessary
definitions and background. The first portion of that section is purely algebraic, dealing
primarily with inverse sequences of groups. In addition to essential definitions and notation,
some basic results are proved for later use. The latter portion of § 2 discusses the topology of
non-compact spaces; neighborhoods of infinity and fundamental pro-groups are discussed and
some useful equivalences are reviewed. In §§ 3 and 4, we look at canonical neighborhoods of
infinity in the homeomorphic spaces, (J\X)× R and Tj(X), of Proposition 1.6. Of particular
importance will be some clean descriptions of the fundamental groups of those neighborhoods
of infinity. The remainder of the paper contains the proofs of our principal results. In § 6, we
focus on manifolds. Our new proof of Wright’s main theorem may be viewed as a warm-up for
the more general (non-manifold) version that is Theorem 1.2. That proof is contained in §§ 7
and 8. In the final section, we push our techniques one step further to prove Theorem 1.3.

2. Definitions and background

This section contains much of the terminology and notation needed for the remainder of the
paper. In addition, several preliminary results are presented. The section is divided into two
parts: the first is entirely algebraic, dealing primarily with inverse sequences of groups, while
the second is topological, dealing primarily with the topology at the ends of non-compact
spaces.
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2.1. Algebra of inverse sequences

Throughout this subsection, all arrows denote homomorphisms, while arrows of the type �
or � denote surjections and arrows of the type � and � denote injections. The symbol ∼=
indicates an isomorphism.

Let

G0
λ1←− G1

λ2←− G2
λ3←− · · ·

be an inverse sequence of groups. A subsequence of {Gi, λi} is an inverse sequence of the form

Gi0 <
λi0+1 ◦ . . . ◦ λi1 Gi1 <

λi1+1 ◦ . . . ◦ λi2 Gi2 <
λi2+1 ◦ . . . ◦ λi3 · · · .

In the future, we will denote a composition λi ◦ . . . ◦ λj (i � j) by λi,j .
Sequences {Gi, λi} and {Hi, μi} are pro-isomorphic if, after passing to subsequences, there

exists a commuting ‘ladder diagram’:

Gi0 <
λi0+1,i1 Gi1 <

λi1+1,i2 Gi2 <
λi2+1,i3 Gi3 · · ·

Hj0
<

μj0+1,j1<

<

Hj1
<

μj1+1,j2<

<

Hj2
<

μj2+1,j3<

<

· · · .
(2.1)

Clearly, an inverse sequence is pro-isomorphic to any of its subsequences. To avoid tedious
notation, we sometimes do not distinguish {Gi, λi} from its subsequences. Instead, we assume
that {Gi, λi} has the desired properties of a preferred subsequence, prefaced by the words ‘after
passing to a subsequence and relabeling’.

The inverse limit of a sequence {Gi, λi} is a subgroup of
∏
Gi defined by

lim←−{Gi, λi} =

{
(g0, g1, g2, . . .) ∈

∞∏
i=0

Gi

∣∣∣∣∣λi(gi) = gi−1

}
.

Note that, for each i, there is a projection homomorphism pi : lim←−{Gi, λi} → Gi. It is a standard
fact that pro-isomorphic inverse sequences have isomorphic inverse limits.

An inverse sequence {Gi, λi} is stable if it is pro-isomorphic to a constant inverse sequence
{H, idH}, or equivalently, to an inverse sequence {Hi, μi} where each μi is an isomorphism. In
those cases, the projection homomorphisms take lim←−{Gi, λi} isomorphically onto H and each
of the Hi.

Another condition equivalent to the stability of {Gi, λi} is that, after passing to an
appropriate subsequence and relabeling, there exists a commutative diagram of the form

G0 <
λ1

G1 <
λ2

G2 <
λ3

G3 · · ·

Im(λ1) <
∼=<

<

Im(λ2) <
∼=<

<

Im(λ3) <
∼=<

<

· · · ,
(2.2)

where all unlabeled homomorphisms are obtained by restriction or inclusion.
If {Gi, λi} is pro-isomorphic to some {Hi, μi}, where each μi is an epimorphism, then we call
{Gi, λi} semistable (or Mittag-Leffler, or pro-epimorphic). In that case, there exists a ladder
diagram of the type described in (2.2), but with the isomorphisms replaced by epimorphisms.
Similarly, if {Hi, μi} can be chosen so that each μi is a monomorphism, we call our inverse
sequence pro-monomorphic; in that case, there exists a diagram of type (2.2) for which maps
in the bottom row are monomorphisms. It is easy to show that an inverse sequence that is both
semistable and pro-monomorphic is stable.
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Given a group G, a pair of isomorphic subgroups H,H ′ � G, and a specified isomorphism
ϕ : H → H ′, the HNN extension of G by ϕ is the group

G∗ϕ = 〈G, t | t−1ht = ϕ(h) ∀ h ∈ H〉.
In this setup, G is called the base group, H and H ′ the associated subgroups, and t the stable
letter. It is a standard fact that G injects into G∗ϕ (so we view G as a subgroup), that t
generates an infinite cyclic subgroup 〈t〉 � G∗ϕ, and that G ∩ 〈t〉 = {1}. We refer to [2] or [12]
for these and additional properties of HNN extensions.

A special case of HNN extension occurs when H = H ′ = G. In that situation, the HNN
extension is a semidirect product of G with 〈t〉 with respect to the automorphism ϕ : G→ G.
That group will be denoted by G�ϕ 〈t〉 or, when the specific isomorphism is not important,
just G� 〈t〉. A nice exposition of semidirect products is in [14, Chapter 8].

Some of the topological constructions used in this paper produce entire inverse sequences of
HNN extensions and/or semidirect products from an initial ‘base’ sequence. Of special interest,
here is the extent to which a given property of one of those sequences implies the same property
for the other. Before formulating some propositions of that sort, we state a pair of elementary
observations and a pair of corollaries that will be used throughout; proofs are left as exercises.

Lemma 2.1. Let G0 and G1 be groups and ϕi : Hi → H ′
i be an isomorphism between

subgroups of Gi for i = 0, 1. Suppose λ : G1 → G0 is a homomorphism taking H1 into H0

and H ′
1 into H ′

0 such that ϕ0 ◦ λ(h) = λ ◦ ϕ1(h) for all h ∈ H1. Then λ induces a unique
homomorphism λ̄ : G1∗ϕ1 → G0∗ϕ0 that restricts to λ on G1 and sends the stable letter t1 to
the stable letter t0.

Lemma 2.2. Given the above setup, the homomorphism ϕ0 restricts to an isomorphism
ψ0 of λ(H1) onto λ(H ′

1). If we let υ : Im(λ) ↪→ G0 be inclusion and δ : G1 → Im(λ) be
the corestriction of λ, then the induced homomorphisms provided by Lemma 2.1 yield a
commutative diagram:

G0∗ϕ0
<

λ
G1∗ϕ1

Im(λ) ∗ψ0 .

δ

<

υ
<

Corollary 2.3. If, under the setup of Lemma 2.1,Hi = H ′
i = Gi for each i, then λ induces

a unique homomorphism λ̄ : G1 �ϕ1 〈t1〉 → G0 �ϕ0 〈t0〉 that restricts to λ on G1 and takes t1
to t0.

Corollary 2.4. Given the setup of Corollary 2.3, the homomorphism ϕ0 restricts to
an automorphism ψ0 of Im(λ). If we let υ : Im(λ) ↪→ G0 be inclusion and δ : G1 → Im(λ)
the corestriction of λ, then the induced homomorphisms provided by Corollary 2.3 yield a
commutative diagram:

G0 �ϕ0 〈t0〉 <
λ

G1 �ϕ1 〈t1〉

Im(λ) �ψ0 〈t0〉.

δ

<

υ
<

Since υ is injective, we view it as an inclusion map.
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For the remainder of this section, we work with the following setup:

(a) G0
λ1←− G1

λ2←− G2
λ3←− · · · is an inverse sequence of groups (the base sequence);

(b) for each i, Hi,H
′
i � Gi and ϕi : Hi → H ′

i is an isomorphism; and
(c) for each i, ϕi−1 ◦ λi(h) = λi ◦ ϕi(h) for all h ∈ Hi.

Under these assumptions, repeated application of Lemma 2.1 gives the following induced
HNN sequence:

G0∗ϕ0

λ̄1←− G1∗ϕ1

λ̄2←− G2∗ϕ2

λ̄3←− · · · .
If we strengthen condition (b) to:

(b′) for each i, ϕi ∈ Aut(Gi);

then repeated application of Corollary 2.3 gives the following induced semidirect product
sequence:

G0 �ϕ0 〈t0〉 λ̄1←− G1 �ϕ1 〈t1〉 λ̄2←− G2 �ϕ2 〈t2〉 λ̄3←− · · · . (2.3)

The situation for semidirect products is less complicated than for general HNN extensions,
so we turn to that case first.

Proposition 2.5. Assume that we are given the above setup, with Condition (b′) in place
of (b). Then the following equivalences hold.

(1) The induced semidirect product sequence is pro-monomorphic if and only if the base
sequence is pro-monomorphic.

