ResearchGate

https://www.researchgate.net/publication/223741153

Mapping[\$wirls[and[pseudo- spines of $\ddagger o m p a c t[4-$ manifolds

Article[1] [ITopology[7nd ItSAApplications_T]uly1996
DOI:[10.1016/0166-8641(96)00007-7

0 READS
16

27authors:

38[PUBLICATIONS [|B41[GITATIONSTII

Craig|RobertGuilbault UniversitybfiWisconsin_IMilw... 43[PUBLICATIONSTIW54[ITATIONSIII

SEEPRROFILE

Mapping swirls and pseudo-spines of compact 4-manifolds

Fredric D. Ancel ${ }^{*}$, Craig R. Guilbault ${ }^{1}$
Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 5320I, USA

Received 14 September 1995; revised 23 October 1995

Abstract

A compact subset X of the interior of a compact manifold M is a pseudo-spine of M if $M-X$ is homeomorphic to $(\partial M) \times[0, \infty)$. It is proved that a 4 -manifold obtained by attaching k essential 2-handles to a $B^{3} \times S^{1}$ has a pseudo-spine which is obtained by attaching $k B^{2}$'s to an S^{1} by maps of the form $z \mapsto z^{n}$. This result recovers the fact that the Mazur 4 -manifold has a disk pscudo-spinc (which may then be shrunk to an arc). To prove this result, the mapping swirl (a "swirled" mapping cylinder) of a map to a circle is introduced, and a fundamental property of mapping swirls is established: homotopic maps to a circle have homeomorphic mapping swirls.

Several conjectures concerning the existence of pseudo-spines in compact 4 -manifolds are stated and discussed, including the following two related conjectures: every compact contractible 4 manifold has an arc pseudo-spine, and every compact contractible 4 -manifold has a handlebody decomposition with no 3 - or 4 -handles. It is proved that an important class of compact contractible 4 -manifolds described by Poénaru satisfies the latter conjecture.

Keywords: Pseudo-spine; Mazur 4-manifold; Mapping swirl; Poénaru 4-manifolds
AMS classification: 57N13

1. Introduction

A compact subset X of the interior of a compact manifold M is a called a (topological) spine of M if M is homeomorphic to the mapping cylinder of a map from ∂M to X. X is called a pseudo-spine of M if $M-X$ is homeomorphic to $(\partial M) \times[0, \infty)$.

It is proved in [1] that for $n \geqslant 5$, every compact contractible n-manifold has a wild arc spine. It is observed, however, that in general compact contractible 4-manifolds don't have arc spines. In fact, a compact contractible 4-manifold with an arc spine must be

[^0]either a 4-ball or the cone over a nontrivial homotopy 3 -sphere (if one exists). Thus, a compact contractible 4-manifold with a nonsimply connected boundary can't have an arc spine.

The Mazur 4-manifold [6] is a compact contractible 4-manifold with a nonsimply connected boundary. It is a well-known consequence of $[5,3]$ that the Mazur 4-manifold has an arc pseudo-spine.

The naively optimistic conjecture motivating this paper is: every compact contractible 4-manifold has an arc pseudo-spine. The mathematical content of the paper arises from the introduction of the mapping swirl construction which allows us to reinterpret and generalize the method of [5]. In Section 2 of this article the mapping swirl of a map to S^{1} is defined and two fundamental theorems about it are proved: Theorem 1: Homotopic maps from a compact metric space to S^{1} have homeomorphic mapping swirls. Theorem 2: For a compact metric space X and an integer $n \neq 0$, the mapping swirl and the mapping cylinder of the map $(x, z) \mapsto z^{n}: X \times S^{1} \rightarrow S^{1}$ are homeomorphic. Section 3 applies these theorems to produce simple pseudo-spines for the special class of 4 -manifolds obtained by adding finitely many essential 2-handles to $B^{3} \times S^{1}$. This approach recovers the previously known result that Mazur's compact contractible 4 -manifold has an arc pseudo-spine. Section 4 speculates about the possibility of finding simple pseudo-spines for all compact 4-manifolds. In particular, it includes the conjecture that every compact contractible 4-manifold has an arc pseudo-spine. It also states a closely related conjecture: every compact contractible 4-manifold has a handlebody decomposition with no 3- or 4-handles. It then presents a proof that this conjecture holds for an important class of compact contractible 4 -manifolds described by Poénaru.

2. Mapping swirls

Let $f: X \rightarrow S^{1}$ be a map from a compact metric space X to S^{1}. Intuitively, the mapping swirl of f is obtained from the mapping cylinder of f by "swirling" the fibers of the mapping cylinder around infinitely many times in the S^{1}-direction as they approach the S^{1}-end of the mapping cylinder. To make this informal definition precise, we use the fact that the mapping cylinder of f embeds naturally in $(C X) \times S^{1}$, where $C X$ is the cone on X. The mapping swirl of f is defined as a subset of $(C X) \times S^{1}$. The swirling effect is achieved by using the S^{1}-factor. We also define the double mapping swirl of f, by "swirling" the fibers of the double mapping cylinder of f at both ends. The double mapping swirl of f is defined as a subset of $(\Sigma X) \times S^{1}$, where ΣX is the suspension of X. The S^{1}-factor is again used to achieve the swirling effect.

Simple examples show that two maps from a compact metric space to S^{1} may differ by only a slight homotopy and yet have nonhomeomorphic mapping cylinders and double mapping cylinders. In contrast, our principal result, Theorem I, says that homotopic maps from a compact metric space to S^{1} have homeomorphic mapping swirls. The swirling process kills the topological difference between the mapping cylinders of homotopic maps.

