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Topological properties of spaces admitting
a coaxial homeomorphism
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Wright (1992) showed that, if a 1–ended, simply connected, locally compact ANR Y

with pro-monomorphic fundamental group at infinity (ie representable by an inverse
sequence of monomorphisms) admits a Z–action by covering transformations, then
that fundamental group at infinity can be represented by an inverse sequence of finitely
generated free groups. Geoghegan and Guilbault (2012) strengthened that result,
proving that Y also satisfies the crucial semistability condition (ie representable by
an inverse sequence of epimorphisms).

Here we get a stronger theorem with weaker hypotheses. We drop the “pro-monomor-
phic hypothesis” and simply assume that the Z–action is generated by what we call a
“coaxial” homeomorphism. In the pro-monomorphic case every Z–action by covering
transformations is generated by a coaxial homeomorphism, but coaxials occur in far
greater generality (often embedded in a cocompact action). When the generator is
coaxial, we obtain the sharp conclusion: Y is proper 2–equivalent to the product of a
locally finite tree with R . Even in the pro-monomorphic case this is new: it says that,
from the viewpoint of the fundamental group at infinity, the “end” of Y looks like
the suspension of a totally disconnected compact set.

20F65, 57M07, 57S30; 57M10

Let Y be a simply connected, locally compact absolute neighborhood retract (ANR).
(Recall that the class of ANRs includes such familiar and important spaces as topological
manifolds and locally finite CW complexes.) Let fCng be an expanding sequence
of compact subsets which exhausts Y in the sense that the union of the sets Cn is
the whole space. The algebraic topology of Y at infinity is studied by means of the
inverse sequence of spaces fY �Cng, where the bonds are inclusion maps. So, for
example, information about the mth homology of Y at infinity would be obtained from
the inverse sequence of abelian groups fHm.Y � Cn/g. As a second example, the
components at infinity are the ends of Y , by which is meant (roughly) the members of
the inverse sequence of sets f�0.Y �Cn/g. All this is well known.1

1One source for the general theory is Geoghegan [2].
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We always assume that Y is simply connected. To keep things simple we assume in
this introduction only that Y has one end.

The equivariant case Suppose, in particular, that a group G acts cocompactly as
covering transformations on Y (this implies that G is finitely presented). Then, with
suitable extra assumptions, the topological invariants of Y at infinity are invariants of
the group G. The earliest example is the number of ends of Y , which is a feature of G,
independent of the choice of Y ; it is a classical theorem of Hopf that this number is 0,
1, 2 or 1.

In this paper we add to the current understanding of the fundamental group at infinity
of Y , motivated particularly by the equivariant case. Pick a proper ray !W Œ0;1/! Y

in Y as base ray, and, reparametrizing if necessary, arrange that !.Œn; nC 1�/ lies in
Y �Cn . Then we have an inverse sequence of fundamental groups f�1.Y �Cn/; !.n/g,
where the bonding homomorphisms are defined using appropriate segments of ! . This2

is the fundamental pro-group of Y at infinity based at ! . We are interested in finding
the broadest possible hypotheses which ensure that this is pro-isomorphic to a sequence
of finitely generated free groups with epimorphic bonding maps. The technical words
describing these two properties are “semistable” (pro-isomorphic to a sequence of
epimorphisms) and “pro-free” (pro-isomorphic to a sequence of free groups).

There are many spaces Y satisfying our hypotheses which lack the semistability
property.3 However, none is known in the equivariant case. In other words it is not
known if a finitely presented group exists which is not semistable at infinity.4

By contrast, having a pro-free fundamental pro-group at infinity is a real restriction
in the equivariant case. While many groups have this property, many do not. For
example, the fundamental groups of Davis manifolds do not have pro-free fundamental
pro-groups at infinity.

Our aim is to isolate a feature of Y which guarantees that the fundamental pro-group
at infinity is both semistable and pro-free. We do this by considering an action of an
infinite cyclic group J on Y by covering transformations. If there is no such action
then we have nothing to say, but often there are many such actions. We denote a

2It is well known that, up to pro-isomorphism, this is independent of the choice of the sets Cn , though
a priori it might depend on ! . However, in the semistable case (where we will find ourselves in a moment)
it is also independent of ! ; see [2].

3For example, cone off the infinite mapping telescope formed by gluing together infinitely many copies
of the mapping cylinder of a degree 2 map on the circle.

4If there were such a group, there would be certainly be a one-ended example; see Mihalik [9].
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generator of J by j, a homeomorphism of Y . We say that such a j is coaxial if given
any compact subset C of Y there is a larger compact set D of Y such that any loop in
Y �J �D bounds in Y �C. By J �D we mean

S
m2Z.j

m.D//. Our main theorem is:

Theorem 0.1 If there exists an infinite cyclic group J acting as covering transforma-
tions on Y and generated by a coaxial homeomorphism then there is a locally finite
tree T and a proper 2–equivalence zf W Y ! T �R.

The point becomes clear when one notes that (1) at infinity, the product T �R looks
like the suspension of the (totally disconnected) set of ends of T , and (2) the pro-
isomorphism type of the fundamental pro-group at infinity is invariant under proper
2–equivalences. Thus Theorem 0.1 implies:

Corollary 0.2 The existence of such a coaxial j ensures that Y has semistable and
pro-free fundamental pro-group at infinity.

Theorem 0.1 has a context in the literature. One says that the inverse sequence fGng

of groups is pro-mono if it is pro-isomorphic to a sequence of groups whose bonds are
monomorphisms. (So pro-mono is dual to semistable.) Building on earlier work of
Wright [17], two of us in [3] proved the following theorem:

Theorem 0.3 If the fundamental pro-group at infinity of Y is pro-mono and there
is an infinite cyclic group J acting as covering transformations on Y , then Y has
semistable and pro-free fundamental pro-group at infinity.

Theorem 0.3 is a corollary of our new Theorem 0.1 because, by a lemma from [17],
when Y satisfies the pro-mono hypothesis then, given an infinite cyclic group J acting
as covering transformations on Y , the generator j of J is coaxial. This indicates that
the pro-mono hypothesis is unnecessarily strong. We will see examples where some
infinite cyclic groups J acting on Y as covering transformations are generated by
coaxials, while others are not.

It should be noted that there is a large literature on semistability at infinity of finitely
presented groups (what we call here the equivariant case). See for example Mihalik
[8; 9; 11; 10], Mihalik and Tschantz [13; 12] and Conner and Mihalik [1]. The nature
of that literature is mostly about proving that a group G formed by some group-theoretic
constructions from simpler groups has the semistability property. These theorems are by
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no means easy, and the widespread success tempts one to ask if every finitely presented
group is semistable at each end. We prefer to be skeptical, and we see this paper, and
our paper [4], as attempts to get to the essential topological nature of what semistability
really entails. We are of course motivated by the case where Y is the universal cover
of a finite complex.

The layout of this paper is as follows. Section 1 contains the necessary background,
including the algebra of inverse sequences and its use in defining end invariants of
topological spaces, such as the fundamental group at infinity. It also reviews the notions
of n–equivalence and proper n–equivalence. Section 2 discusses the new definitions
that play a central role in this work: coaxial and strongly coaxial homeomorphisms.
Section 3 describes and analyzes a collection of “model spaces”, like the space ‡ �R

featured in Theorem 0.1. In Section 4 we briefly describe some connections between
our model spaces and Bass–Serre theory. Our main theorems are proved by associating
spaces of interest with model spaces, whose end behavior is particularly nice. In
Section 5, where most of the serious work is done, those associations are made. In
Section 6, we assemble our main conclusions in their most general forms.

Acknowledgements

This research was supported in part by Simons Foundation Grants 207264 and 427244,
CRG. Thanks to Phillip Guilbault for creating the illustrations in this document.

1 Definitions and background

This section contains terminology, notation and background information to be used
throughout; it is divided into four subsections. The first reviews the category of spaces
to which this work applies; the second contains some basic algebraic theory of inverse
sequences; the third employs that theory to describe “end invariants” of noncompact
spaces; the fourth reviews the notion of proper homotopy equivalence and a useful
relaxation to “proper n–equivalence”. Experts on these topics can safely skip ahead to
the next section; those desiring more detail should see [2] or [6].

1.1 Spaces

All spaces are assumed to be separable and metrizable. A space Y is an ANR (absolute
neighborhood retract) if, whenever it is embedded as a closed subset of a metric
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space Z , some neighborhood U of Y retracts onto Y . All spaces under consideration
here will be locally compact ANRs. Manifolds, locally finite CW complexes and proper
CAT(0) spaces are special cases of locally compact ANRs.

A CW complex Y is strongly locally finite if fC.e/ j e is a cell of Y g is a locally finite
cover of Y . Here C.e/, the carrier of e , is the smallest subcomplex containing e . This
is a technical condition satisfied by all finite-dimensional, locally finite CW complexes
and all locally finite polyhedra. All results presented here can be obtained within these
subclasses, but, for full generality, we make use of the more general condition. A
complete discussion can be found in [2].

1.2 Algebra of inverse sequences

In this subsection arrows denote homomorphisms, with� a surjection. The symbol Š
indicates an isomorphism.

Let
G0

�1
 �G1

�2
 �G2

�3
 � � � �

be an inverse sequence of groups. A subsequence of fGi ; �ig is an inverse sequence of
the form

Gi0

�i0C1ı���ı�i1
 ���������Gi1

�i1C1ı���ı�i2
 ���������Gi2

�i2C1ı���ı�i3
 ��������� � � � :

In the future we denote a composition �i ı � � � ı�j (with i � j ) by �i;j .

Sequences fGi ; �ig and fHi ; �ig are pro-isomorphic if, after passing to subsequences,
there exists a commuting “ladder diagram”

(1-1)

Gi0
Gi1

}}

�i0C1;i1oo Gi2

}}

�i1C1;i2oo Gi3

}}

�i2C1;i3oo � � �

Hj0

aa

Hj1

�j0C1;j1oo Hj2

aa

�j1C1;j2oo � � �
�j2C1;j3oo

Clearly an inverse sequence is pro-isomorphic to any of its subsequences. To avoid
tedious notation, we sometimes do not distinguish fGi ; �ig from its subsequences. In-
stead we assume that fGi ; �ig has the properties of a preferred subsequence — prefaced
by the words “after passing to a subsequence and relabeling”.

The inverse limit of fGi ; �ig is the subgroup of
Q

Gi defined by

lim
 ��
fGi ; �ig D

�
.g0;g1;g2; : : : / 2

1Y
iD0

Gi

ˇ̌̌
�i.gi/D gi�1

�
:
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Note that, for each i , there is a projection homomorphism pi W lim
 ��
fGi ; �ig !Gi . It is

a standard fact that pro-isomorphic inverse sequences have isomorphic inverse limits,
but that passing to an inverse limit can result in a loss of information. For that reason,
we prefer to work with (pro-isomorphism classes of) inverse sequences, rather than
their limits.

An inverse sequence fGi ; �ig is stable if it is pro-isomorphic to a constant inverse
sequence fH; idH g, or, equivalently, a sequence fHi ; �ig where each �i is an isomor-
phism. In these cases, the projection homomorphisms take lim

 ��
fGi ; �ig isomorphically

onto H and each of the Hi .

If fGi ; �ig is pro-isomorphic to fHi ; �ig, where each �i is an epimorphism, we call
fGi ; �ig semistable (or Mittag-Leffler, or pro-epimorphic). Similarly, if fHi ; �ig can
be chosen so that each �i is a monomorphism, fGi ; �ig is called pro-monomorphic. It
is easy to show that an inverse sequence that is both semistable and pro-monomorphic
is stable.