(2) The induced semidirect product sequence is semistable if and only if the base sequence
is semistable.

(3) The induced semidirect product sequence is stable if and only if the base sequence is
stable.

Proof. By repeated application of Lemma 2.2, we may obtain a ladder diagram of the
following type:

G0 �ϕ0 〈t0〉 <
λ̄1

G1 �ϕ1 〈t1〉 <
λ̄2

G2 �ϕ2 〈t2〉 · · ·

Im(λ1) �ψ0 〈t0〉 <
<

<

Im(λ2) �ψ1 〈t1〉 <
<

<

· · · .
To prove (1), first assume that {Gi, λi} is pro-monomorphic. Then, after passing to a
subsequence and relabeling, we may assume that the bonding maps in the corresponding
sequence Im(λ1)← Im(λ2)← Im(λ3)← · · · are monomorphisms. Elementary properties of
semidirect products then ensure that the maps in the bottom row of the ladder diagram are also
monomorphisms. It follows that the induced semidirect product sequence is pro-monomorphic.

For the converse part of (1), note that (even before passing to subsequences), Im(λ̄i) =
Im(λi) �ψ0 〈ti−1〉 � Gi−1 �ϕ1 〈ti−1〉 for all i. So, by hypothesis, after passing to subsequences
and relabeling, we may assume the existence of a sequence of the form

Im(λ1) �ψ0 〈t0〉� Im(λ2) �ψ1 〈t1〉� Im(λ3) �ψ2 〈t2〉� · · · .
Then each of the above monomorphisms restricts to a monomorphism of Im(λi+1) into Im(λi).
It follows that {Gi, λi} is pro-monomorphic.
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A similar strategy can be used to obtain (2), with a key ingredient being that the
homomorphisms Im(λi) �ψi

〈ti〉 → Im(λi−1) �ψi−1 〈ti−1〉 are surjective if and only if Im(λi)→
Im(λi−1) is surjective.

Lastly, one may obtain (3) as a consequence of (1) and (2).

As noted earlier, the situation for general HNN extensions is more complicated. Our best
analog of Proposition 2.5 is the following proposition.

Proposition 2.6. Assume that we are given Conditions (a)–(c). Then the following
implications hold.

(1) If the induced HNN sequence is pro-monomorphic, then the base sequence is pro-
monomorphic.

(2) If the base sequence is semistable, then the induced HNN sequence is semistable.

Proof. First we prove (2). By hypothesis, after passing to a subsequence and relabeling, we
may assume an inverse sequence of surjections:

Im(λ1)� Im(λ2)� Im(λ3)� · · · .

By repeated application of Lemma 2.2, obtain a corresponding ladder diagram of the form:

G0∗ϕ0
<

λ̄1
G1∗ϕ1

<
λ̄2

G2∗ϕ2
<

λ̄3 · · ·

Im(λ1)∗ψ0
<

<

<

Im(λ2)∗ψ1
<

<

<

Im(λ3)∗ψ2

<

· · · .

Since each Im(λi+1)∗ψi
is generated by the elements of Im(λi+1) together with the stable letter,

the homomorphisms in the bottom row are surjective. Thus, {Gi∗ϕi
, λ̄i} is semistable.

In proving (1), a key difference between this and Proposition 2.5 becomes important. The
‘up maps’ in the current ladder diagram need not be injective, so the groups in the bottom
row are not just the images of the maps in the top row (as was the case in Proposition 2.5).
Instead of proceeding in the manner of the earlier proof, we give an argument based on first
principles.

Suppose the base sequence {Gi, λi} is not pro-monomorphic. Then, for every j1, there exists
j2 > j1 such that, for arbitrarily large j3 > j2, there exists a g ∈ Gj3 such that g ∈ kerλj3j1 but
g /∈ kerλj3j2 . Since each λ̄i acts as λi on Gi < Gi∗ϕi

, one sees the same non-pro-monomorphic
behavior in {Gi∗ϕi

, λ̄i}.

Proposition 2.6 may be most interesting for what is not included. The absence of a converse
for assertion (2) has significant implications for this paper, as does the corresponding existence
of a converse in Proposition 2.5. For completeness, we provide examples covering the missing
implications of Proposition 2.6

Example 3. Here we describe a situation where the base sequence is stable, but the induced
HNN sequence is not pro-monomorphic. Begin with the sequence

Z
id←− Z

id←− Z
id←− · · · .
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For the ith copy of Z, let Hi = H ′
i = 2iZ and let ϕi be the identity homomorphism. Then the

resulting HNN sequence

Z∗ϕ1

id←− Z∗ϕ2

id←− Z∗ϕ3

id←− · · ·
consists of non-monomorphic surjections, a situation never pro-isomorphic to a sequence of
monomorphisms.

Example 4. Here is a situation where a non-semistable base sequence gives rise to an
induced HNN sequence that is stable. Let G0 = 〈a〉 be an infinite cyclic group, G1 = 〈a2〉,
and λ be the inclusion map. Let H0 = 〈a2〉, H ′

0 = 〈a〉, and ϕ0 : 〈a2〉 → 〈a〉 be the isomorphism
taking a2 to a. Similarly, let H1 = 〈a4〉, H ′

1 = 〈a2〉, and ϕ1 : 〈a4〉 → 〈a2〉 be the isomorphism
taking a4 to a2. Then we have presentations

G0∗ϕ0 = 〈a, t | t−1a2t = a〉 and

G1∗ϕ1 = 〈a2, t | t−1a4t = a2〉.
Each is the well-known Baumslag–Solitar group BS(2, 1). Clearly, the induced homomorphism
λ : G∗ϕ1 → G∗ϕ0 takes t to t and a2 to a2. Applying Tietze transformations to the presentation
for G1∗ϕ1 yields

〈a2, t | t−1a4t = a2〉� 〈a2, t, b | t−1a4t = a2, b = t−1a2t〉
� 〈a2, t, b | b2 = tbt−1, tbt−1 = a2〉
� 〈t, b | b2 = tbt−1〉.

With respect to the final presentation, λ takes t to t and b to t−1a2t = a. Thus, λ is an
isomorphism.

By applying the above observation inductively, we can begin with the pro-monomorphic but
non-semistable sequence

〈a〉 ←↩ 〈a2〉 ←↩ 〈a4〉 ←↩ 〈a8〉 ←↩ · · · ,
and end up with a corresponding HNN sequence

〈a, t | t−1a2t = a〉 ← 〈a2, t | t−1a4t = a2〉 ← 〈a4, t | t−1a8t = a4〉 ← · · ·
of isomorphisms between copies of BS(2, 1).

We conclude this section with an observation covering a very special case of an induced HNN
sequence. It will be used in § 9.

Lemma 2.7. Suppose that, in addition to conditions (a)–(c), the inverse sequences G0
λ1←−

G1
λ2←− G2

λ3←− · · · and H0
μ1←− H1

μ2←− H2
μ3←− · · · (and hence H ′

0

μ′
1←− H ′

1

μ′
2←− H ′

2

μ′
3←− · · · ) are

stable, where μi and μ′
i denote appropriate restrictions of λi. Then ϕ = (ϕi)i�0 defines an

isomorphism between subgroups H = lim←−{Hi, μi} and H ′ = lim←−{H ′
i, μ

′
i} of G = lim←−{Gi, λi};

moreover, the induced HNN sequence G0∗ϕ0

λ̄1←− G1∗ϕ1

λ̄2←− G2∗ϕ2

λ̄3←− · · · is stable and pro-
isomorphic to the constant sequence {G∗ϕ}.

Proof. By the stability of {Gi, λi} we may, after passing to a subsequence and relabeling,
assume that

Im(λ1)
∼=←− Im(λ2)

∼=←− Im(λ3)
∼=←− · · · .



TOPOLOGICAL PROPERTIES Page 11 of 27

By passing to a further subsequence and relabeling again, we may assume that, within
each Im(λi) lies the subgroup λi+1(Hi+1), and the restriction of λi+1 takes λi+2(Hi+2)
isomorphically onto λi+1(Hi+1) for each i. The analogous conditions for the primed subgroups
follow automatically. Passing to the corresponding HNN sequence for this system yields an
inverse sequence of canonical isomorphisms between groups of the form Im(λi+1)∗ψi| where ψi|
takes λi+1(Hi+1) isomorphically onto λi+1(H ′

i+1). The projection maps are then isomorphisms
from G∗ϕ to Im(λi+1)∗ψi|.

Remark 5. Example 4 shows that, in general, we cannot expect lim←−{Gi∗ϕi
, λi} to be

isomorphic to lim←−{Gi, λi}∗ϕ. In that particular case, lim←−{Gi∗ϕi
, λi} is isomorphic to BS(2, 1)

while lim←−{Gi, λi}∗ϕ ∼= Z, since lim←−{Gi, λi} is the trivial group.