1.3 Ends of spaces and their algebraic invariants

Proper maps and proper homotopies will be reviewed in the next subsection. In the
meantime, we will go ahead and use special cases of those concepts applied to rays, ie
maps r W Œ0;1/!X. Those unfamiliar with the terms can look ahead for the definitions.

A subset N of a space X is a neighborhood of infinity if X �N is compact. By a
standard argument, when X is an ANR and C � X is compact, X �C contains at
most finitely many unbounded components, ie components with noncompact closures.
If X �C has both bounded and unbounded components, the situation can be simplified
by letting C 0 consist of C together with all bounded components. Then C 0 is compact,
and X �C 0 has only unbounded components. A neighborhood of infinity is called
efficient if all of its components are unbounded.

Let X D N0 � N1 � N2 � � � � be a nested cofinal
�
ie
T1

iD0 Ni D ¿
�

sequence
of efficient neighborhoods of infinity in X. For each i , let fNi;j g

ki

jD1
be the set

of components of Ni . Then each sequence " D .N0;j0
;N1;j1

;N2;j2
; : : : / with the

property that N0;j0
�N1;j1

�N2;j2
� � � � determines a distinct end of X. By a slight

abuse of notation, we denote the set of all such sequences by Ends.X /.5 Clearly, X

5Since our definition depends upon the choice of fNig , a more precise notation might be EndsfNi g
.X / .

A slightly more technical definition can be used to define Ends.X / without regards to a specific cofinal
sequence. Since the two approaches are easily seen to be equivalent, we have opted for the simpler
approach.
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is 1–ended, ie jEnds.X /j D 1, if and only if each Ni is connected. Similarly, X is
k –ended (k <1) if and only if the number of components of Ni stabilizes at k for
large i .

An end " D .N0;j0
;N1;j1

;N2;j2
; : : : / of X will be called �1 –null (in X ) if, for

sufficiently large t , inclusion induces the trivial homomorphism �1.N2;jt
/! �1.X /,

ie loops in N2;jt
contract in X.

Another method for defining ends uses proper rays. Declare proper r; r 0W Œ0;1/!X

to be “weakly equivalent” if r jN is properly homotopic to r 0jN , where N denotes the
natural numbers; and let E.X / denote the set of weak equivalence classes. There is a
natural bijection between E.X / and Ends.X / that associates, to an equivalence class
of proper rays, the nested sequence "D .N0;j0

;N1;j1
;N2;j2

; : : : / with the property
that, for each i , the image of a representative ray r eventually stays in Ni;ji

; in that
case, we say r converges to ".

Declare proper rays r; r 0W Œ0;1/!X to be “strongly equivalent” if they are properly
homotopic. The set of strong equivalence classes, SE.X /, is called the set of strong
ends of X. This set differs from E.X / in that rays representing the same end of X can
determine distinct strong ends.

Given a proper ray r W Œ0;1/!X, choose a sequence 0D x0 < x1 < x2 < � � � such
that r.Œxi ;1// � Ni for all i and let pi D r.xi/. From there, we may construct an
inverse sequence

(1-2) �1.N0;p0/
�1
 � �1.N1;p1/

�2
 � �1.N2;p2/

�3
 � � � � ;

where each �iC1W �1.NiC1;piC1/! �1.Ni ;pi/ is induced by inclusion followed by
the change of basepoint isomorphism determined by the path r jŒxi ;xiC1� . The pro-
isomorphism class of (1-2) is independent of the sequence fNig and the sequence fxig,
so we use the notation pro-�1.X; r/. For multiended X, the data in (1-2) concerns
only the components Ni;ji

of the Ni containing pi , so (1-2) is the same as

(1-3) �1.N0;j0
;p0/

�1
 � �1.N1;j1

;p1/
�2
 � �1.N2;j2

;p2/
�3
 � � � � :

We view the sequence (1-2) as a representative of the fundamental pro-group of the
end " with base ray r , sometimes, for emphasis, denoting it by pro-�1."; r/. Clearly
a base ray converging to a different end leads to entirely different information about X.

Even if r and r 0 converge to the same end ", pro-�1."; r/ and pro-�1."; r
0/ can fail

to be pro-isomorphic. It is, however, a standard fact that if r and r 0 are properly
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homotopic, pro-�1.X; r/ and pro-�1.X; r
0/ are pro-isomorphic. More about that

situation in a moment.

Given the above setup, let "D .N0;j0
;N1;j1

;N2;j2
; : : : /. We say that

(1) X is simply connected at " if pro-�1.X; r/ is pro-trivial for some proper ray r

converging to ",

(2) X is semistable (or pro-epimorphic) at " if pro-�1.X; r/ is pro-epimorphic for
some proper ray r converging to ", and

(3) X is pro-monomorphic at " if pro-�1.X; r/ is pro-monomorphic for some
proper ray r converging to ".

We say that X is simply connected at infinity if X is 1–ended and simply connected at
that end; X is semistable at infinity if X is 1–ended and semistable at that end; and
X is pro-monomorphic at infinity if X is 1–ended and pro-monomorphic at that end.

Although pro-�1."; r/ can depend upon r , the question of whether an end " [1–
ended space X ] is simply connected, semistable or pro-monomorphic at " [infinity] is
independent of the base ray converging to ". For simple-connectivity and semistability,
that is a consequence of the following important fact, whose proof can be found in
Chapter 16 of [2]. Likewise, but for different reasons (also found in [2]), the pro-
monomorphic property is independent of base ray.

Proposition 1.1 Let " D .N0;j0
;N1;j1

;N2;j2
; : : : / determine an end of a space X

and r W Œ0;1/!X be a proper ray converging to ". Then the following are equivalent :

(1) pro-�1.X; r/ is semistable.

(2) All proper rays in X that converge to " are properly homotopic (and hence
pro-�1."; r/ is independent of r ).

A parallel theory of pro-H1.X IZ/ can be constructed in a manner similar to the above.
Since basepoints and connectivity are no longer issues, pro-H1.X IZ/ is represented
by

(1-4) H1.N0IZ/
i1�
 �H1.N1IZ/

i2�
 �H1.N2IZ/

i3�
 � � � � ;

where all maps are induced by inclusion. In the 1–ended case, (1-4) is just the
abelianization of (1-2), but, in general, pro-H1.X IZ/ contains information about all
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ends of X. To focus on a single end " D .N0;j0
;N1;j1

;N2;j2
; : : : /, we can define

pro-H1."IZ/ and represent it by the sequence

(1-5) H1.N0;j0
IZ/

i1�
 �H1.N1;j1

IZ/
i2�
 �H1.N2;j2

IZ/
i3�
 � � � � :

In analogy with items (1)–(3) above, 1–acyclic at ", H1 –semistable at " and H1 –pro-
monomorphic at " can be formulated in the obvious ways.

Remark 1.2 Although we have focused on the k D 1 case, the same approach leads
to definitions of pro-�k.X; r/ and pro-Hk.X IZ/ for all k � 0. The k D 0 cases
provide more ways to “count” the ends of X.

1.4 Proper homotopy equivalences and proper n–equivalences

A map f W X ! Y is proper if f �1.C / is compact for all compact C � Y . Maps
f0; f1W X ! Y are properly homotopic is there is a proper map H W X � Œ0; 1�! Y ,
with H0 D f0 and H1 D f1 ; in that case, we call H a proper homotopy between f0

and f1 and write f0 'p f1 . Call f W X ! Y is a proper homotopy equivalence if
there exists a proper map gW Y !X such that gf 'p idX and fg'p Y . In that case
we say X and Y are proper homotopy equivalent and write X 'p Y .

For our purposes, the key observation is that proper homotopy equivalences preserve end
invariants. In particular, a proper homotopy equivalence f W X ! Y induces a bijection
between Ends.X / and Ends.Y /; and if f is a proper homotopy equivalence and r is
a proper ray in X, then pro-�k.Y; f ı r/ and pro-Hk.Y IZ/ are pro-isomorphic to
pro-�k.X; r/ and pro-Hk.X IZ/, respectively, for all k .

The notion of proper homotopy equivalence often allows us to swap a generic locally
compact ANR for a locally finite polyhedron. The key tool is the following theorem of
West:

Theorem 1.3 [16] Every compact ANR X is homotopy equivalent to a finite poly-
hedron; every locally compact ANR is proper homotopy equivalent to a locally finite
polyhedron.

If one is primarily interested in low-dimensional invariants, requiring a [proper] homo-
topy equivalence is excessive. For n> 0, a map between CW complexes f W X ! Y

is an n–equivalence if there is a map gW Y .n/!X such that gf jX .n�1/ is homotopic
to X .n�1/ ,!X and fg is homotopic to Y .n�1/ ,! Y . If X and Y are locally finite
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(or, more generally, of locally finite type) and each map and each homotopy is proper,
we call f a proper n–equivalence. Given these conditions, g is called a [proper]
n–inverse for f .6

Example 1.4 Every inclusion X .n/ ,!X is a proper n–equivalence.

Of key importance to this paper is the following fact, which is well known to experts:

Proposition 1.5 A map f W .X;x/! .Y;y/ between pointed CW complexes is an
n–equivalence if and only if f#W �k.X;x/ ! �k.Y;y/ is an isomorphism for all
k � n� 1. If X and Y are strongly locally finite and f is proper, then f is a proper
n–equivalence if and only if f is an n–equivalence which induces a pro-isomorphism
between pro-�k.X; r/ and pro-�k.Y; f ı r/ for each proper ray r and all k � n� 1.

Proof For the absolute (nonproper) assertion, the forward implication is straight-
forward, while the reverse implication follows from a small variation on the standard
proof of the Whitehead theorem. The proper assertion follows from the natural adapta-
tion of those proofs to the proper category. See [2, Chapter 16] for the forward impli-
cation and [2, Propositions 4.1.4 and 17.1.1] for the converse. Finite-dimensionality is
not an issue here since our maps need only be defined on n–skeleta.

Remark 1.6 The converse of the proper version of Proposition 1.5 can be strengthened
as follows: f is a proper n–equivalence if f is an n–equivalence and there exists a
representative r from each element of E.X / for which f induces pro-isomorphisms
between pro-�k.X; r/ and pro-�k.Y; f ı r/ for all k � n� 1.

In a similar vein we have:

Proposition 1.7 If f W X ! Y is an n–equivalence between CW complexes then
f�W Hk.X IZ/! Hk.Y IZ/ is an isomorphism for all k � n� 1. If f is a proper
n–equivalence then, in addition, f induces pro-isomorphisms between pro-Hk.X IZ/

and pro-Hk.Y IZ/ for all k � n� 1.

By combining Proposition 1.5 with Theorem 1.3 we can extend the notion of [proper]
n–equivalence to locally compact ANRs: A map f W .X;x/! .Y;y/ between pointed
locally compact ANRs is an n–equivalence if f#W �k.X;x/! �k.Y;y/ is an iso-

6We have relaxed the definitions from [2], which required that [proper] n–inverses be defined on all
of Y . With that change, the reverse implications in Proposition 1.5 become true as well.
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morphism for all k � n � 1. If f is proper, then f is a proper n–equivalence if
f is an n–equivalence which induces pro-isomorphisms between pro-�k.X; r/ and
pro-�k.Y; f ı r/ for each proper ray r and all k � n� 1.

Another well-known theorem (see for example [2, Section 10.1]) plays a useful role in
this paper. Combined with Theorem 1.3 it allows us to trade ANRs for locally finite
polyhedra in most of our proofs.

Proposition 1.8 Let f W .X;x/! .Y;y/ be a map between locally compact ANRs
inducing an isomorphism on fundamental groups and zf W zX! zY a lift to their universal
covers. If f is a [proper] homotopy equivalence then so is zf ; similarly, if f is a
[proper] n–equivalence then so is zf .

Corollary 1.9 Suppose J acts as covering transformations on a locally compact
ANR X. Then there is a J –equivariant proper homotopy equivalence gW X!Y , where
Y is a locally finite polyhedron on which J acts by simplicial covering transformations.

A fundamental application of Propositions 1.5 and 1.8 is the following:

Example 1.10 Let X and Y be finite 2–complexes with �1.X / Š G Š �1.Y /.
Then there exists a 2–equivalence f W .X;x/! .Y;y/. Since f is (trivially) proper,
zf W zX ! zY is a proper 2–equivalence; so the 0– and 1–dimensional end invariants,

such as the number of ends and pro-H1 , can be attributed directly to G. Modulo issues
related to base rays, the same is true for pro-�1 .

2 Coaxial and strongly coaxial homeomorphisms

We now take a closer look at the fundamental objects of study in this paper — coaxial
and strongly coaxial homeomorphisms.

Definition 2.1 Let j W Y ! Y be a homeomorphism of a simply connected, locally
compact ANR that generates a Z–action by covering transformations, and let J D

hj i Š Z. Then

(1) j is coaxial if, for every compact set C � Y , there is a larger compact D � Y

such that loops in Y �J �D contract in Y �C, and

(2) j is strongly coaxial if, for every compact set C � Y , there is a larger compact
D � Y such that loops in Y �J �D contract in Y �J �C.

Under these circumstances, call .Y; j / a [strongly] coaxial pair.
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Example 2.2 If Y (as described above) is simply connected at infinity, then every
such j is coaxial.

Example 2.3 Let T be a locally finite tree, Y DT �R and j W Y ! Y be translation
by 1 in the R–direction. Then j is strongly coaxial. Indeed, for any compact C, we
may choose D � C to be of the form K � Œ�n; n�, where K is a finite subtree. Then
J �D DK �R and each component of Y � .K �R/ is of the form N �R, where N

is contractible. Every loop in Y � .K �R/ lies in one of these components, where it
contracts missing J �C.

Example 2.4 Let Y DR3 and j W Y ! Y be translation by 1 along the z–axis. Then
j is coaxial but not strongly coaxial.

Example 2.5 The previous two examples are easily generalized. If W is a simply
connected, locally compact ANR, Y DW �R and j W Y ! Y is translation by 1 in
the R–direction, then j is coaxial; j is strongly coaxial if and only if W is simply
connected at each of its ends.

Example 2.6 Let the free group F2 D ha; b j i act in the usual way on its Cayley
graph T4 (the tree of constant valence 4) and let G D F2 �Z act on T4 �R via the
diagonal action. By Example 2.3, the generator of Z is coaxial. But, as a homeomor-
phism of T4 �R, a is not. To see this, let C D e � f0g, where e � T4 is the edge
connecting 1 to a. Then

hai �C D .a–axis/� f0g � T4 �R

and, no matter how large we make the compact set D, there will be loops near infinity
in the plane .b–axis/�R lying outside hai �D which do not contract missing C, since
C contains the origin of that plane.

Example 2.7 Let BS.m; n/ be the Baumslag–Solitar group ha; t j tamt�1Dani. If K

is the corresponding presentation 2–complex, then zK�TmCn�R. Viewing BS.m; n/
as the set of covering transformations of zK and employing arguments like those used
in Examples 2.3 and 2.6, one sees that a is strongly coaxial, while t fails to be coaxial.
(A detailed discussion of these spaces, groups and actions can be found in [7].)

Proposition 2.8 Let j W Y ! Y be a nonperiodic homeomorphism and k a nonzero
integer , then j is [strongly] coaxial if and only if j k is [strongly] coaxial.
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Proof If J D hj i and J 0D hj ki, notice that for any C � Y , we have J �C D J 0 �C 0 ,
where C 0D

Sjkj�1
iD0

j i.C /. From there it is easy to see that j generates a Z–action by
covering transformations if and only if j k does and that J satisfies (1) of Definition 2.1
(resp. (2) of Definition 2.1) if and only if J 0 does.

A lemma of Wright motivated our definition of coaxial and provides a vast collection
of examples and applications.

Proposition 2.9 [17] Let Y be a locally compact simply connected ANR and
j W Y ! Y generate a Z–action by covering transformations on Y . If Y is pro-
monomorphic at infinity, then j is coaxial.

Remark 2.10 When Y is a strongly locally finite CW complex, it is clear that a
cellular homeomorphism j W Y ! Y is [strongly] coaxial if and only if its restriction
to the 2–skeleton is [strongly] coaxial.

Lemma 2.11 Suppose locally compact ANRs X and Y admit Z–actions generated by
homeomorphisms j and j 0 , respectively , and f W X!Y is an equivariant (fj D j 0f )
proper homotopy equivalence. If .X; j / is a [strongly] coaxial pair , then so is .Y; j 0/.
In fact , the same conclusions hold if we assume only that f is a proper 2–equivalence.

Proof First we will prove the initial assertion for coaxial homeomorphisms; the analog
for strongly coaxial f is similar. Afterwards we generalize to proper 2–equivalences.

Let H W Y �Œ0; 1�!Y be an equivariant proper homotopy with H0D idY and H1Dfg ,
where gW Y ! X is an equivariant proper homotopy inverse for f . For an arbitrary
compact C � Y , choose compact C 0 � C such that H..Y �C 0/� Œ0; 1�/ � Y �C.
By hypothesis, there exists a compact Z � f �1.C 0/ such that loops in X � J �Z

contract missing f �1.C 0/. Let D D g�1.Z/ and note that J 0 �D D g�1.J �Z/. If
˛ is a loop in Y � J 0 �D then g.˛/ is a loop in X � J �Z , so there is a singular
disk ı � X � f �1.C 0/ bounding g.˛/; hence, f .ı/ is a singular disk in Y � C 0

bounding fg.˛/. By the choice of C 0 , there is a singular annulus in Y �C cobounded
by ˛ and fg.˛/. The union of that annulus with f .ı/ contracts ˛ in Y �C.

When f is only assumed to be a proper 2–equivalence, use the initial assertion together
with Corollary 1.9 to switch to the case where X and Y are locally finite polyhedra.
In that setting the line of reasoning used above can be applied within the 2–skeleta
of X and Y to obtain the desired conclusions.
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The next proposition tells us that, in the appropriate context, being [strongly] coaxial is
a group-theoretic property.

Proposition 2.12 If a group G acts cocompactly as covering transformations on
simply connected ANRs X and Y , and there exists g 2 G such that .X;g/ is a
[strongly] coaxial pair , then .Y;g/ is a [strongly] coaxial pair.

Proof Since GnX is a compact ANR, by Theorem 1.3 there exists a homotopy
equivalence �W GnX ! K, where K is a finite CW complex; moreover, � lifts to
a G–equivariant proper homotopy equivalence z�W X ! zK. Similarly, there exists
a homotopy equivalence �W GnY ! L, where L is a finite CW complex, and a
corresponding G –equivariant proper homotopy equivalence z�W Y ! zL.

If .X;g/ is a [strongly] coaxial pair, then, by Lemma 2.11, so is . zK;g/ and, hence,
. zK.2/;g/. Choose a map f W K.2/ ! L.2/ inducing the identity isomorphism on
fundamental groups. Then f is a 2–equivalence, which lifts to a proper G –equivariant
2–equivalence zf W zK.2/! zL.2/ . Apply Lemma 2.11 again to complete the proof.

In light of Proposition 2.12, define an element g of a finitely presentable group G to be
[strongly] coaxial if for some (hence, for all) cocompact G –action by covering trans-
formations on a simply connected ANR Y , g is a [strongly] coaxial homeomorphism.

Proposition 2.13 For finitely presentable G, every nontorsion element of the center
Z.G/EG is coaxial.

Proof Let K be a finite presentation 2–complex and G act on its universal cover X

in the usual way. View elements of G as covering transformations and note that the
action is proper and cocompact. Let j 2 Z.G/, J D hj i C G and C � X a finite
subcomplex with G �C DX.

For each g 2G and F �X, let xg denote the coset gJ D Jg and note that

(i) xg �F D g.J �F /D J � .gF /,

(ii)
S
xg2G=J

xgC DX, and

(iii) J �C \ xg �F ¤¿ if and only if C \ hF ¤¿ for some h 2 xg .

Algebraic & Geometric Topology, Volume 20 (2020)



Topological properties of spaces admitting a coaxial homeomorphism 615

By a small variation on the argument presented in [5, Corollary 1.5],7 the inclusion
X .1/ ,! X is G–equivariantly homotopic to j jX .1/ W X .1/ ! X. Let � be such a
homotopy. Since C is a finite subcomplex, there a finite subcomplex E �X for which
�.C .1/ � Œ0; 1�/�E, ie E contains every track of the homotopy that begins in C .1/ .
By G –equivariance,

(iv) J �E contains �.J �C .1/ � Œ0; 1�/.

By properness of the action, there is a finite set A�G such that C \˛E ¤¿ if and
only if ˛ 2A. So, by observation (iii), the only cosets xg for which J �C \xg �E¤¿ are
those with a representative in A. Let DD

S
˛2A ˛C and note that J �DD

S
˛2A x̨C.

Then, by item (iii) and the definitions of D and E,

(v) if xgC contains a point of X �J �D, then xgE �X �J �C.

Claim D satisfies the definition of coaxial for the compactum C.

Let ˛ be a loop in X � J �D. By a small push, we may assume ˛ � X .1/ . (In
fact, we should choose ˛ outside a slightly larger J �D0 so that, after this push, ˛
misses the current J �D.) Since X is simply connected, ˛ bounds a singular disk �
in X ; and by properness, there exists k > 0 such that j k� misses C. Hence j k˛

contracts missing C. We will complete the proof by homotoping ˛ to j k˛ in X �J �C.
That homotopy followed by the contraction of j k˛ along j k� then gives the desired
contraction of ˛ in X �C.

By item (ii), each point x on the curve ˛ lies in some xgxC and since x 2X �J �D,
item (v) assures that xgxE�X�J �C. By item (iv) and G –equivariance of � , the entire
track of x under � lies in xgxE and hence misses J �C. So applying � to ˛ produces
a homotopy of ˛ to j˛ in X � J � C. By equivariance, the loop j˛ again lies in
X �J �D, so we may repeat this procedure. Continuing inductively and concatenating,
we obtain a homotopy in X �J �C from ˛ to j k˛ .

Corollary 2.14 If G is finitely presentable and C E G is infinite cyclic, then each
nontrivial element of C is coaxial.

7It is well known that when K is a finite K.G; 1/ complex and ! is a nontrivial element of the center
of G, then the corresponding covering transformation f! on the universal cover is properly homotopic to
the identity map. We are using here the fact that, even if K is merely a finite connected 2–complex, the
same holds on the 1–skeleton.
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Proof Let S be the subgroup of G generated by the set of all squares. Since the
conjugate of a square is a square, S is normal. Furthermore, since every element
of G=S has order 2, if xg and xh are cosets of S, then

xgxhxg�1xh�1
D xgxhxgxhD ghghD 1:

It follows that G=S is a finite abelian group; so S has finite index in G.

Let C D hti E G as in the hypothesis. Then each element of G conjugates t to
t or t�1 ; so each element of S conjugates t to itself. It follows that t2 2 Z.S/,
and since S acts cocompactly as covering transformations on the same space as G,
Proposition 2.13 implies that t2 is coaxial. By Proposition 2.8, all elements of C are
coaxial.