2.2. Topology at the end of a space

In this paper, all spaces are assumed to be connected, locally compact, separable, and
metrizable. A space X is an ANR if, whenever it is embedded as a closed subset of a metric
space Z, some neighborhood U of X retracts onto X. It is well known that manifolds and
locally finite CW complexes are ANRs. While many readers will want to focus their attention
on manifolds and CW complexes, results presented here are valid for all ANRs satisfying the
stated topological assumptions. Portions of this paper, such as Proposition 7.1, are valid for
even more general spaces.

A subset N of a space X is a neighborhood of infinity if X −N is compact. Standard
arguments show that when X satisfies the conditions in the previous paragraph and C is a
compact subset of X, then X − C contains at most finitely many unbounded components,
that is, finitely many components with non-compact closures. If X − C has both bounded and
unbounded components, the situation can be simplified by letting C ′ consist of C together
with all bounded components. Then C ′ is compact, and X − C ′ consists entirely of unbounded
components.

We say thatX has k ends if there exists a compactum C ⊆ X such that, for every compactum
D with C ⊂ D, X −D has exactly k unbounded components. When k exists, it is uniquely
determined; if k does not exist, we say X has infinitely many ends. Thus, a space is 0-ended
if and only if X is compact, and 1-ended if and only if it contains arbitrarily small connected
neighborhoods of infinity.

A nested sequenceN0 ⊇ N1 ⊇ N2 ⊇ . . . of neighborhoods of infinity, with eachNi ⊆ intNi−1,
is cofinal if

⋂∞
i=0Ni = ∅. Such a sequence is easily obtained: choose an exhaustion of X by

compacta C0 ⊆ C1 ⊆ C2 ⊆ . . ., with each Ci−1 ⊆ intCi; then let Ni = X − Ci.
Given a nested cofinal sequence {Ni}∞i=0 of connected neighborhoods of infinity, base points

pi ∈ Ni, and paths ri ⊂ Ni connecting pi to pi+1, we obtain an inverse sequence:

π1(N0, p0)
λ1←− π1(N1, p1)

λ2←− π1(N2, p2)
λ3←− · · · . (2.4)

Here each λi+1 : π1(Ni+1, pi+1)→ π1(Ni, pi) is the homomorphism induced by inclusion fol-
lowed by the change of base point isomorphism determined by ri. The proper ray r : [0,∞)→ X
obtained by piecing together the ri in the obvious manner is referred to as the base ray
for the inverse sequence, and the pro-isomorphism class of the inverse sequence is called the
fundamental pro-group of X based at r and is denoted by pro-π1(X, r). It is a standard fact
that pro-π1(X, r) is independent of the cofinal sequence of neighborhoods {Ni} or the base
points, provided that those base points tend to infinity along the ray r. The pro-isomorphism
class is also independent of the parameterization of r and, more generally, is independent of
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the proper homotopy class within X of r. At times we take the inverse limit of pro-π1(X, r);
the result is called the Čech fundamental group of X based at r and is denoted by π̌1(X, r).

Clearly, if X has more than one end, then the ‘choice of ends to which r points’ will affect
pro-π1(X, r) (and thus, π̌1(X, r)). On a more subtle note, even ifX has a single end, pro-π1 may
not be independent of base ray. For the purposes of this paper, this issue causes no problems;
all concerns can be addressed by a pair of standard propositions given below. Both can be
found in [6] along with a more thorough discussion of the non-uniqueness issue for pro-π1.

For simplicity, the following are formulated only for the case where X is one-ended.

Proposition 2.8. Let X be a one-ended space and r : [0,∞)→ X be a proper ray. Then
the following are equivalent:

(i) pro-π1(X, r) is semistable;
(ii) all proper rays in X are properly homotopic.

Proposition 2.9. Let X be a one-ended space and r : [0,∞)→ X be a proper map. Then
the following are equivalent:

(i) pro-π1(X, r) is pro-monomorphic;
(ii) there exists a compact C ⊆ X such that, for every compact set D containing C, there

exists a compact E such that every loop in X − E that contracts in X − C contracts in
X −D.

A compactum C ⊆ X with the property described in Proposition 2.9 is called a compact
core; thus, the proposition may be restated to say: pro-π1(X, r) is pro-monomorphic if and
only if X contains a compact core.

Since neither condition (ii) in the above two propositions involves a base ray, it follows
that (in the one-ended case) having a pro-monomorphic or semistable pro-π1(X, r) for some
r is equivalent to having pro-monomorphic or semistable pro-π1 for all base rays. For that
reason, we simply say ‘X has pro-monomorphic (respectively, semistable) fundamental group
at infinity ’.

Remark 6. Proposition 2.8 provides even more than the above paragraph suggests. In the
presence of semistability, the fundamental group at infinity of a one-ended space is well-defined
up to pro-isomorphism; this is analogous to the fact that the fundamental group of a path-
connected space is well-defined up to isomorphism. In the pro-monomorphic situation, this is
not always the case.

As a final preliminary, we discuss the manner in which a ladder diagram of groups of
type (2.1) arises in the study of fundamental pro-groups. In doing so, we highlight the need
for passage to subsequences and address some issues related to base points and base rays. For
simplicity, consider the case of a homeomorphism h : P → Q between non-compact spaces. For
a proper ray r : [0,∞)→ P , we will exhibit the equivalence of pro-π1(P, r) and pro-π1(Q,h ◦ r).
Rather than opting for the most concise treatment, we give an approach that closely resembles
the situation that arises in the proof of our main theorem.

Let {Ui} and {Vi} be cofinal sequences of neighborhoods of infinity in P and Q, respectively.
By discarding an initial segment of the base ray and reparameterizing, we may assume that
r([i,∞)) ⊆ Ui for all integers i � 0. Next we choose ‘interlocking’ subsequences of {Ui} and
{Vi}. Let Vj0 = V0; then choose k0 sufficiently large that h(Uk0) ⊆ Vj0 ; this is possible since
homeomorphisms are proper functions. Next choose j1 > j0 large enough so that h−1(Vj1) ⊆
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Uk0 ; then choose k1 > k0 so that h(Uk1) ⊆ Vj1 . By continuing this process inductively, one
obtains a pair of subsequences and a commutative ladder diagram

Vj0 < ⊃ Vj1 < ⊃ Vj2 < ⊃ · · ·

Uk0 < ⊃
<

<

Uk1 < ⊃
<

<

Uk2

<

· · · ,
where each ‘up arrow’ is a restriction of h and each ‘down arrow’ is a restriction of h−1.

We wish to apply the fundamental group functor to the above setup to get a diagram of the
form

π1(Vj0 , qj0) < π1(Vj1 , qj1) < π1(Vj2 , qj2) < · · ·

π1(Uk0 , pk0) <
<

<

π1(Uk1 , pk1) <
<

<

π1(Uk2 , pk2)

<

· · · .
This will require choices of base points and base rays. In order to define the up and down
homomorphisms resulting in a commutative diagram, those choices must be made in a
consistent manner. The first key choice was in selecting h ◦ r as the base ray for Q. Since
r([ki,∞)) ⊆ Uki

for all i, it follows that h ◦ r([ki,∞)) ⊆ Vji . We will not take the trouble of
reparameterizing h ◦ r; instead, for each i � 0, let pki

= r(ki) and qji = h(pki
) be the preferred

base points for Uki
and Vji−1 , respectively. The horizontal bonding homomorphisms have

already been discussed; restrictions of h induce the desired up homomorphisms π1(Uki
, pki

)→
π1(Vji , qji). Meanwhile, restrictions of h−1 induce homomorphism π1(Vji , qji)→ π1(Uki−1 , pki

).
To get the appropriate ‘down homomorphism’, these are composed with change-of-base point
isomorphisms π1(Uki−1 , pki

)→ π1(Uki−1 , pki−1) induced by the paths r|[ki−1,ki]. Since bonding
homomorphisms in the bottom row were also defined using change-of-base point isomorphisms
with respect to the same set of paths, triangles of homomorphisms with a vertex on the top
row are commutative. To see that triangles with a vertex on the bottom row also commute, it
suffices to follow the image of a single loop; the key is that the change-of-base point path in P
used to define the down homomorphism is taken by h to the change-of-base point path in Q
used to define the horizontal bonding homomorphism.

3. Rectangular neighborhoods of infinity and their fundamental groups

In this section, we focus on spaces of the form Y × R, where Y is connected and non-compact.
Since Y × R contains arbitrarily large compacta of the form K × [u, v], it contains arbitrarily

small neighborhoods of infinity of the form (Y × R)−(K × [u, v]). Such a neighborhood of
infinity will be called rectangular and denoted by R(K × [u, v]). Specifically,

R(K × [u, v]) = (Y × R)−(K × [u, v]) = (Y −K × R)∪(Y × (−∞, u] ∪ [v,∞)).

It is easy to see that rectangular neighborhoods of infinity are connected and, by the Generalized
Seifert–VanKampen Theorem (see, for example, [6, Theorem 6.2.11]), the fundamental group
of R(K × [u, v]) is isomorphic to the fundamental group of the following graph of groups,
where the vertex groups π1(Y ) correspond to π1(Y × (−∞, u]) and π1(Y × [v,∞)) and
the edges correspond to the components Ui of Y −K with Λi = Im(π1(U i)→ π1(Y )); the
homomorphisms of the Λi into the vertex groups are induced by inclusions.