We close this section by returning to the standard situation where J D hj i is infinite
cyclic and pW Y ! JnY is the corresponding covering projection. For A� JnY , let
zAD p�1.A/. The following easy observations will be useful as we proceed:

Lemma 2.15 Given the setup of Definition 2.1,

(1) if C � Y and AD p.C /, then zAD J �C, and

(2) if A� JnY is compact, then there is a compact C � Y such that zAD J �C.

(3) j is strongly coaxial if and only if, for every compact A� JnY , there is a larger
compact B � JnY such that loops in .JnY /�B that lift to loops in Y contract
in .JnY /�A.

3 Model spaces

The main theorems of this paper will be proved by comparing spaces of interest —
simply connected, locally compact ANRs admitting Z–actions by covering transforma-
tions — to custom-made representatives of a class of easily understood “model spaces”.
In this section, we construct and analyze the model spaces.

Each model evolves in three stages. First there is a “model tree”, which is rooted
and locally finite with no leaves, and comes equipped with a labeling of the edges by
nonnegative integers (subject to certain rules). Each model tree contains instructions
for the second stage, a “model base space” which has infinite cyclic fundamental group.
The third stage, the “model Z–space”, is the universal cover of the second stage. We
now provide details.
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v0;1

v1;1

v2;1

v1;2

v1;3

v2;5

2

3

2

2

1

4

3

Figure 1: Example of a model tree � .

3.1 Model trees

A model tree is a pair .�;K/ where � is a locally finite leafless tree with root vertex v0;1

and KW Edges.�/! f0; 1; 2; : : : g is a labeling function satisfying:

(i) If a reduced edge path in � , beginning at v0;1 , contains an edge with label 0,
then each subsequent edge also has label 0.

Edges labeled 0 are called null edges. Condition (i) ensures that the subgraph �C

consisting of v0;1 and all nonnull edges and their vertices is a rooted subtree �C � � ;
call it the positive subtree. In our diagrams, edges of �C are indicated with solid lines
and null edges with dashed lines. See Figure 1.

Orient the edges of � toward v0;1 and give � the path-length metric, with all edges
assigned length 1. We adopt the following convention for denoting vertices, edges and
labels:

(ii) A symbol vi;j indicates a vertex at a distance i from the root; vertices with
initial index i will be called the tier i vertices.

(iii) For each vi;j with i > 0, ei;j denotes the unique oriented edge emanating
from vi;j and ki;j D K.ei;j /.

The null edges of � , together with their vertices, constitute a (possibly empty) subgraph
� of � where each component contains a unique vertex vi;j closest to v0;1 in � . In this
way, � may be viewed as a rooted forest (a disjoint union of rooted subtrees) f�i;j g,
where an index “i; j ” indicates that vi;j is its root. Of course, not every vertex of � is
the root of a null subtree.
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S1
0;1

�2

�3

S1
1;2

S1
1;3

�2

�2

�1

�4

�3

Figure 2: Model base space X� corresponding to Figure 1.

Two families of finite subtrees of � also play a useful role: for each integer i � 0, let
�i denote the i –neighborhood of v0;1 in � and �Ci D �i \�

C .

Remark 3.1 The above definitions allow for the possibility � D fv0;1g; but, except
for that trivial case, � must be infinite. In fact, every edge of � is contained in some
infinite edge path ray.

3.2 Model base spaces

Next we describe the model base space X� corresponding to a model graph � ; it will
contain � as a subcomplex.

(iv) Attach an oriented edge e0
0;1

to � by identifying each end to v0;1 ; in a similar
manner, attach an oriented edge e0i;j at each vi;j for which ki;j ¤ 0. This
completes the 1–skeleton of X� . For later use, let S1

i;j denote the oriented
circle in X

.1/
�

that is the image of e0i;j ; it has natural basepoint vi;j .

(v) For each ei;j with ki;j ¤ 0, attach a 2–cell di;j to X
.1/
�

as follows: beginning
with Œ0; 1�� Œ0; 1�, identify the top and bottom faces with ei;j , send the right face
once around e0i;j , and the left face ki;j times around e0

i�1;j 0
, where vi�1;j 0 is

the terminal end of ei;j . Notice that di;j is the mapping cylinder of a canonical
degree ki;j map of S1

i;j onto S1
i�1;j 0

. This completes the construction of X� .
See Figure 2. Denote by X�C the subcomplex made up of �C together with
all e0i;j and all di;j ; call X�C the positive subcomplex of X� . For each i � 0,
let X�i

be the subcomplex of X� made up of �i and all e0i;j and di;j attached
to �i . Define X

�
C

i

similarly.
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If we view the null edges of � as mapping cylinders with singleton domains, then
X� is made up entirely of mapping cylinders. In fact, if Wi is the union of all S1

i;j

and vi;j in the i th tier, and !i W Wi ! Wi�1 is the union of maps taking the S1
i;j

onto the corresponding S1
i�1;j 0

and vi;j to the corresponding vi�1;j 0 , then X� is the
inverse mapping telescope of the sequence

S1
0;1 DW0

!1
 �W1

!2
 �W2

!3
 � � � � :

The natural deformation retraction of X� onto S1
0;1

, which slides points along mapping
telescope rays toward S1

0;1
, ends in a retraction �W X�!S1

0;1
. See [6] for a discussion

of inverse mapping telescopes.

For the next stage of our construction, it will be useful to have a thorough understanding
of the point preimage ��1.v0;1/, which consists of all mapping telescope rays, both
infinite and finite, emanating from v0;1 . (Finite mapping cylinder “rays” occur when
an edge ei;j has label ki;j > 1 but all edges of � with terminus vi;j are null.) By
subdividing these rays in the obvious manner, with edges corresponding to the inter-
sections with individual mapping cylinders and vertices corresponding to intersections
with the Wi , ��1.v0;1/ becomes a tree ƒ with root vertex v0;1 . This tree contains � ,
but potentially much more. That is because each di;j , viewed as a mapping cylinder,
contains ki;j distinct cylinder lines ending at base vertex vi�1;j 0 . Only one of those
lines is an edge from � , but all are edges in ƒ.

We now describe ƒ as the union of inductively defined subtrees ƒ1 �ƒ2 � � � � .

Step 1 Beginning with �1 as a building block, expand it to ƒ1 as follows. Replace
each e1;j with label k1;j ¤ 0 with a wedge of k1;j inwardly oriented edges having
common terminus v0;1 ; color one edge from each such wedge black and the others gray.
View the black edge as the “original” e1;j and its initial vertex as the original v1;j ;
view the gray edges and their initial vertices as Step 1 “clones”. In addition, all null
edges of �1 are kept as edges of ƒ1 . As before, they are indicated by a black dashed
segment; the null edges do not get cloned. Call this finite tree, made up of all black,
gray and dashed edges and their vertices, ƒ1 . The black and dashed edges form a copy
of �1 in ƒ1 . The subtree ƒC

1
, made up of black and gray edges and their vertices,

intersects �1 in �C
1

. See Figure 3.

Step 2 To construct ƒ2 , attach additional edges and vertices to ƒ1 as follows. At
the initial vertex v1;j of each edge of �C

1
�ƒ (the black edges), attach a wedge of

k2;j 0 edges for each nonnull e2;j 0 in �2 terminating at v1;j ; color one edge from each
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Figure 3: ��1.v0;1/ for the model base space in Figure 2.

wedge black and the others gray. View the black edge as the original e2;j 0 and its
initial vertex as v2;j 0 ; the gray edges are Step 2 clones. In addition, at each clone of
each v1;j (the gray edges of ƒ1 ), place a “wedge of wedges” identical to the one just
attached at v1;j , except that all of these edges are colored gray — they are also Step 2
clones. Finally, at the initial vertex v1;j of only the black and dashed edges of ƒ1 add
an incoming dashed edge e2;j 0 for each null e2;j 0 in �2 terminating at v1;j . (As in
Step 1, dashed edges do not get cloned.) Call the resulting finite graph ƒ2 . The black
and dashed edges and their vertices form a copy of �2 in ƒ2 ; meanwhile the black
and gray edges form a subtree ƒC

2
which intersects �2 in �C

2
. Again see Figure 3.

Inductive steps Continue the above process inductively outward to construct finite
(colored trees) ƒ1 �ƒ2 �ƒ3 � � � � whose union is the tree ƒD ��1.v0;1/, rooted
at v0;1 and containing � as a rooted subtree (the black and dashed edges). The subtree
consisting of all black and gray edges is denoted by ƒC ; it intersects � in �C .

Remark 3.2 Experts will notice a similarity between the above construction and a
fundamental construction in Bass–Serre theory. At the conclusion of this section, we
will make a concrete connection between the two.

3.3 Model Z–spaces

We now look to understand model Z–spaces zX� , which are the universal covers of
the X� .

Let qW zX� !X� and r W R! S1
0;1

be universal covering projections, where S1
0;1

is
viewed as the quotient of Z acting on R by unit translations. The lift z�W zX� !R of
�W X ! S1

0;1
will play a useful role as a “height function”. For example, in the case
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where X�C �X� is just S1
0;1

, zX� consists of a real line zS1
0;1

taken homeomorphically
onto R by z� , together with a copy of ƒ (in this case the same as � ) attached at each
integer height. The general case is similar, in that zX� is made up of zX�C along with
trees attached at integer heights; but now both zX�C and the attachment pattern for the
trees are more complicated. Since X�C is built entirely from cylinders of nontrivial
maps between circles, we can begin to understand zX�C by looking at the universal
cover of a single mapping cylinder.

The universal cover of the mapping cylinder Mk of a degree k map S1 �k
 � S1

can be realized as �Mk D ƒ.k/�R, where ƒ.k/ is a wedge of arcs with common
endpoint a0 and distinct initial points a1; : : : ; ak . Under the covering projection, the
preimage of the range circle is the line fa0g�R and the preimage of the domain circle
is fa1; : : : ; akg�R, one copy of R for each coset of kZ in Z. The group of covering
transformations is generated by the map �k � t , where �k W ƒ.k/!ƒ.k/ fixes a0 and
permutes the edges cyclically, and t.r/D r C 1.

Working inductively outward from S1
0;1

, and replicating the above construction again
and again, one sees that the subcomplex zX�C may be identified with the product
ƒC�R, with the group of covering transformations being generated by a product map
�1 � t , where �1W ƒC!ƒC is a homeomorphism that fixes v0;1 and is determined
by how it permutes the ends of ƒC , and t.r/D r C 1.

Remark 3.3 The homeomorphism �1W ƒ
C ! ƒC can be built inductively from

the various �k described above. A more algebraic description can be obtained from
Bass–Serre theory, where ƒC is viewed as the Bass–Serre tree corresponding to a
graph of groups interpretation of �C and �1 is the generator of the corresponding
action. See Section 4.

In situations where X� D X�C (an important special case), the above provides a
complete description of zX� as ƒC �R with covering transformations generated by
�1 � t . In general, we must account for the portions of zX� lying over X� �X�C .
With respect to the height function, those portions lie entirely at integer levels, where
z��1.n/ is a copy of ƒ intersecting ƒC �R in ƒC � fng. At nD 0, a copy of ƒ is
glued to ƒC�R by identifying the subgraph ƒC with ƒC�f0g. For general height n,
a copy of ƒ is attached along ƒC � fng by identifying x 2ƒC with .�n

1.x/; n/.

To obtain a generator of the group of covering transformations on zX� , we must extend
�1 � t over the copies of ƒ at the integral levels. Abusing notation slightly, zX� is
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the quotient of the disjoint union .ƒC �R/ t .ƒ�Z/, where .x; n/ in the second
summand is identified not with .x; n/ in the first, but rather with .�n

1.x/; n/ in the
first summand. The generator of the covering transformations is obtained by gluing the
maps �1 � t W ƒC �R!ƒC �R and id� t W ƒ�Z!ƒ�Z.