π π −



Page 14 of 27 ROSS GEOGHEGAN AND CRAIG R. GUILBAULT

In this paper, we are particularly interested in spaces of the form (J\X)× R, where X is a
one-ended, simply connected space and J is an infinite cyclic group acting on X by covering
transformations. In that case, the vertex groups will be isomorphic to Z and each edge group
may be viewed as niZ for some integer ni. Furthermore, by choosing K so that (J\X)−K
has only unbounded components, we can ensure that each ni is non-zero. Indeed, if some ni
were equal to 0, then the corresponding unbounded component Ui of (J\X)−K would have
infinitely many homeomorphic preimages under the covering projection X → J\X. Since Ui
has compact boundary, that would violate the one-endedness of X. If k + 1 is the number of
components of (J\X)−K, then the resulting graph of groups

has a fundamental group Θ with presentation

Θ = 〈a, b, s1, . . . , sk | an0 = bn0 , ani = sib
nis−1

i for i = 1, . . . , k〉. (3.1)

In applying the Generalized Seifert–VanKampen Theorem to obtain this presentation, numer-
ous choices of base points, base paths, and a base tree must be made. All of that is set out
carefully in [7]. We provide a brief description and refer the reader to [7] for precise details.

For a given base point p0 ∈ J\X, the letters a and b represent corresponding generators of
π1((J\X)× {v + 1}, (p0, v + 1)) and π1((J\X)× {u− 1}, (p0, u− 1)) (the latter connected to
(p0, v + 1) by a base path), respectively. If U0, U1, . . . , Uk are the components of (J\X)−K,
with a base point zi ∈ Ui for each i, then the generator si corresponds to a loop that passes from
(p0, v + 1) to (zi, v + 1) in (J\X)× {v + 1}, then travels down the interval zi × [u− 1, v + 1] to
(zi, u− 1) before moving within (J\X)× {u− 1} to (z0, u− 1), then up the interval z0 × [u−
1, v + 1] before returning to (p0, v + 1). For consistency, all base points and all non-specified
paths are required to have first coordinate in a prechosen tree T ⊆ J\X. For convenience, we
will refer to a and b as the primary generators of Θ and s1, . . . , sk as the secondary generators.
A key algebraic fact presented in [7] is that Θ has a non-trivial center generated by aN (= bN ),
where N is the least common multiple of {n0, n1, . . . , nk}.

Given a compactum K ′ ⊇ K and integers u′ < u < v < v′, we now look at the inclusion-
induced homomorphism between the fundamental groups of R(K ′ × [u′, v′]) and R(K × [u, v]).
Choose K ′ so that components U ′

1, . . . , U
′
k′ of (J\X)−K ′ are all unbounded, and note that

whenever U ′
j ⊆ Ui, then ni divides n′j . By choosing base points, base paths, and base trees that

are parallel to those used for R(K × [u, v]) (in a sense made precise in [7]), we obtain a similar
presentation for the fundamental group Θ′ of R(K ′ × [u′, v′]) based at (p0, v

′ + 1):

Θ′ = 〈a, b, s′1, . . . , s′k′ | an
′
0 = bn

′
0 , an

′
i = s′ib

n′
is′−1
i for i = 1, . . . , k′〉. (3.2)

Here we abuse notation slightly by again denoting the primary generators by a and b. This
is justified by the fact that, in R(K × [u, v]), the loops representing principal generators
of π1(R(K ′ × [u′, v′])) are parallel copies (with respect to the product structure) of those
representing principal generators of π1(R(K × [u, v])). By choosing the obvious path between
base points, namely {p0 × [v + 1, v′ + 1]}, the homomorphism η : Θ′ → Θ induced by inclusion
followed by a change-of-base points isomorphism takes principal generators to principal
generators. By our notational convention, we have η(a) = a and η(b) = b. On the secondary
generators, η(s′j) = si whenever U ′

j ⊆ Ui. Note that, since each Ui contains at least one
component of (J\X)−K ′, η is surjective.

Now choose an exhausting sequence K0 ⊆ K1 ⊆ K2 ⊆ . . . of compacta in J\X with each
Ki ⊆ intKi+1 and each (J\X)−Ki having only unbounded components. If we also choose a
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monotone sequence {vi} of positive integers approaching ∞ and a monotone sequence {ui}
of negative integers approaching −∞ along with base points, base paths, and base trees as
described above, then we obtain an inverse sequence representing pro-π1((J\X)× R, r) for
which all groups are of the type described in (3.1) and (3.2) and all bonding homomorphisms
are of the type just described. In this setup, the base ray r : [0,∞)→ (J\X)× R is the one
obtained by piecing together the change of base point paths; therefore, it is a parameterization
of {p0} × [v0 + 1,∞). In a later application, it will be convenient to use a different base ray.
Like the one just described, the new ray will pass through the base points (p0, vi + 1) in
order and will lie entirely in (J\X)× [v0,∞); but as it progresses upward with respect to the
R component, its J\X component will wind once around the loop a for each unit it moves
upward. For that reason, the bonding homomorphism ξi+1 : Θi+1 → Θi with respect to the new
ray will be the conjugate by avi+1−vi of the homomorphism described above. In this scenario,
the homomorphisms become less canonical (for example, except for a, primary and secondary
generators need not be sent to primary and secondary generators). For similar choices of base
ray r (connecting the chosen base points and lying entirely in (J\X)× [v0,∞)), variations in
the bonding homomorphisms occur; in particular, conjugation by various powers of a. In all
cases, the properties needed later in this paper are preserved. For easy reference, we collect
those in the following general proposition.

Proposition 3.1. Given p0 ∈ J\X, sequences {Ki}, {ui}, and {vi} as described above,
and base ray r connecting the base points (p0, vi + 1) and lying entirely in (J\X)× [v0,∞),
the corresponding cofinal sequence {R(Ki × [ui, vi])} of neighborhoods of infinity in (J\X)× R

gives rise to a representative of pro -π1((J\X)× R, r) of the form

Θ0

ρ1� Θ1

ρ2� Θ2

ρ3� · · · , (3.3)

where each Θi contains a non-trivial distinguished element a such that

(1) ρi(a) = a for all i;
(2) there exists a monotone sequence of positive integers {Ni} such that, for each i, aNi lies

in the center of Θi.

Remark 7. Note that any subsequence of (3.3) will also satisfy the properties identified
in this proposition.

4. Mapping torus neighborhoods of infinity and their fundamental groups

Let X be a space and j : X → X be a map. The mapping torus of j is the quotient space

Tj(X) = X × [0, 1]/{(x, 1) ∼ (j(x), 0) for all x ∈ X}. (4.1)

In other words, Tj(X) is obtained from the mapping cylinder of j by identifying the domain
and range ends of the cylinder. In this paper, j will always be a self-homeomorphism of X.

For all s ∈ [0, 1], X × {s} ↪→ Tj(X) is an embedding. Among these ‘copies’ of X in Tj(X),
we give special designation to the image of X × {0}. Through this embedding, we view X as
a subspace of Tj(X), and for x ∈ X and A ⊆ X we have x ∈ Tj(X) and A ⊆ Tj(X).

If U and V are subsets of X with V ⊆ U and j(V ) ⊆ U (thus V ⊆ j−1(U)), then we may
define the following subspace of Tj(X):

Tj(U, V ) = (U × {0}) ∪ (V × [0, 1])/ ∼ ,
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where ∼ is the restriction of equivalence relation in (4.1). If U and V are neighborhoods of
infinity in X, then Tj(U, V ) is a neighborhood of infinity in Tj(X), which we refer to as a torus-
like neighborhood of infinity. Such neighborhoods of infinity can be made arbitrarily small by
choosing U to be sufficiently small in X. The following proposition and its corollary give a nice
description of the fundamental group of Tj(U, V ) in terms of the fundamental groups of U and
V . That description is valid only when X is one-ended with pro-monomorphic fundamental
group at infinity, a fact which explains the presence of those hypotheses in most of our results.

Proposition 4.1. Let X be connected and one-ended with pro-monomorphic fundamental
group at infinity. Suppose that U is a connected neighborhood of infinity such that X − U
contains a compact core, and j : X → X is a homeomorphism. Then, for sufficiently small
connected neighborhoods of infinity V ⊆ U and base point p ∈ V :

(1) j(V ) ⊆ U ;
(2) ker(i#) = ker(j|#) where i# : π1(V, p)→ π1(U, p) and j|# : π1(V, p)→ π1(U, j(p)) are

induced by inclusion and by the restriction of j, respectively.

Proof. Begin by choosing a neighborhood of infinity U1 so small that U1, j(U1) and j−1(U1)
are all contained in U . This is easy: choose U1 ⊆ X − (j(A) ∪A ∪ j−1(A)) where A = X − U .
Applying Proposition 2.9, choose a smaller neighborhood of infinity U2 with the property that
loops in U2 that contract in U also contract in U1. Finally, choose V to be any connected
neighborhood of infinity sufficiently small that both V and j(V ) are contained in U2.