For easy reference, we assemble the key properties of zX� in a single proposition:

Proposition 3.4 Let � be a model tree, X� its model space and qW zX� ! X� the
universal covering projection. Then zX� is a contractible 2–complex with 1, 2 or
infinitely many ends. More specifically , the pair �C �� (together with their labelings)
determine a pair of trees ƒC �ƒ, also rooted at v0;1 , with �C �ƒC and � �ƒ such
that :

(1) zX� is 2–ended if and only if � D �C D fv0;1g (a single vertex). In that case,
ƒ D ƒC D fv0;1g and zX� � R, with the group of covering transformations
generated by t.r/D r C 1.

(2) zX� is 1–ended if and only if � D �C and the two are nontrivial (hence
infinite). In that case, ƒ D ƒC and zX� � ƒC �R, with the corresponding
group of covering transformations generated by a product of homeomorphisms
�1 � t W ƒC �R!ƒC �R, where �1 fixes the root of ƒC and t.r/D r C 1.

(3) zX� is infinite-ended if and only if �C Œ � . In that case, � D � ��C is a
nonempty forest f�i;j g of infinite rooted trees, and zX� is homeomorphic to
ƒC�R together with a Z–equivariant family fn�i;j gn2Z of copies of each �i;j

attached to ƒC �R at their roots. More specifically , a generator of the covering
transformations on zX� restricts to ƒC �R as a product of homeomorphisms
�1�t W ƒC�R!ƒC�R, as described above , and n�i;j is attached to ƒC�R

by identifying its root to .�n
1.vi;j /; n/. The map �1 � t extends to zX� in the

obvious way.

Remark 3.5 Case (3) of Proposition 3.4 can be split into subcases resembling the 2–
and 1–ended situations, respectively.

Subcase (a) When �C is finite, so is ƒC , so a collapse of ƒC onto its root vertex
induces an equivariant proper homotopy equivalence f W �C �R! R. If, at each
integer n, we attach to R copies of the trees n�i;j �

zX� , then f extends to an
equivariant proper homotopy equivalence between zX� and the resulting locally finite
graph comprised of R with trees attached at the integers.
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Subcase (b) When �C is infinite, there is no obvious simplification of zX� , but an
analogy with the 1–ended case remains. In particular, zX� contains a large equivariant
subcomplex identical to the 1–ended case, with the remainder of zX� consisting of a
discrete collection of trees.

Under either of the two subcases, zX� has countably many ends, unless f�i;j g contains
a tree with uncountably many ends.

The usefulness of the model spaces X� and zX� lies in the simplicity of their topology at
infinity. Of particular interest here is their homotopy and homology data in dimensions
0 and 1.

Proposition 3.6 Let � be a model tree and X� the corresponding model space. Then
the inclusion map � ,! X� is a proper 1–equivalence, thereby inducing a bijection
between ends. If r is an edge path ray in � beginning at v0;1 , then pro-�1.X� ; r/ can
be represented by the inverse sequence

Z
�k1;j1
 ��� Z

�k2;j2
 ��� Z

�k2;j3
 ��� � � � ;

where the ki;ji
are the labels on the edges that comprise r .

Of greater interest is the end behavior of the model Z–spaces.

Proposition 3.7 Let � be a model tree, X� and zX� the corresponding model Z–
space. As noted in Proposition 3.4, zX� is 1–, 2– or infinite-ended. Moreover:

(1) If zX� is 2–ended , both ends are simply connected and the Z–action fixes those
ends.

(2) If zX� is 1–ended , that end is semistable and pro-�1. zX� ; r/ can be represented
by an inverse sequence of surjections between finitely generated free groups

F1� F2� F3� � � �

and pro-H1. zX� IZ/ can be represented by an inverse sequence of surjections
between finitely generated free abelian groups

Zn1� Zn2� Zn3� � � � :

(3) If zX� is infinite-ended , the Z–action fixes precisely one or two ends with the
others having trivial stabilizers. All nonfixed ends are simply connected. If
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two ends are fixed , those ends are simply connected as well. If just one end is
fixed , that end is semistable with pro-�1. zX� ; r/ representable by an inverse
sequence like the one described in assertion (2). Similarly, pro-H1. zX� IZ/ is
representable by a sequence like the one found in assertion (2), with all nontrivial
contributions coming from the fixed end.

Proof The only assertions not immediate from Proposition 3.4 are the representations
of pro-�1. zX� ; r/ and pro-H1. zX� IZ/. Let us first address the 1–ended case, where,
by Proposition 3.4, zX� may be identified with ƒC�R, with ƒC an infinite leafless tree
rooted at v0;1 . Let r D v0;1 � Œ0;1/ be the base ray, and N1 �N2 � � � � the cofinal
sequence of neighborhoods of infinity, where Ni D ƒ

C �R� Œ VƒCi � .�i; i/�. Here
VƒCi is the open i –ball in ƒi centered at v0;1 . It is easy to see that Ni deformation
retracts onto its frontier in ƒC �R,

FrƒC�R Ni Dƒ
C
i � f�i; ig[ .FrƒC ƒ

C
i � Œ�i; i �/;

where FrƒC ƒ
C
i is the set of vertices in ƒC at a distance i from v0;1 . By squeezing

ƒCi � f�ig and ƒCi � fig to points, FrƒC�R Ni is seen to be homotopy equivalent
to the suspension of FrƒC ƒ

C
i , a space whose fundamental group is free of rank

jFrƒC ƒ
C
i j � 1; call that group Fi . To complete assertion (2), it remains to show

that bonding maps Fi  FiC1 are surjective. Since ƒC has no leaves, the collapse
of ƒC

iC1
onto ƒCi restricts to a surjection of FrƒC ƒ

C

iC1
onto FrƒC ƒ

C
i , which can be

suspended to get a map making the following diagram commute up to homotopy:

Ni Ni
? _oo

susp.FrƒC ƒ
C
i /

'

OO

susp.FrƒC ƒ
C

iC1
/

'

OO

siC1oo

Surjectivity of the induced maps on fundamental groups is now clear.

To obtain an equivalent representation of pro-�1. zX� ; r/ in the infinite-ended case
with a single fixed end, note that the fixed end can be represented by a sequence
M1 � M2 � � � � of components of neighborhoods of infinity where each Mi is
homeomorphic to an Ni from the previous case, with a countable collection of locally
finite trees attached at a discrete collection of points. Since Mi deformation retracts
onto Ni , the above calculations are still valid.

The proposed representations of pro-H1. zX� IZ/ follow easily.
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Remark 3.8 If desired, more detail on the representations of pro -�1. zX� ; r/ and
pro-H1. zX� IZ/ can be obtained; for example, formulas for the bonding maps and a
description of the induced Z–action on the inverse sequences can be deduced from the
above analysis.

3.4 Reductions of model spaces

We close this section by describing a “reduction” procedure that can be applied to a
model tree and passed along to its resulting model spaces. Beginning with a model tree �
and a pair of integers 0� i < j, the elementary Œi; j �–reduction is accomplished by
removing all edges in �j ��i , then putting in a single edge from each tier j vertex vj ;r
to the unique tier i vertex vi;s on the reduced edge path connecting vj ;r to the root
vertex v0;1 . The label on that new edge is the product of the labels on the edge path
in � connecting vj ;r to vi;s . If the new tree is denoted by � 0 then, topologically, � 0

is obtained from � by crushing each component of �j�1��i to a point.

The difference between X� and X� 0 is easy to discern. Remove from X� the interior
of X�j �X�i

; then, for each tier j circle S1
j ;r , replace the “path of mapping cylinders”

in X� from S1
j ;r to S1

i;s with a single mapping cylinder whose map is the composition
of the maps along that path. For a “naked” tier j vertex, simply insert a naked
edge connecting it to the corresponding tier i vertex. A standard fact about mapping
cylinders is that, for a composition A

f
�!B

g
�!C, the mapping cylinder Map.gf / of

the composition is homotopy equivalent rel A[C to the union Map.f /[B Map.g/
of mapping cylinders. Applying this fact repeatedly, one obtains a proper homotopy
equivalence, fixed outside the interior of X�j �X�i

, between X� and X� 0 .

A reduction of � is obtained by performing the above procedure over a, possibly
infinite, sequence of closed intervals fŒik ; jk �g with jk � ikC1 for all k . By applying
the above procedure repeatedly, and then lifting to universal covers, we obtain the
following useful fact:

Proposition 3.9 Let � 0 be a model tree obtained by reduction of a model tree � .
Then the model base spaces X� 0 and X� are proper homotopy equivalent and the
model Z–spaces zX� 0 and zX� are equivariantly proper homotopy equivalent.

Example 3.10 The proper homotopy equivalence discussed in subcase (a) of Remark
3.5 can now be viewed as the result of a reduction. Choose j so large that �C � �j

and perform the elementary Œi; j �–reduction.
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4 Connections to Bass–Serre theory

This section is a brief diversion. Bass–Serre theory is not needed for the purposes of
this paper, but for those with a previous understanding of that topic, the connection can
make some of our constructions easier to follow.

Beginning with a model tree � , create a graph of groups as follows: place a copy
of Z on each vertex and each edge of �C and a trivial group 0 on the vertices and
edges in � ��C ; then interpret the labels ki;j as multiplication homomorphisms. The
result is an elaborate graph of groups decomposition of Z, where the copy of Z at the
root vertex includes isomorphically into the fundamental group of the graph of groups.
(All homomorphisms on reversed edges are identities.) The model space X� is the
corresponding total space for � , as described in [14; 2, Chapter 6]. The subgraph �C

determines a simpler graph of groups decomposition of Z that is consistent with �
and has total space XC

�
� X� . The tree ƒC constructed above is the Bass–Serre

tree corresponding to �C and �1 is a generator of the corresponding action. See
[15, Chapter I, Section 4.5].

The Bass–Serre tree ƒ� for the full graph of groups � does not play a direct role here,
but it is lurking in the background. One may expand ƒ to ƒ� as follows: Viewing �
as a subset of ƒ, replace each subtree �i;j � � with a countably infinite wedge of
copies of �i;j , all joined at the root vertex vi;j of �i;j . Designate one copy as the
original �i;j and the rest as clones. Then, at each clone of vi;j in ƒ, attach another
infinite wedge of copies of �i;j , all viewed as clones. The need for countably infinite
collections is because the group at vi;j is Z while all incoming edge groups are trivial,
and thus have countably infinite index in the vertex group at vi;j .

5 Associating models to Z–actions

We return to the primary objects of interest — simply connected, locally compact ANRs
admitting Z–actions by covering transformations. Observations from Sections 1.4
and 2 allow us to focus on strongly locally finite CW complexes (or even locally finite
polyhedra) admitting such Z–actions. In this section, we prove the primary technical
results of this paper. At the conclusion, we will have obtained the following:

Theorem 5.1 For Y a simply connected , locally compact ANR , and j W Y ! Y a
homeomorphism generating an action by covering transformations with J � hj i Š Z,
there is a corresponding model tree � such that :
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(1) zX� is Z–equivariantly properly 1–equivalent to Y .

(2) If j is strongly coaxial , JnY is properly 2–equivalent to X� ; hence Y is
Z–equivariantly properly 2–equivalent to zX� .

(3) If j is coaxial , Y is properly 2–equivalent to zX� via proper 2–equivalences
that are Z–equivariant on 1–skeleta.

By our work in Sections 1.4 and 2, it is enough to consider the case where Y is a
simply connected, strongly locally finite CW complex, and j W Y ! Y is a cellular
homeomorphism generating an action by covering transformations with J � hj i Š Z.
Our first goal is to associate a model tree � to this action. Begin by choosing a nested
cofinal sequence JnY DN0�N1�N2� � � � of subcomplex neighborhoods of infinity
in JnY . By discarding compact components, we may assume that each of the (finitely
many) components fNi;j g

ri

jD1
of each Ni is unbounded.

Choose an oriented edge path loop ˛0;1 in N0 D JnY that generates H1.JnY /Š Z.
For each component Ni;j of each Ni consider the inclusion induced map H1.JnY /

i�
 �

H1.Ni;j /. (All homology is with Z–coefficients.) If the map is nontrivial, let ni;j be
the index of i�.H1.Ni;j // in H1.JnY /, and choose an oriented edge path loop ˛i;j

in Ni;j taken to ni;j˛0;1 by i� ; if it is trivial, let ni;j D 0 and let ˛i;j be a constant
edge path loop in Ni;j .

Remark 5.2 Use of homology rather than the fundamental group, in defining ni;j

and ˛i;j , allows us to avoid basepoint technicalities without loss of any essential
information.

Let K0 be a finite connected subcomplex of JnY that contains ˛0;1 , and for each
i > 0, let Ki be a finite connected subcomplex of JnY chosen sufficiently large that

(1) JnY �Ni �Ki ,

(2) for every pair of vertices in the frontier of a component Ni;j of Ni , Ki contains
an edge path in Ni;j connecting them, and

(3) Ki contains each loop in the collection f˛i;j g
ri

jD1
.

By passing to a subsequence and relabeling, we may assume that NiC1 � JnY �Ki

for all i . Let Li D Ni \Ki and Mi D Ni \KiC1 ; then Mi is a finite complex
containing disjoint subcomplexes Li and LiC1 , and Mi \MiC1 DLiC1 . For each
component Ni;j of Ni , let Li;j DNi;j\Li and Mi;j DNi;j\Mi . By connectedness

Algebraic & Geometric Topology, Volume 20 (2020)



628 Ross Geoghegan, Craig Guilbault and Michael Mihalik

K0DL0;1

L1;1

L1;2

L1;3

 �L2;1

 �L2;2

 �L2;3

 �L2;4

 �L2;5

Figure 4: Decomposition of JnY into subcomplexes.

of Ki and Ni;j , along with property (2), each Li;j and Mi;j is connected; moreover,
Mi;j contains a component LiC1;k of LiC1 if and only if Ni;j contains NiC1;k . See
Figure 4.

Let � be the rooted tree with a vertex vi;j for each Li;j and an edge between vi;p and
viC1;q whenever LiC1;q �Mi;p (equivalently NiC1;q �Ni;p ). The root vertex v0;1

corresponds to the single component L0;1 of L0 DK0 lying in N0;1 DN0 D JnY .
Since the Ni have no compact components, � has no valence 1 vertices.

Orient the edges of � in the direction of v0;1 and for each vi;j with i>0, let ei;j denote
the unique oriented edge emanating from vi;j . Label each ei;j with an integer ki;j

as follows. For the edges e1;j terminating at the root, let k1;j D n1;j . For i > 1,
ki;j D 0 if ni;j D 0; otherwise let ki;j D ni;j=ni�1;j 0 , where Ni�1;j 0 is the unique
component of Ni�1 containing Ni;j . Since the map H1.JnY /

i�
 �H1.Ni;j / used to

define ni;j factors through H1.Ni�1;j 0/, ki;j is an integer; moreover, for any vi;j the
integer ni;j can be recovered by multiplying the labels on the edge path connecting
vi;j to v0;1 . Note that � satisfies all conditions laid out in Section 3 for a model tree;
therefore, all definitions, notation and subsequent constructions from that section can
be carried forward.

The tree � is a good model for Ends.JnY /. Indeed, repeated application of the Tietze
extension theorem produces a proper 1–equivalence from JnY to � . Unfortunately,
that map is of limited use: first, it has no chance of providing information about higher-
dimensional end invariants; and second, it tells us nothing about the space Y , which
is our primary interest. To address those problems we construct a more delicate map
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f W JnY !X� which incorporates some higher-dimensional information and lifts to a
map zf W Y ! zX� .

Let r W X�!� be the retraction sending each circle S1
i;j onto vi;j , and, more generally,

squashes each mapping cylinder di;j onto ei;j in a level-preserving manner, with point
preimages being circles. Notice that r�1.�C/DX�C . For each i , let X�i

D r�1.�i/

and Qi D X� �X�i
. Then X�0

� X�1
� X�2

� � � � is a filtration of X� by finite
subcomplexes, and X� DQ0 �Q1 �Q2 � � � � is a cofinal sequence of subcomplex
neighborhoods of infinity. For each i , let Pi DQi \X�iC1

D r�1.�iC1��i/, a finite
subcomplex consisting of �iC1��i with mapping cylinders attached along the nonnull
edges.

By construction, there is a one-to-one correspondence between the sequences of neigh-
borhoods of infinity fNig and fQig such that the components fNi;j g of Ni are in
one-to-one correspondence with the components fQi;j g of Qi . Moreover, for each
component Mi;j of Mi which contains a connected subcomplex Li;j on its “left-hand
side” and a disjoint collection of similar subcomplexes fLiC1;j 0g on its “right-hand
side”, the corresponding component Pi;j of Pi has a left-hand side consisting of a
circle S1

i;j or vertex vi;j and a right-hand side made up of circles and vertices, labeled
S1

iC1;j 0
or viC1;j 0 (one for each subcomplex LiC1;j 0 in Mi;j ). If some right-hand

components of Pi;j are circles, the left-hand side must be a circle, and Pi;j is made up
of a union of mapping cylinders of degree kiC1;j 0 maps S1

i;j  S1
iC1;j 0

(one for each
right-hand circle) intersecting in a common range circle and “naked edges” connecting
the isolated vertices of the right-hand side to vi;j on the left-hand side. The map
f W JnY !X will be most easily understood from its restrictions fi;j W Mi;j ! Pi;j .
See Figure 5.

Choose a maximal tree Ti;j in each Li;j , then choose a maximal tree T
0

i;j in each Mi;j

containing both Ti;j and all TiC1;j 0 contained in Mi;j . Let T D
S

T
0

i;j . The tree-like
structure of the collection fMi;j g ensures that T is a maximal tree in JnY . Select a
base vertex pi;j from each Li;j , making sure that pi;j lies on the edge loop ˛i;j �Li;j

chosen previously. For each LiC1;j 0 on the right-hand side of an Mi;j , let �iC1;j 0 be
the unique edge path in T 0i;j from pi;j to piC1;j 0 .

Define f W T !X� by sending each Ti;j to vi;j and every vertex of a T 0i;j not lying
in one of those subtrees to vi;j . For each remaining edge e of T , choose the T 0i;j
containing it. If both ends of e have been sent to vi;j , send e to vi;j ; if one end has
been sent to vi;j and the other to a viC1;j 0 , map e homeomorphically onto eiC1;j 0 ; if
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Li;j

Mi;j

fi;j
S1

i;j

vi;j

S1
iC1;p

S1
iC1;q

v1
iC1;r

Pi;j

LiC1;p

LiC1;q

LiC1;r

Figure 5: A building block of f W JnY !X� .

one end lies in a TiC1;j 0 and the other in a different TiC1;j 00 , send the midpoint of e

to vi;j and the two halves of e onto eiC1;j 0 and ei;j 00 , respectively.

Next we extend f over the Li;j . Each Li;j will be mapped into the circle S1
i;j when

that circle exists, otherwise to the vertex vi;j . Begin with L0;1 DK0 , which contains
an oriented edge path loop ˛0;1 that generates H1.JnY /. Let �0;1W H1.JnY /!

�1.S
1
0;1
; v0;1/ be the isomorphism taking ˛0;1 to the positively oriented generator of

�1.S0;1; v0;1/, and consider the composition

�1.L0;1;p0;1/�H1.L0;1/�H1.JnY /
�0;1
��! �1.S

1
0;1; v0;1/.

Recalling that f has already been defined to send T0;1 to v0;1 , we extend over the
remaining edges of L0;1 . If e is one such edge then, by giving it an orientation, it may
be viewed as an element of �1.L0;1;p0;1/ and mapped into S1

0;1
in accordance with

its image under the above homomorphism. Having mapped the 1–skeleton of L0;1

into S1
0;1

in accordance with a �1 –homomorphism, we may extend to the 2–skeleton
of L0;1 ; then, by the asphericity of S1

0;1
, we may extend to all of L0;1 . See for

example [2, Section 7.1].

For general Li;j , if ni;j D 0, send all of Li;j to vi;j ; otherwise, the argument
used above is repeated to map Li;j into S1

i;j , except that the map is based on the
homomorphism

(5-1) �1.Li;j ;pi;j /�H1.Li;j /� ni;j h˛0;1i
�i;j
��! �1.S

1
i;j ; vi;j /;

where ni;j h˛0;1i �H1.JnY / and �i;j is the (purely algebraic) isomorphism taking
the generator ni;j˛0;1 to the oriented generator of �1.S

1
i;j ; vi;j /.
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In the final step, we extend f to all of JnY by building maps fi;j W Mi;j ! Pi;j

that agree on their overlaps. In the trivial cases, where Pi;j is a wedge of arcs, the
existing map extends to Mi;j by the Tietze extension theorem. In the nontrivial cases,
Pi;j strong deformation retracts onto S1

i;j , and under that retraction each S1
iC1;j 0

is
wrapped kiC1;j 0 times around S1

i;j . Since Pi;j is aspherical, we can use nearly the
same strategy as above, based on an analogous homomorphism

�1.Mi;j ;pi;j /�H1.Mi;j /� ni;j h˛0;1i
 i;j
��! �1.Pi;j ; vi;j /:

On the subcomplex T 0i;j [Li;j [
�S

LiC1;j 0
�

of Mi;j , where f has already been
defined, the induced map into �1.Pi;j ; vi;j / agrees with the target homomorphism, so
we may extend to the remaining edges, as dictated by the homomorphism, and then
to the remaining 2–cells, whose boundaries have been sent to trivial loops in Pi;j .
Finally, asphericity of Pi;j allows us to inductively extend over the remaining cells
of Mi;j .

Proposition 5.3 The map f W JnY !X� is a proper 1–equivalence.

Proof Since fX�i
g is a finite filtration of X� and f �1.X�i

/DKi for each i , f is
proper. To complete the proof, we construct a proper map g.1/W X

.1/
�
! JnY such

that gf jJ nY .0/ is properly homotopic to JnY .0/ ,! JnY and fgjX .0/ is properly
homotopic to X

.0/
�

,!X� .

For each vi;j 2X
.0/
�

, let g.vi;j /D pi;j . Map each ei;j originating at vi;j and ending
at vi�1;j 0 homeomorphically onto the (reversed) edge path �i;j between pi;j and
pi�1;j 0 in T 0

i�1;lj 0
, and map each oriented e0i;j once around the oriented edge path

loop ˛i;j beginning and ending at pi;j .

Since g.1/.P
.1/
i;j /�Mi;j , then g.1/.Q

.1/
i /�Ni for all i ; so g.1/ is proper. Notice that

fg.1/jX .0/ D idX .0/ and, for each vertex p 2 JnY , if p 2Mi;j , then f .p/ 2 Pi;j ; so
g.1/.f .p//2Mi;j . A choice of edge path �p in Mi;j from p to g.1/.f .p// for each
p 2Mi;j determines a proper homotopy between the inclusion and g.1/f jJ nY .0/ .