Let β be a loop in V based at p. If β contracts in U , then β also contracts in U1; and since
j(U1) ⊆ U , it follows that j ◦ β contracts in U . Therefore, ker(i#) ⊆ ker(j|#). Conversely, if
j ◦ β contracts in U , then, since Im(j ◦ β) lies in U2, it also contracts in U1. But j−1(U1) ⊆ U ,
so β also contracts in U . Hence, ker(j|#) ⊆ ker(i#).

Corollary 4.2. Using the same hypotheses and notation as above, assume that V
is chosen to satisfy the conclusion of Proposition 4.1. Let α be a path in U from p to
j(p) and α̂ : π1(U, j(p))→ π1(U, p) be the corresponding change-of-base point isomorphism.
Then π1(Tj(U, V ), p) is an HNN extension of π1(U, p) by φ with associated subgroups H =
i#(π1(V, p)) ∼= π1(V, p)/ ker(i#) and H ′ = α̂(j|#(π1(V, p))), where the isomorphism φ : H →
H ′ is induced by α̂ ◦ j|# via an application of Proposition 4.1.

Proof. It is an immediate consequence of the Generalized Seifert–VanKampen Theorem
that π1(Tj(U, V ), p) has the form

〈π1(U, p), t | t−1(i#(g))t(α̂(j|#(g)))−1 = 1 ∀ g ∈ π1(V, p)〉.
Quotienting out by ker(i#) and ker(j|#), we obtain a presentation

〈π1(U, p), t | t−1htφ(h)−1 = 1 ∀ h ∈ H〉.
Thus,

π1(Tj(U, V ), p) ∼= 〈π1(U, p), t | t−1ht = φ(h) ∀ h ∈ H〉 = π1(U, p) ∗φ .

Remark 8. For the coming applications, it is necessary to understand some specifics of
the isomorphism π1(Tj(U, V ), p)

∼=−→ π1(U, p)∗φ just obtained. Clearly, elements of π1(U, p) �
π1(U, p)∗φ are paired with their natural preimages via the inclusion (U, p) ↪→ (Tj(U, V ), p); but
the remainder of the isomorphism is not canonical; it depends on our choice of the path α from
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p to j(p). Note that a different choice β may alter the subgroup H ′, replacing it with gH ′g−1

(and φ by a corresponding conjugate) where g ∈ π1(U, p) is represented by the loop β ∗ α−1.
More significantly, with α as the chosen path, a loop representing the preimage of the stable
letter t is obtained by following the fiber {p} × [0, 1] of Tj(X) from its initial point p to its
endpoint j(p) and then returning to p along α−1; we denote this loop by τp,α. If β is used in
place of α, then the new preimage of t is represented by τp,α ∗ g−1. For clarity, let χα denote
the specific isomorphism

χα : π1(Tj(U, V ), p)
∼=−→ π1(U, p)∗φ

obtained when the path α is used. The key facts here are that χα is the identity on π1(U, p)
(which, as a result of Corollary 4.2, may be viewed as a subgroup of π1(Tj(U, V ), p)) and takes
τp,α to the stable letter t.

Proposition 4.3. For X a connected, one-ended ANR with pro-monomorphic fundamen-
tal group at infinity,

(1) let {Un}∞n=0 be a nested cofinal sequence of connected neighborhoods of infinity such
that each pair (Un, Un+1) satisfies the conditions on (U, V ) in Proposition 4.1;

(2) let r : [0,∞)→ X be a proper ray such that r([n,∞)) ⊆ Un+1 for all n;
(3) for each n, let pn = r(n) and rn be the path from pn to pn+1 obtained by restricting r

to [n, n+ 1];
(4) for convenience, let Gn denote π1(Un, pn), and let λn+1 : Gn+1 → Gn be the homomor-

phism r̂n ◦ in+1# where in+1 : (Un+1, pn+1) ↪→ (Un, pn+1) and r̂n is the change-of-base
points isomorphism corresponding to rn.

Then pro-π1(X, r) may be represented by the inverse sequence

G0
λ1←− G1

λ2←− G2
λ3←− · · · .

Given all of the above and a self-homeomorphism j : X → X, consider the sequence
{Tj(Un, Un+1)}∞n=0 of connected neighborhoods of infinity in Tj(X). For each n,

(1) choose a path αn in Un from pn to j(pn);
(2) let i′n+1 : (Un+1, pn) ↪→ (Un, pn) be the inclusion map;
(3) let Hn = i′n+1#(π1(Un+1, pn)) and H ′

n = α̂n(j|#(π1(Un+1, pn))) be subgroups of Gn and
φn : Hn → H ′

n be the isomorphism induced by α̂n ◦ j|# as promised by Corollary 4.2;
(4) let μn : π1(Tj(Un, Un+1), pn)→ π1(Tj(Un−1, Un), pn−1) be induced by inclusion followed

by the change-of-base point isomorphism corresponding to rn−1;
(5) let χαn

: π1(Tj(Un, Un+1), pn)→ Gn∗φn
be the isomorphism described in Remark 8; and

(6) let μ′
n be the homomorphism induced by the diagram

π1(Tj(Un−1, Un), pn−1) <
μn

π1(Tj(Un, Un+1), pn)

Gn−1∗φn−1

χαn−1
∨

<
μ′
n Gn ∗φn

.

χαn

∨
(4.2)

Then pro-π1(Tj(X), r) admits a representative of the form

G0∗φ0

μ′
1←− G1∗φ1

μ′
2←− G2∗φ2

μ′
3←− · · · ,

where each μ′
i is equal to λi when restricted to Gi.

To get the level of precision necessary for future arguments, we need an additional refinement
to the above representative of pro-π1(Tj(X), r). That will require a hypothesis on the
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homeomorphism j : X → X; fortunately, that hypothesis is always satisfied in the cases of
interest in this paper.

Proposition 4.4. In addition to the setup of Proposition 4.3, assume the existence of a
proper homotopy H in X between the base ray r and its image j ◦ r. By reparameterizing and
rechoosing base points, if necessary, assume that H([n,∞)× [0, 1]) ⊆ Un for all n. Assume also
that each αn was chosen to be the track H({pn} × [0, 1]) of the homotopy. Then each bonding
homomorphism μ′

n in Proposition 4.3 takes the associated subgroups Hn and H ′
n into Hn−1

and H ′
n−1, respectively, and takes the stable letter tn to the stable letter tn−1.

Proof. It is clear that μ′
n takes Hn into Hn−1. To see that μ′

n takes H ′
n into H ′

n−1, we must
take note of the base paths used. An arbitrary element of H ′

n may be represented by a loop of
the form αn ∗ (j ◦ γ) ∗ α−1

n , where γ is a loop in Un+1 based at pn. Its image in π1(Un−1, pn−1)
is represented by the loop rn−1 ∗ αn ∗ (j ◦ γ) ∗ α−1

n ∗ r−1
n−1. Since the restriction H|[n−1,n]×[0,1]

provides a homotopy (rel endpoints) in Un between the paths rn−1 ∗ αn and αn−1 ∗ (j ◦ rn−1),
that loop is homotopic in Un−1 (rel pn−1) to

αn−1 ∗ (j ◦ rn−1) ∗ (j ◦ γ) ∗ (j ◦ rn−1)−1 ∗ α−1
n−1 = αn−1 ∗ j ◦ (rn−1 ∗ γ ∗ r−1

n−1) ∗ α−1
n−1.

The latter of the above two is clearly an element of H ′
n−1.

To see that μ′
n takes tn to tn−1, recall from Remark 8 that a representative of tn in

Tj(Un, Un+1) is obtained by connecting the ends of the mapping torus fiber {pn} × [0, 1] with
the path α−1

n . A homotopy between this loop and the corresponding representative of tn−1 is
apparent from the (mapped in) annulus that may be assembled from the rectangles: rn−1 × [0, 1]
(a family of mapping torus fibers) and H|[n−1,n]×[0,1]. Since this annulus lies in Tj(Un−1, Un),
has boundary components corresponding to tn−1 and tn, and contains the path rn−1 connecting
pn−1 to pn, the result follows.

Remark 9. (1) Proposition 4.4 tells us that each of the bonding homomorphisms
μ′
n : Gn∗φn

→ Gn−1∗φn−1 is, in fact, the homomorphism λn induced by λn : Gn → Gn−1 as
described in Lemma 2.1. Hence, under the hypotheses of Proposition 4.3, a representative

G0∗φ0

λ1←− G1∗φ1

λ2←− G2∗φ2

λ3←− · · ·
of pro-π1(Tj(X), r) may be obtained, which is, algebraically, an induced HNN sequence (as
described in § 2) obtained from a base sequence

G0
λ1←− G1

λ2←− G2
λ3←− · · ·

representing pro-π1(X, r).