Remark 5.4 The above construction accomplishes more than required for a 1–equiv-
alence; specifically, fg.1/ is properly homotopic to X

.1/
�

,! X� . To see this, note
that each oriented edge ei;j from vi;j to vi�1;j 0 is mapped by g.1/ to the edge path
�i;j from pi;j to pi�1;j 0 and f sends �i;j entirely into ei;j with f .pi;j / D vi;j

and f .pi�1;j 0/ D vi�1;j 0 . A discrete collection of straightening homotopies, each
supported in an edge ei;j and fixing all vertices, combine to properly homotope fg.1/
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to the identity over the tree � . For the “loop edges” e0i;j , the story is similar. The map
g.1/ takes e0i;j once around ˛i;j � Li;j and f returns ˛i;j (in fact, all of Li;j ) to
S1

i;j D e0i;j[vi;j , with vertices going to vi;j , some edges sent entirely to vi;j and others
around S1

i;j (possibly multiple times, in the forward or reverse directions). Since the
homomorphism (5-1), used to define f on Li;j , takes ˛i;j to the positively oriented
generator of �1.S

1
i;j ; vi;j /, fg.1/je0

i;j
is homotopic to the identity by a basepoint-

preserving homotopy supported in ei;j . A discrete collection of such homotopies
completes the straightening process.

The proper 1–inverse g.1/W X
.1/
�
! JnY of f W JnY ! X� becomes more useful

when extended to all of X� , even if that extension is not proper. With the aid of a
“strongly coaxial” hypothesis, a proper extension becomes possible.

Proposition 5.5 The map g.1/W X
.1/
�
! JnY constructed in the proof of Proposition

5.3 can always be extended to a map gW X� ! JnY that induces a �1 –isomorphism.
If j is strongly coaxial, g can be chosen to be a proper 2–inverse for f .

Proof To obtain gW X�!JnY , we need only extend g.1/ over the 2–cells di;j of X� .
Each di;j is glued to X

.1/
�

along a loop of the form .e0i;j /
ki;j �ei;j �.e

0
i�1;j 0

/�1 �.ei;j /
�1 ,

and that loop is mapped to .˛i;j /
ki;j ��i;j �.˛i�1;j 0/

�1 �.�i;j /
�1 , which is homologically,

and hence homotopically, trivial in JnY . So the map can be extended.

If j is strongly coaxial, then, by Lemma 2.15, we may (by passing to a subsequence
of fKig) assume that, for each n � 1, loops in JnY �Kn that are null-homotopic
in JnY contract in JnY �Kn�1 .8 Since the attaching loop for each di;j lies in Pi �

X� �X�i�1
, its image .˛i;j /

ki;j ��i;j � .˛i�1;j 0/
�1 � .�i;j /

�1 lies in Ni � JnY �Ki�1

and is homotopically trivial in JnY . Therefore it contracts in JnY �Ki�2 . Use
these contractions to extend g.1/ over the 2–cells of X� to obtain a proper map
gW X� ! JnY . In light of Remark 5.4, it remains only to show that gf jJ nY .1/ is
properly homotopic to JnY .1/ ,! JnY . First we obtain the desired homotopy on the
maximal tree T � JnY .1/ used in defining f . In the proof of Proposition 5.3 we
obtained a proper homotopy between JnY .0/ ,! JnY and gf jJ nY .0/ by choosing
a proper family of edge paths �p between p and gf .p/ for p 2 Y .0/ . Moving

8Actually, passing to a subsequence changes the corresponding model tree � , and thus X� . That
change is precisely a reduction of � to a � 0 , as discussed in Section 3.4. By Proposition 3.9, that change
does not affect the proper homotopy type of X� .
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inductively outward from the base vertex p0 , we can rechoose the �p , if necessary, so
the loops e ��q �.gf .e//

�1 ���1
p , where e is an edge in T from p to q , bound a proper

collection of singular disks in Y ; in particular, if e lies in T 0i;j , arrange for the disk
to lie in Mi;j . Together these disks determine a proper homotopy on T . To complete
the homotopy, let e be an edge in JnY .1/�T . Choose the Mi;j containing e and let
�p and �q be reduced edge paths in T 0i;j connecting pi;j to the initial and terminal
points p and q of e , respectively. By construction of f and g.1/ , �p � e � �

�1
q and

g.1/f .�p � e ��
�1
q / are homotopic in JnY ; by choice of the Ki , they are homotopic

in JnY � Ki�2 . Since a homotopy has already been constructed between these
loops away from e , with tracks �p and �q at p and q , respectively, it must be
that e � �q � .gf .e//

�1 � ��1
p is null-homotopic in JnY �Ki�2 . Filling each such

loop with a singular disk completes the proper homotopy between JnY .1/ ,! JnY

and gf jJ nY .1/ .

Corollary 5.6 Let Y be a simply connected, strongly locally finite CW complex, and
j W Y ! Y a cellular homeomorphism generating an action by covering transformations
with J � hj i Š Z, and let � be the corresponding model tree. Then Y is Z–
equivariantly proper 1–equivalent to the model Z–space zX� . If j is strongly coaxial,
then Y is Z–equivariantly proper 2–equivalent to zX� .

Proof In the general case, the proper 1–equivalence f W JnY ! X� lifts to a Z–
equivariant proper 1–equivalence zf W Y ! zX� whose proper equivariant 1–inverse is
obtained by lifting the (not necessarily proper) gW X� ! JnY to zgW zX� ! Y , then
noting that its restriction zg.1/ to zX .1/

�
(the 1–skeleton of zX� , not the universal cover

of X
.1/
�

), being a lift of g.1/W X
.1/
�
! JnY , is proper.

When j is strongly coaxial, the proper 2–equivalences f W JnY !X� and gW X� !

JnY lift to Z–equivariant proper 2–equivalences zf W Y ! zX� and zgW zX� ! Y .

We now address the situation where j is only assumed to be coaxial. With significant
additional effort, we will recover nearly the full strength of Corollary 5.6.

Proposition 5.7 Let Y be a strongly locally finite CW complex and j W Y ! Y a
cellular homeomorphism generating a proper rigid action with J � hj i ŠZ, and let �
be a corresponding model tree. If j is coaxial, then Y is proper 2–equivalent to zX�
via maps that are Z–equivariant on the 1–skeleta of Y and zX� .
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Our starting point for the proof of Proposition 5.7 is the already-existing diagram

(5-2)

Y
zf //

p

��

zX�
z� //

q

��

R

r
��

JnY
f // X�

� // S1
0;1

Discard the lift zgW zX� ! Y , since it may not be proper under the new hypothesis;
but retain its restriction zg.1/W zX .1/

�
! Y , which is a proper 1–inverse for zf . We will

construct an alternative extension xgW zX� ! Y of zg.1/ which is a proper 2–inverse
for zf . By lifting the homotopy noted in Remark 5.4, we already have an equivariant
proper homotopy between zX .1/

�
,! zX� and zf zg.1/ ; so it is enough to obtain a proper

extension xgW zX� ! Y and to show that xg zf jY .1/ D zg
.1/ zf jY .1/ is properly homotopic

to Y .1/ ,! Y . Both tasks depend upon the coaxial hypothesis.

Before launching into the proof, we introduce some notation and prove a few easy
lemmas.

� For Œr; s��R, let zX Œr;s�
�
D z��1.Œr; s�/ and

Y Œr;s� D zf �1. zX
Œr;s�
�

/D .z� zf /�1.Œr; s�/:

More generally, if P � Y , then P Œr;s� D P \ Y Œr;s� , and if Q � zX� , then
QŒr;s� DQ\ zX

Œr;s�
�

. We will use similar notation for arbitrary S �R, such as
Y S or PS.

� A level set in Y is a set of the form Y frg or P frg for r 2R; level sets in zX�
are defined similarly.

� The height of P � Y is the diameter of z� zf .P / in R; the height of Q� zX� is
the diameter of z�.Q/.

Let fKig be a nested exhaustion of JnY by finite connected complexes satisfying all
of the basic conditions used in constructing the model spaces, and recall the associated
sequence of neighborhoods of infinity fNig and the finite subcomplexes Li DNi\Ki

and Mi DNi \KiC1 . Notice that f zKŒ�i;i�
i g1

iD1
is a nested exhaustion of Y by finite

subcomplexes. By applying the coaxial hypothesis inductively, we may (by passing to
a subsequence, then relabeling) assume that, for all i , loops in Y � zKiC1 contract in
Y � zK

Œ�i;i�
i . For convenience, let � , X� and zX� be the models based on that exhaustion

of JnY , and let f W JnY !X� be a corresponding map. (By Proposition 3.9, this does
not affect the proper homotopy type of X� or the equivariant proper homotopy type
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of zX� .) Then, for the canonical finite exhaustion fX�i
g1
iD0

of X� , the corresponding
neighborhoods of infinity X� DQ0 �Q1 �Q2 � � � � , where Qi D X� �X�i

, and
the subcomplexes Pi DQi \X�iC1

, the following is immediate from the construction
of f :

Lemma 5.8 Given the above setup , f zKŒ�i;i�
i g is a finite exhaustion of Y , f zX Œ�i;i�

�i
g is a

finite exhaustion of zX� and zf W Y ! zX� is level-preserving and satisfies the following
properties for all i :

(1) zf . zKi/D zX�i
,

(2) zf .Y � zKi/D zX� � zX�i
,

(3) zf . �Mi/D zPi , and

(4) zf . zKS
i /D

zX S
�i

for all S �R.

The construction of g.1/W X
.1/
�
! Y leads to similar properties for its lift.

Lemma 5.9 The function zg.1/W zX .1/
�
! Y is level-preserving and satisfies the follow-

ing properties for all i :

(1) zg.1/. zX .1/
�i
/� zK

.1/
i ,

(2) zg.1/. zQ.1/
i /� zN

.1/
i ,

(3) zg.1/. zP .1/
i /� �M .1/

i , and

(4) zg.1/.. zX .1/
�i
/S /� . zK

.1/
i /S for all S �R.

The following refinement of items (2) in Lemmas 5.8 and 5.9 says that zf and zg.1/

also respect the components of f zNig and f zQig:

Lemma 5.10 Let i be fixed and fEkg
i0

kD1
the finite collection of path components

of zQi . Then zNi has an equal number of components and zf induces a bijection between
those collections. If we label the components of zNi by fFkg

i0

kD1
so that zf .Fk/DEk

for each k , then zg.1/ takes E
.1/

k
into F

.1/

k
.

Remark 5.11 A similar correspondence between components of �Mi and EX�i
�X�i�1

can be deduced.

Lemma 5.12 For each i , there is an integer pi such that any two points in a level set
zK
frg
i can be connected by a path in zKi of height � pi .
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Proof zKi is a connected complex and zKŒ0;1�
i is compact, so there exists an interval

Œ�k; k� such that points in zKŒ0;1�
i can be connected in zKŒ�k;k�

i . Since zKfrgi is J –
equivalent to a level set lying in zKŒ0;1�

i , we can let pi D 2k .

By essentially the same argument we have:

Lemma 5.13 For each i , there is an integer qi such that any two points in a level
set �M frg

i that lie in the same component of �Mi can be connected by a path, in that
component, of height � qi .

Lemma 5.14 For each triple .i; h; r/ 2N3 , there exists s.i; h; r/ 2N such that loops
in zK.�1;�s�[Œs;1/

i of height � h contract in Y .�1;�r �[Œr;1/ .

Proof Since zKŒ0;2h�
i is compact and Y is simply connected, there exists an integer

t > 0 such that all loops in zKŒ0;2h�
i contract in Y Œ�t;2hCt � . So, by J –translation, for

every integer k , loops lying in zKŒk;kC2h�
i contract in Y Œk�t;1/ . Let s D r C t C 1

and note that every loop in zKŒs;1/
i of height � h lies in zKŒk;kC2h�

i for some integer
k � r C t .