(2) An additional property of this particular HNN sequence is that each associated subgroup
Hi � Gi∗φi

is precisely the image under λi+1 (or, equivalently, λi+1) of Gi+1.
(3) When the homeomorphism j generates a Z-action as covering transformations on X,

the extra hypothesis found in Proposition 4.4 is easily seen to be satisfied. Let p0 be a base
point and r0 : [0, 1]→ X be a path from p0 to j(p0). For each integer n > 0, let pn = jn(p0)
and rn = jn ◦ r0, a path from pn to pn+1. Let r : [0,∞)→ X be the ray obtained by gluing
these paths together in the obvious manner. By proper discontinuity of the action of 〈j〉 on X,
r is a proper ray. Moreover, a proper homotopy between r and j ◦ r is obtained by sliding each
point r(t) one unit forward along r to j(r(t)); hence, each αn is just rn.

We close this section with a simple special case that will be useful in § 9.
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Lemma 4.5. Let X be connected and one-ended with stable pro-π1 and let G = π̌1(X, r),
where r is a proper ray in X. Then any homeomorphism j : X → X induces an automorphism
φ : G→ G, and Tj(X) is a one-ended space with stable fundamental group at infinity and
π̌1(Tj(X), r) ∼= G�φ Z.

Proof. By Proposition 2.8, the base ray hypothesis of Proposition 4.4 is satisfied, so all
of our previous work applies. By stability, we are in position to apply Lemma 2.7; moreover,
in the case at hand, the groups G, H, and H ′ of that lemma are all canonically isomorphic
to π̌1(X, r). Thus, the HNN extension promised there is a semidirect product isomorphic to
G�φ Z.

5. An example

The following example is of interest because it helps to justify all of the effort that goes into
proving Theorem 1.2.

Example 5. Let f : (S1, ∗)→ (S1, ∗) be a degree 2 map, and let X ′ be the ‘bi-infinite
mapping telescope’ of the system

· · · f←− S
1 f←− S

1 f←− S
1 f←− · · · .

Then let X be the space obtained by adding a single point p to compactify the ‘left end’ of X ′.
Since p has arbitrarily small compact contractible neighborhoods in X and since X is locally
a two-dimensional polyhedron at all other points of X, it is clear that X is a locally compact
ANR. Assemble a proper base ray r from the mapping cylinder arcs corresponding to the base
point ∗. It is easy to see that pro-π1(X, r) is represented by the pro-monomorphic system

Z
×2←− Z

×2←− Z
×2←− · · · ,

which is not semistable. Moreover, there is a homeomorphism j : X → X that generates a
semifree Z-action on X. In particular, let j translate each mapping cylinder of X ′ to the right
by one and let j(p) = p.

In this situation, all of our work in § 4 is valid. With a little effort, one sees that this space X
and its mapping torus Tj(X) provide a geometric realization of the unusual algebraic situation
outlined in Example 4. Since Proposition 1.6 does not apply to actions of this type, there is no
contradiction to our theorem.

Remark 10. This example provides a situation where the conclusion of Wright’s Theo-
rem 6.3 is satisfied, while the conclusion of our Theorem 1.2 does not hold. Of course, this can
happen only because the Z-action is not free.

6. Manifold results

In this section, manifold means manifold with (possibly empty) boundary. A compact manifold
without boundary is called closed and a non-compact manifold without boundary is called open.
For convenience, all manifolds are assumed to be piecewise linear. Analogous results may be
obtained for smooth or topological manifolds in the usual ways.

Some fundamental facts from manifold topology will be used in this section. First, a Poincaré
duality argument implies that a contractible open n-manifoldMn is always one-ended, provided
n � 2. A deeper result, due to Stallings [19] when n � 5 and requiring the corresponding
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Poincaré Conjectures [5, 15] for n = 3, 4, asserts that such a manifold is homeomorphic to R
n

if and only if it is simply connected at infinity. By simply connected at infinity, we mean that
pro-π1(Mn, r) is pro-trivial.

We begin this section with a combined application of Proposition 1.6 and a technique found
in [10]. The result, which we find interesting in its own right, leads to quick new proofs of two
theorems mentioned in § 1.

Proposition 6.1. Let J = 〈j〉 ∼= Z act as covering transformations on a contractible open
n-manifold Mn in an orientation-preserving manner. Then the mapping torus Tj(Mn) is
homeomorphic to R

n × S
1.

Proof. For n � 2 the claim follows from classical results, and so we assume n � 3. The
quotient space J\Mn is an orientable open n-manifold homotopy equivalent to S

1, and so, by
a Poincaré duality argument (for example, [11, Proposition 3.1]), J\Mn is one-ended. By the
techniques of § 3, a rectangular neighborhood of infinity R(K × [u, v]) in (J\Mn)× R will have
a fundamental group of the form

〈a, b | am = bm〉,
where a is a generator of π1((J\Mn)× {v + 1}), b is the corresponding generator of
π1((J\Mn)× {u− 1}), and m is the index of the image of π1((J\Mn)−K) in π1(J\Mn).
Inspection of the proof in [10] reveals that, in this particular situation, π1((J\Mn)−K)
surjects onto π1(J\Mn). To see this, let Σ1 ⊆ J\Mn be a nicely embedded circle such that
inclusion is a homotopy equivalence, and let N be a tubular neighborhood of Σ1. There is a
homotopy of J\Mn pulling the entire space into the interior of N . Furthermore, there exists
a loop lying just outside N that generates π1(J\Mn). The techniques found in the proof of
Guilbault [10, Proposition 3.3] show how that loop can be pushed into (J\Mn)−K; therefore,
π1((J\Mn)−K)→ π1(J\Mn) is surjective. It follows that π1(R(K × [u, v])) = 〈a, b | a1 =
b1〉 = 〈a〉 = π1((J\Mn)× R).

By the above, (J\Mn)× R is one-ended with stable infinite cyclic fundamental group at
infinity, and inclusion induces an isomorphism

π̌1((J\Mn)× R, r)
∼=−→ π1((J\Mn)× R).

If we let N ′ be a tubular neighborhood of Σ1 × {0} in (J\Mn)× R and Wn+1 = ((J\Mn)×
R)− int(N ′), then a standard algebraic topology argument (use excision, the Hurewicz
Theorem, and the Whitehead Theorem in the universal cover) reveals that ∂Wn+1 ↪→Wn+1

is a homotopy equivalence. By Siebenmann’s Open Collar Theorem [18], when n+ 1 � 5,
or [9], when n+ 1 = 4, it follows that Wn+1 ≈ ∂Wn+1 × [0,∞). Therefore, (J\Mn)× R is
homeomorphic to N ′ with an open collar attached to its boundary. Since (J\Mn)× R is
orientable, that space is homeomorphic to R

n × S
1. The result now follows from Proposition

1.6.

The above result is striking when applied, for example, to the exotic contractible open
manifolds Mn constructed in [3]. Those manifolds have a very large fundamental groups at
infinity, yet they admit cocompact actions as covering transformations by groups G that are
finite index subgroups of infinite Coxeter groups. Certainly, the mapping torus of idMn is
homeomorphic to Mn × S

1, and thus maintains a complicated fundamental group at infinity
of the form pro-π1(Mn, r)× Z. However, every non-trivial g ∈ G generates a Z-action on Mn

and so, by the above proposition, whenever g is orientation-preserving, Tg(Mn) is topologically
just R

n × S
1. This observation can be used to obtain a new proof of the following theorem from

[7] that was reproved in [17].
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Theorem 6.2. Let Mn be a contractible open n-manifold not homeomorphic to R
n and

suppose that a group G acts as covering transformations onMn. Then the homomorphism G→
H(Mn) is injective, where H(Mn) denotes the group of isotopy classes of self-homeomorphisms
of Mn. In fact, G→WH(Mn) is injective, where WH(Mn) denotes the group of proper
homotopy classes of self-homeomorphisms of Mn.

Proof. By the hypothesis, n � 3. Suppose that some non-trivial g ∈ G lies in the kernel
of one of the above homomorphisms. By an algebraic topology argument, such a g must be
orientation-preserving. (Alternatively, that issue can be avoided by considering g2.) Since g is
non-trivial, Proposition 6.1 asserts that Tg(Mn) is homeomorphic to R

n × S
1. On the other

hand, since g is properly homotopic to idMn , that mapping torus is proper homotopy equivalent
to Mn × S

1. Since the pro-fundamental group is an invariant of proper homotopy type, this
can happen only if Mn is simply connected at infinity, contradicting the hypothesis that it is
not homeomorphic to R

n.

We now employ our methods to obtain a new proof of the following theorem.

Theorem 6.3 (Wright’s Main Theorem). Let Mn be a contractible open n-manifold with
pro-monomorphic fundamental group at infinity. If Mn admits a non-trivial action by covering
transformations, then Mn ≈ R

n.

Proof. Again we may assume that n is at least 3. Any group acting by covering
transformations on a contractible manifold is torsion-free; thus, Mn admits such an action
by an infinite cyclic group J = 〈j〉. By passing to an index 2 subgroup if necessary, assume
that the elements of J are orientation-preserving homeomorphisms.

By our work in § 4, pro-π1(Tj(Mn), r) has a representative of the form

G0∗φ0

λ1←− G1∗φ1

λ2←− G2∗φ2

λ3←− · · · ,
where

G0
λ1←− G1

λ2←− G2
λ3←− · · ·

is a representative of pro-π1(Mn, r). On the other hand, Proposition 6.1 tells us that
pro-π1(Tj(Mn), r) is pro-isomorphic to the constant sequence {Z, id}. After passing to
subsequences, there exists a ladder diagram of the form

Gk0∗φk0
< Gk1∗φk1

< Gk2∗φk2
< · · ·

Z <
id<

<

Z <
id<

<

Z <
id

<

· · · .
From this diagram, we may conclude that each homomorphism in the top row has an infinite
cyclic image. Since these homomorphisms send stable letter to stable letter. It follows that the
image of each Gki+1 in Gki

is trivial. Thus, the representative

Gk0 ←− Gk1 ←− Gk2 ←− · · ·

of pro-π1(Mn, r) is pro-trivial; so Mn is simply connected at infinity and, thus, homeomorphic
to R

n.
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7. Proof of Theorem 1.2: the algebraic part

We now begin the proof of Theorem 1.2. With Theorem 1.1 as a starting point, we need only
prove the following proposition.

Proposition 7.1. Let X be a one-ended, simply connected, locally compact, and locally
path-connected separable metric space with pro-monomorphic fundamental group at infinity.
If Z acts by covering transformations on X, then X has stable fundamental group at infinity.

The proof is more intricate than our proof of Theorem 6.3, but is similar in spirit. By work
done in § 4, there exists a proper ray r in X, a representative

G0
λ1←− G1

λ2←− G2
λ3←− · · · (7.1)

of pro-π1(X, r), subgroups Hi,H
′
i � Gi, and isomorphisms φi : Hi → H ′

i with φi−1 ◦ λi(h) =
λi ◦ φi(h) for all h ∈ Hi, so that the corresponding induced HNN sequence

G0∗φ0

λ1←− G1∗φ1

λ2←− G2∗φ2

λ3←− · · · (7.2)

represents pro-π1(Tj(X), r), where j : X → X is a generator of the Z-action on X.
Our work in § 3 provides, for an appropriately chosen base ray r′, a representative of pro-

π1((J\X)× R, r′) of the form

Θ0

ρ1� Θ1

ρ2� Θ2

ρ3� · · · , (7.3)

where the Θi and the ρi are as described in that section.
To prove Proposition 7.1, we need to show that sequence (7.1) is semistable. By

Proposition 1.6 we know that (J\X)× R ≈ Tj(X). If a homeomorphism h : (J\X)× R→
Tj(X) can be chosen, which sends an appropriately chosen base ray r′ in (J\X)× R (as
described in Proposition 3.1) to an appropriate base ray r in Tj(X) (as described in
Proposition 4.4 and the remark that follows it), then the sequences (7.2) and (7.3) are pro-
isomorphic. Assuming this for the moment, a quick conclusion to our proof might be expected
as follows: first, use the (explicit) semistability of (7.3) to conclude that (7.2) is semistable; then
use the semistability of (7.2) to conclude that (7.1) is semistable. Unfortunately, Example 4
shows that the second of these implications is not automatic. Instead, we require a more delicate
argument that relies on ‘normal forms’ for HNN extensions and some special properties of the
groups and diagrams at hand.

We save for the following section, an investigation of the natural homeomorphism between
(J\X)× R and Tj(X), where it will be observed that there is no problem with base rays, and
hence, there exist subsequences of (7.2) and (7.3) and a commutative diagram of the form

Gn0∗φn0
<
λ̄n0+1,n1 Gn1∗φn1

<
λ̄n1+1,n2 Gn2∗φn2

<
λ̄n2+1,n3 Gn3∗φn3

· · ·

Θm0
<

ρm0+1,m1

d1

<

u0
<

Θm1
<

ρm1+1,m2

d2

<

u1
<

Θm2
<

ρm2+1,m3

d3

<

u2
<

· · · .
(7.4)

That investigation will also show that each ui can be arranged to take the preferred generator
a ∈ Θmi

to the stable letter tni
∈ Gni

∗φni
. For now, we assume that those arrangements have

been made and proceed with the algebraic part of the proof.
By our work in § 3, for every i, there is an integer Nmi

> 0 for which aNmi lies in the
center of Θmi

; therefore, tNmi
ni is central in Imui = Im λ̄ni+1,ni+1 . For each i, let Ki � Gni

be the image of Gni+1 under λ̄ni+1,ni+1 and note that Im λ̄ni+1,ni+1 is precisely the subgroup
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of Gni
∗φni

generated by Ki together with the stable letter tni
. We indicate this by writing

Im λ̄ni+1,ni+1 = 〈Ki, tni
〉. Then, by semistability, we may assume (after passing to a further

subsequence and relabeling) that each of the bonds in the corresponding pro-equivalent inverse
sequence is surjective.

〈K0, tn0〉� 〈K1, tn1〉� 〈K2, tn2〉� 〈K3, tn3〉� · · · (7.5)

For the moment let i be fixed and, to simplify notation, let N denote Nmi
and t denote

tni
. Then tN is central in 〈Ki, t〉, so t−NKit

N = Ki; and since Ki � Hni
, an application of the

standard relators in Gni
∗φni

shows that t−(N−1)φni
(Ki)tN−1 = Ki. If N = 1, this means that

φni
is an automorphism of Ki; otherwise, a normal forms argument implies that φni

(Ki) � Hni

and t−(N−2)φ2
ni

(Ki)tN−2 = Ki. Continuing inductively, we deduce that φq−1
ni

(Ki) � Hmi
and

t−(N−q)φqni
(Ki)tN−q = Ki for all 1 � q � N , with the final observation being that φNni

(Ki) =
Ki. From this it is easy to see that conjugating by any (positive or negative) power of t
simply permutes the subgroups of Hmi

in the collection {φrni
(Ki)}N−1

r=0 . And if we let K ′
i =

〈Ki, φni
(Ki), φ2

ni
(Ki), . . . , φN−1

ni
(Ki)〉, the subgroup of Hni

generated by these groups, then
〈Ki, t〉 = K ′

i · 〈t〉. Since the latter two groups intersect trivially and K ′
i is normal in 〈Ki, t〉, it

follows that 〈Ki, t〉 is a semidirect product K ′
i � 〈t〉.

Rewrite (7.5) as

K ′
0 � 〈tn0〉� K ′

1 � 〈tn1〉� K ′
2 � 〈tn2〉� K ′

3 � 〈tn3〉� · · · ,
and recall that each bonding homomorphism takes tni+1 to tni

and K ′
i+1 into K ′

i. Such
homomorphisms can be surjective only if the K ′

i+1 surject onto K ′
i. Moreover, since K ′

i+1 �
Hni+1 � Gni+1 and Ki is the image of Gni+1 under λ̄ni+1,ni+1 , it follows that K ′

i = Ki. This
provides an inverse sequence of surjections

K0 � K1 � K2 � K3 � · · · ,
which is pro-isomorphic to (7.1), as desired.

8. Proof of Theorem 1.2: topological details

We now lay out the topological argument needed to complete the proof of Proposition 7.1 and,
thus, Theorem 1.2. Our remaining task is to prove the existence of a ladder diagram of the
form of (7.4) with the additional property that ui(a) = tni

for each i.
The process described at the end of § 2 applied to a homeomorphism h : (J\X)× R→Tj(X)

(as promised in Proposition 1.6) produces a ladder diagram between subsequences of any given
representations of pro-π1((J\X)× R, r) and pro-π1(Tj(X), h ◦ r). Since the algebraic proof
presented above used specific properties of both (7.3) and (7.2), we require a base ray r in
(J\X)× R of the type specified in Proposition 3.1 whose image h ◦ r in Tj(X) is of the type
described in Remark 9. That will be accomplished by taking a close look at Proposition 1.6.
In doing so, it will also become clear that homomorphisms ui in the resulting diagram take
primary generators a to stable letters tni

.
Our goal is to ‘see’ the homeomorphism h : (J\X)× R→ Tj(X) promised by Proposition 7.1.

Toward that end, choose a map F : J\X → S
1 that induces an isomorphism on fundamental

groups and let π : X → J\X be the quotient map. Then π is a universal covering map with deck
transformations generated by j. Let p : R→ S

1 be the universal covering map with covering
transformations generated by unit translation, and choose f : X → R to be a lift of F ◦ π. For
any A ⊆ R, let XA = f−1(A). Note that, for any unit interval [y, y + 1] ⊆ R, the restriction of
π to X[y,y+1] is a quotient map that creates a copy of J\X by identifying each x ∈ Xy with
j(x) ∈ Xy+1.
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Consider the diagram
X × [0, 1]

(J\X)× R
h

>

q1

<
Tj(X),

q2
>

(8.1)

where q1(x, u) = (π(x), f(x) + u) and q2 is the quotient map that defines Tj(X); specifically,
(x, 1) is identified with (j(x), 0) for each x ∈ X. Note that q1(x, u) = q1(x′, u′) if and only if
π(x) = π(x′) and f(x) + u = f(x′) + u′. The first of those conditions implies that |f(x)− f(x′)|
is an integer; hence, |u− u′| is an integer. It follows that u = u′ or (without loss of generality)
u = 0 and u′ = 1. In the first case f(x) = f(x′), implying that (x, u) = (x′, u′). In the latter
case, f(x) = f(x′) + 1 and, since π(x) = π(x′), this implies that j(x′) = x. Thus, (x, 0) may be
viewed as (j(x′), 0). We conclude that when a pair of points in X × [0, 1] is identified under q1,
it is also identified under q2. A similar argument gives the converse; therefore, diagram (8.1)
induces a homeomorphism h : (J\X)× R→ Tj(X).