A similar calculation handles loops of height � h lying in zK.�1;�s�
i .

Lemma 5.15 For each i 2N , there exists hi 2N such that the 2–cells of zX�i
have

height � hi .

Proof The 2–cells of zX�1
that lie over a 2–cell d1;j of X�1

have height k1;j . Moving
outward, 2–cells of zX�2

that lie over a d2;j have height k2;j �k1;j 0 , where v1;j 0 is the
terminal vertex of e2;j . In general, the height of a 2–cell of zX� lying over a 2–cell
di;j in X� is equal to the product of the labels on the edge path connecting vi;j to v0;1 .
So heights of the 2–cells in zX�i

are bounded by the largest such product.

Remark 5.16 In contrast to the increasing heights of the 2–cells of zX� as their dis-
tances from the central axis v0;1�R increase, the widths of the 2–cells are constantly 1,
when viewed as subsets of �C �R� zX� and measured in the �C–direction. In the
argument that follows, we refer to this property as the “narrowness of the 2–cells
of zX� ”.
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Completion of the proof of Proposition 5.7 We will construct a proper 2–inverse
xgW zX� ! Y for zf W Y ! zX� , by extending zg.1/W zX .1/

�
! Y over the 2–cells of zX� .

The fact that xg is J –equivariant and level-preserving on zX .1/
�

is immediate. To assure
properness of xg , we will arrange that, for each i , only finitely many 2–cells have
images intersecting zKŒ�i;i�

i . A similar strategy will give the required proper homotopies.
Both constructions rely on the coaxial hypothesis.

Claim For each i 2 N , there exists si 2 N such that, if � is a 2–cell of zX� lying
outside zX Œ�si ;si �

�iC1
, then zg.1/j@� extends to a map of � into Y � zK

Œ�i;i�
i .

Let hiC2 be the integer supplied by Lemma 5.15; then let si D s.i C 2; hiC2; i C 1/,
as promised in Lemma 5.14.

Case 1 (� � zX� � zX�iC1
) By Lemma 5.9, zg.1/ takes @� into Y � zKiC1 , so by

hypothesis and choice of fKig, zg.1/j@� extends to a map taking � into Y � zK
Œ�i;i�
i .

Case 2 (� is not contained in zX� � zX�iC1
) By narrowness of 2–cells in zX� ,

� lies in zX�iC2
; and, since � lies outside zX Œ�si ;si �

�iC1
, it lies in zX .�1;�si �[Œsi ;1/

�iC2
. By

Lemma 5.15, � has height � hiC2 , so by Lemma 5.9, zg.1/ takes @� to a loop in
zK
.�1;�si �[Œsi ;1/
iC2

of height � hiC2 . By choice of si , zg.1/j@� extends to a map of �
into Y .�1;�.iC1/�[ŒiC1;1/ � Y � zK

Œ�i;i�
i .

With the claim proved, we define xg inductively, as follows. Let .si/i2N be a strictly
increasing sequence of integers satisfying the claim. To get started, use simple-
connectivity of Y to extend zg.1/ over all of the (finitely many) 2–cells of zX� that inter-
sect zX Œ�s1;s1�

�2
. Then extend over the 2–cells that miss zX Œ�s1;s1�

�2
but intersect zX Œ�s2;s2�

�3
,

using the choice of s1 to ensure that their images miss zKŒ�1;1�
1

. Next, extend over
the 2–cells that miss zX Œ�s2;s2�

�3
but intersect zX Œ�s3;s3�

�4
, making sure that their images

miss zKŒ�2;2�
2

. Continue inductively to obtain a proper map xgW zX� ! Y .

To conclude that xg is a proper 2–inverse for zf , we must show that the restrictions of
xg zf and zf xg to the 1–skeleta of their respective domains are properly homotopic to
inclusion maps. The second of these requires no work; just lift the proper homotopy
described in Remark 5.4. It remains to construct a proper homotopy between Y .1/ ,!Y

and xg zf jY .1/ .

We first construct the homotopy over the 0–skeleton of Y . Let v be a vertex of Y and
v0 D xg zf .v/. Choose an integer i so that v 2 �Mi . By Lemma 5.10 and Remark 5.11,
v and v0 lie in the same component of �Mi and, since xg zf jY .0/ is level-preserving,
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Lemma 5.13 guarantees a path ˛v from v to v0 in that component with height � qi .
By parametrizing each ˛v over Œ0; 1�, we obtain a proper homotopy H

.0/
t between

Y .0/ ,! Y and xg zf jY .0/ .

To extend H
.0/
t over the edges of Y .1/ , let e be a fixed (oriented) edge between

vertices v1 and v2 in Y . Since e is a lift of an edge from JnY , e lies in a component
of some �Mi . By Lemma 5.10 and Remark 5.11, the oriented path e0 D zg zf .e/ lies
in the same component. Let ˇe be the loop e �˛v2

� .e0/�1 �˛�1
v1

. Since xg zf jY .1/ is
level-preserving, e and e0 project to the same interval in R, so we have two key facts:

(5-3) height.ˇe/� height.e/C 2qi

and

(5-4) ˇe �
�Mi :

We will extend H
.0/
t over all of Y .1/ by filling in each of the ˇe with disks. To make

Ht proper, we arrange that finitely many such disks intersect any given zKŒ�i;i�
i . The

argument is essentially the same as the one used to construct xg .

If e lies outside zKiC1 , then ˇe also lies in Y � zKiC1 ; so it can be filled in missing
zK
Œ�i;i�
i .

For the edges fe�g lying in zKiC1 , the fact (5-4) ensures that the loops fˇe� g also
lie in zKiC1 . Note that there is a uniform bound on the heights of the fe�g; this is
by J –equivariance, since each is a lift of one of the finitely many edges in Ki . So
fact (5-3) ensures that there is an upper bound on the heights of the fˇe� g. By applying
Lemma 5.14, we can fill in all but finitely many with disks missing zKŒ�i;i�

i .

6 General conclusions

We conclude by assembling our main theorems in their most general forms. In contrast
to Theorem 0.1 from the introduction, there are no restrictions on the number of ends
of Y . In all cases, Y is a simply connected, locally compact ANR admitting a Z–action
by covering transformations generated by a homeomorphism j W Y ! Y . Conclusions
involve the topology at infinity of Y , in particular proper homotopy invariants in
dimensions < 2. The conclusions vary, depending on the assumptions placed on j.
All serious work has been completed. Here we need only combine the proper 1– and
2–equivalences obtained in Propositions 5.3, 5.5 and 5.7 and Corollary 5.6 with the
analyses of the model spaces in Propositions 3.4, 3.6 and 3.7 and Remark 3.5.
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In the first theorem, no additional requirements are placed on j. The conclusions
involve the number of ends of Y and the action of j on those ends. Most, if not all,
were previously known; nevertheless, the theorem illustrates the effectiveness of our
approach and places subsequent theorems in the context of some familiar and useful
facts.

Theorem 6.1 Let Y be a simply connected , locally compact ANR admitting a Z–
action by covering transformations generated by a homeomorphism j W Y ! Y and
let J D hj i. Then Y is J –equivariantly properly 1–equivalent to its universal model
space zX� . As a result , Y has 1, 2 or infinitely many ends. Moreover ,

(1) if Y is 2–ended , then j fixes the ends of Y , the action is cocompact and Y is
equivariantly proper 1–equivalent to a line;

(2) if Y is infinite-ended , then precisely one or two ends are stabilized by j, with
the rest occurring in J –transitive families , each member of which has a neigh-
borhood in Y that projects homeomorphically onto a neighborhood of an end
of JnY ;

(3) Y has uncountably many ends if and only if JnY has uncountably many �1 –null
ends (as defined in Section 1.3).

Corollary 6.2 If an infinite-ended finitely presented group G acts properly and co-
compactly on a simply connected, locally compact ANR Y , and g 2 G has infinite
order, then hginY has uncountably many ends.

Remark 6.3 Although a simple-connectivity hypothesis on Y was built into our
constructions, in anticipation of the most interesting theorems, it was not needed to
obtain a proper 1–equivalence between hj inY and X� . Hence, the conclusions of
Theorem 6.1 are valid provided Y is connected.

For the next theorem and its corollary, we add the assumption that j is coaxial.

Theorem 6.4 Let Y be a simply connected , locally compact ANR admitting a Z–
action by covering transformations generated by a coaxial homeomorphism j W Y ! Y

and let J D hj i. Then Y is properly 2–equivalent to its model Z–space zX� via maps
that are J –equivariant on 1–skeleta. As a result , Y has 1, 2 or infinitely many ends ,
and :
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(1) If Y is 2–ended , then the J –action is cocompact and Y is properly 2–equivalent
to a line.

(2) If Y is 1–ended , then Y is properly 2–equivalent to ƒC�R, where ƒC is an in-
finite rooted tree , and the Z–action on ƒC�R is generated by a homeomorphism
�1 � t , where �1 fixes the root of ƒC and t.r/D r C 1.

(3) If Y is infinite-ended , then J stabilizes exactly one or two of those ends of Y ;
and

(a) if two ends are stabilized , Y is properly 2–equivalent to R[
�F

i2Z�i

�
,

where f�igi2Z is a collection of isomorphic rooted trees with the root of �i

identified to i 2R, and the J –action on R[
�F

i2Z�i

�
is an extension of

translation by C1 on R;

(b) if only one end is stabilized , then Y is instead properly 2–equivalent to
.ƒC�R/[

�S
�m;n

�
, where f�m;ng is a locally finite collection of rooted

trees , with each �m;n attached at its root to a vertex of ƒC � fng, and , for
each fixed m, f�m;ngn2Z is a pairwise disjoint subcollection on which J

acts transitively, taking roots to roots.

(4) Y has uncountably many ends if and only if JnY has uncountably many null
ends.

Furthermore , if j is strongly coaxial , the proper 2–equivalences can be chosen to be
Z–equivariant.

Corollary 6.5 Let Y be a simply connected , strongly locally finite CW complex ad-
mitting a Z–action by covering transformations generated by a coaxial homeomorphism
j W Y ! Y . Then Y is 1–, 2– or infinite-ended. Moreover:

(1) If Y is 2–ended , then both ends are simply connected and the Z–action fixes
those ends.

(2) If Y is 1–ended , then that end is semistable and pro-�1.Y; r/ can be represented
by an inverse sequence of surjections between finitely generated free groups

F1� F2� F3� � � �

and pro-H1.Y IZ/ can be represented by an inverse sequence of surjections
between finitely generated free abelian groups

Zn1� Zn2� Zn3� � � � :
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(3) If Y is infinite-ended , then the Z–action fixes precisely one or two ends with the
others having trivial stabilizers. All nonfixed ends are simply connected. If two
ends are fixed , those ends are simply connected as well. If just one end is fixed ,
that end is semistable with pro-�1.Y; r/ representable by an inverse sequence
like the one described in assertion (2). Similarly , pro-H1.Y IZ/ is representable
by a sequence like the one found in assertion (2), with all nontrivial contributions
coming from the fixed end.

Remark 6.6 If desired, the Z–equivariance of the proper 2–equivalences on 1–
skeleta can be used to specify the action of J on pro-�1.Y; r/ and pro-H1.Y IZ/. In
particular, they will look like the easily understood Z–actions on pro-�1.ƒ

C �R/

and pro-H1.ƒ
C �RIZ/ generated by �1 � t , where �1 fixes the root of ƒC and

t.r/D r C 1.
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