Remark 11. The above does not require simple connectivity of X; the construction can be
carried out more generally by choosing F : J\X → S1 to induce the epimorphism π1(J\X, b)�
Z with kernel equal to π#(π1(X, e)), where e ∈ π−1(b). This provides the elementary proof of
Proposition 1.6 promised in § 1.

Diagram (8.1) provides a common space, X × [0, 1], with which to compare the product
structure of (J\X)× R with the mapping torus structure of Tj(X). The latter is easy to
visualize; one simply glues the top edge X × {1} to the bottom X × {0} via a shift that
identifies (x, 1) with (j(x), 0). To see the product structure of (J\X)× R, we look at the
preimages under q1 of factor spaces (J\X)× {y} and {b} × R. For fixed y ∈ R,

q−1
1 ((J\X)× {y}) = {(x, u) | u = y − f(x)},

which may be viewed as the portion of the graph of the function (−f) + y : X → R lying
between u = 0 and u = 1. Call this set Γy and note that it lies entirely within X[y−1,y] × [0, 1].
Viewed differently, it is homeomorphic to the portion of the graph of f lying between u = y − 1
and u = y and thus is homeomorphic to X[y−1,y]. Moreover, under that homeomorphism, the
identifications made on Γy via q1 correspond to the identifications made to X[y−1,y] under
π : X → J\X; both yield copies of J\X. For fixed b ∈ J\X,

q−1
1 ({b} × R) = {(x, u) | π(x) = b}

= π−1(b)× [0, 1]

= {jk(e)}k∈Z × [0, 1],

where e ∈ π−1(b). Under the quotient map q1, the line {b} × R is assembled from {jk(e)}k∈Z ×
[0, 1] by identifying the top endpoint of each jk(e)× [0, 1] with the bottom endpoint of
jk+1(p)× [0, 1]; see Figure 2.

In order to obtain the desired rays r and h ◦ r in (J\X)× R and Tj(X), we construct a single
proper ray r′ in X = X × {0} ⊆ X × [0, 1] and let r = q1 ◦ r′; then h ◦ r is precisely q2 ◦ r′.
Following the prescription found in Remark 9, let p0 ∈ X{1} be a base point and r′0 : [0, 1]→ X
be a path from p0 to j(p0) ∈ X; for each n > 0, let pn = jn(p0) and r′n = jn ◦ r′0 (a path from
pn to pn+1). Obtain r′ : [0,∞)→ X by gluing these paths together in the obvious manner; see
Figure 2. By choosing the initial path r′0 to lie in X(0,∞), it will follow that r′([n,∞)) ⊆ X(n,∞)

for all integers n � 0. Since q1(X(n,∞) × {0}) ⊆ (J\X)× (n,∞), it follows that r([n,∞)) ⊆
(J\X)× (n,∞) for all n; so r is in accordance with Proposition 3.1. By construction, q2 ◦ r′
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Figure 2. Preimages of (J\X) × {r} and {b} × R under q1.

fits the specifications of Remark 9; so the base ray issue is resolved; there is a ladder diagram
of type (7.4).

Lastly, we observe that each ui in (7.4) takes the primary generator a ∈ Θmi
to the stable

letter tni
∈ Gni

∗φni
. Following the discussion found in Remarks 8 and 9, tni

may be represented
by the loop in Tj(Uni

, Uni+1), which is a concatenation of the q2-image of the interval pni+1 ×
[0, 1] with the path (r′|[ni+1,ni+1+1])−1 in X × {0}. The q1-images of these paths lie in (J\X)×
[ni,∞) where the resulting loop is easily seen to generate π1((J\X)× [ni,∞)). This is the
primary generator a of a rectangular neighborhood of infinity of the form R(Kni

× [−ni, ni]).
Thus, h takes this representation of a to tni

. Since each ui is induced by a restriction of the
homeomorphism h, and since we have arranged that all bonding homomorphisms in (7.3) and
(7.2) take primary generator to primary generator and stable letter to stable letter, it follows
that each ui takes a to tni

.

9. Actions by Z⊕ Z

In this section, we prove Theorem 1.3. Cocompact actions of Z⊕ Z are well understood, so we
discuss only the non-cocompact case. We will prove the following theorem.

Theorem 9.1. Let X be a one-ended, simply connected, locally compact ANR with
pro-monomorphic fundamental group at infinity. If X admits a Z⊕ Z action by covering
transformations that is not cocompact, then X is simply connected at infinity.

Proof. Assume G ∼= Z⊕ Z acts by covering transformations on X. Write G = 〈j1〉 ⊕ 〈j2〉
where each ji is a self-homeomorphism of X. By Proposition 1.6, (〈j1〉\X)× R ≈ Tj1(X);
moreover, we will see that j2 induces natural self-homeomorphisms of each of these spaces.
This is largely due to the fact that j2j1 = j1j2.

Let ∼ be the equivalence relation on X induced by the action of 〈j1〉 and let [x] denote a
corresponding equivalence class. Then j̆2 : 〈j1〉\X→〈j1〉\X defined by j̆2([x]) = [j2(x)] is a well-
defined function. Indeed, if x ∼ y, then y = jk1 (x) for some integer k. Then j2(y) = j2j

k
1 (x) =

jk1 j2(x), and the last of these terms is equivalent to j2(x) by definition. The continuity of j̆2 is
clear; moreover, j−1

2 induces a continuous inverse for j̆2 in an analogous manner. Thus, j̆2 is a
homeomorphism. Let j2 = (j̆2, idR) : (〈j1〉\X)× R→(〈j1〉\X)× R.

The desired self-homeomorphism of Tj1(X) = X × [0, 1]/{(x, 1) ∼ (j1(x), 0)} is obtained
by letting j2 act on each slice X × {t}. Since j2(j1(x)) = j1(j2(x)), applying j2 to a pair
of equivalent points (x, 1) and (j1(x), 0) yields a pair of equivalent points (j2(x), 1) and
(j1j2(x), 0). Let j

2
: Tj1(X)→ Tj1(X) be the resulting homeomorphism.

A quick check of diagram 8.1 shows that the induced homeomorphism h is equivariant with
respect to the Z-actions induced by j2 and j

2
. So, by a second application of Proposition 1.6,
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we get

〈j2〉\((〈j1〉\X)× R)× R ≈ Tj
2
(Tj1(X)). (9.1)

We are now prepared to employ our standard strategy; in particular, we shall use identity (9.1)
to obtain a pair of inverse sequences representing pro-fundamental groups of these spaces.
Comparison of those sequences will reveal the desired conclusion.

The left-hand side of (9.1) is easily seen to be homeomorphic to

((〈j1〉 ⊕ 〈j2〉)\X)× R
2.

The space (〈j1〉 ⊕ 〈j2〉)\X has fundamental group isomorphic to 〈j1〉 ⊕ 〈j2〉. It is a standard
fact that, given a path-connected non-compact space Y , the ‘doubly stabilized’ product Y × R

2

has a stable fundamental group at infinity isomorphic to π1(Y ). To see this, first note that the
non-compactness of Y implies that Y × R is one-ended; moreover, the fundamental group of
each neighborhood of that end surjects onto π1(Y × R). So the techniques of § 3, applied to
(Y × R)× R, show that this space has arbitrarily small rectangular neighborhoods of infinity
with fundamental group described by a graph of groups with just two vertices and one edge,
all labeled by π1(Y ).

To understand the fundamental group at infinity for Tj
2
(Tj1(X)), first use Theorem 1.2 to

deduce that X has a stable, finitely generated, free fundamental group at infinity. If π̌1(X, r) =
F , where F is a finitely generated free group, then, by Lemma 4.5, Tj1(X) has stable pro-π1

isomorphic to a semidirect product F � Z. Applying Lemma 4.5 a second time, we see that
Tj

2
(Tj1(X)) has a stable fundamental group at infinity of the form (F � Z) � Z.

Combining the above observations, we have (F � Z) � Z ∼=〈j1〉 ⊕ 〈j2〉 ∼= Z⊕ Z. When a
semidirect product is abelian, the factor groups must both be abelian and the product an
ordinary direct product. It follows that F � Z =F × Z and (F � Z) � Z =(F × Z)× Z. The
latter group is isomorphic to Z⊕ Z if and only if F is the trivial group. Hence, X is simply
connected at infinity.

Acknowledgement. The authors wish to acknowledge the contribution of the referee, whose
comments led to a significant simplification in the proof of their main theorem.
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