Definition. Let X be a compact metric space. The suspension of X, denoted ΣX, is the quotient space $[-\infty, \infty] \times X /\{\{-\infty\} \times X,\{\infty\} \times X\}$. Let $q:[-\infty, \infty] \times X \rightarrow \Sigma X$ denote the quotient map. For $(t, x) \in[-\infty, \infty] \times X$, let $t x=q((t, x))$; and let $\pm \infty=$ $q(\{ \pm \infty\} \times X)$. The cone on X, denoted $C X$, is $q([0, \infty] \times X)$.

Definition. Let $f: X \rightarrow Y$ be a map between compact metric spaces. The mapping cylinder of f, denoted $\operatorname{Cyl}(f)$, is the subspace

$$
\{(t x, f(x)) \in(C X) \times Y:(t, x) \in[0, \infty) \times X\} \cup(\{\infty\} \times Y)
$$

of $(C X) \times Y$. The double mapping cylinder of f, denoted $\operatorname{DblCyl}(f)$, is the subspace

$$
\{(t x, f(x)) \in(\Sigma X) \times Y:(t, x) \in(-\infty, \infty) \times X\} \cup(\{-\infty, \infty\} \times Y)
$$

of $(\Sigma X) \times Y$. For $-\infty<t<\infty$, call the set $\{(t x, f(x)): x \in X\}$ the t-level of $\operatorname{DblCyl}(f)$; it is homeomorphic to X. Call $\{ \pm \infty\} \times Y$ the $\pm \infty$-level of $\operatorname{DblCyl}(f)$. Observe that the union of the t-levels of $\operatorname{DblCyl}(f)$ for $0 \leqslant t \leqslant \infty$ is precisely $\operatorname{Cyl}(f)$.

To reconcile this definition of the mapping cylinder of f with the usual definition, consider the map from the disjoint union $([0, \infty] \times X) \cup Y$ onto the subset of $(C X) \times Y$ which we have called $\operatorname{Cyl}(f)$ which sends $(t, x) \in([0, \infty] \times X)$ to $(t x, f(x))$ and sends $y \in Y$ to (∞, y). The set of inverse images of this map determines the decomposition of $([0, \infty] \times X) \cup Y$ in which the only nonsingleton elements are sets of the form $\left(f^{-1}(y) \times\{\infty\}\right) \cup\{y\}$ for $y \in Y$. This is exactly the decomposition which is determined by the inverse images of the "usual" quotient map from $([0, \infty] \times X) \cup Y$ to the "usual" mapping cylinder of f. Consequently, $\operatorname{Cyl}(f)$ is homeomorphic to the "usual" mapping cylinder of f. Similarly, $\operatorname{DblCyl}(f)$ is homeomorphic to the "usual" double mapping cylinder of f.

Definition. Let X be a compact metric space and let $f: X \rightarrow S^{1}$ be a map. The mapping swirl of f, denoted $\operatorname{Swl}(f)$, is the subspace

$$
\left\{\left(t x, \mathrm{e}^{2 \pi \mathrm{i} t} f(x)\right) \in(C X) \times S^{1}:(t, x) \in[0, \infty) \times X\right\} \cup\left(\{\infty\} \times S^{1}\right)
$$

of $(C X) \times S^{1}$. The double mapping swirl of f, denoted $\operatorname{DblSwl}(f)$, is the subspace

$$
\left\{\left(t x, \mathrm{e}^{2 \pi \mathrm{i} t} f(x)\right) \in(\Sigma X) \times S^{1}:(t, x) \in(-\infty, \infty) \times X\right\} \cup\left(\{-\infty, \infty\} \times S^{1}\right)
$$

of $(\Sigma X) \times S^{1}$. For $-\infty<t<\infty$, call the set $\left\{\left(t x, \mathrm{e}^{2 \pi i t} f(x)\right): x \in X\right\}$ the t-level of $\operatorname{DblSwl}(f)$; it is homeomorphic to X. Call $\{ \pm \infty\} \times S^{1}$ the $(\pm \infty)$-level of $\operatorname{DblSwl}(f)$. Observe that the union of the t-levels of $\operatorname{DblSwl}(f)$ for $0 \leqslant t \leqslant \infty$ is precisely $\operatorname{Swl}(f)$. For $x \in X$, call the set $\left\{\left(t x, \mathrm{e}^{2 \pi i t} f(x)\right):-\infty<t<\infty\right\}$ the x-fiber of $\operatorname{DbSwl}(f)$, and call the set $\left\{\left(t x, \mathrm{e}^{2 \pi \mathrm{it}} f(x)\right): 0 \leqslant t<\infty\right\}$ the x-fiber of $\operatorname{Swl}(f)$. If $g: X \rightarrow S^{1}$ is another map and $x \in X$, then the x-fiber of $\operatorname{Swl}(f)(\operatorname{DblSwl}(f))$ and the x-fiber of $\mathrm{Swl}(g)$ ($\mathrm{DblSwl}(g))$ are called corresponding fibers.

Theorem 1. If X is a compact metric space, and $f, g: X \rightarrow S^{1}$ are homotopic maps, then $\operatorname{Swl}(f)$ is homeomorphic to $\operatorname{Swl}(g)$. Furthermore, the homeomorphism maps the

0 - and ∞-levels of $\operatorname{Swl}(f)$ onto the 0 - and ∞-levels of $\operatorname{Swl}(g)$, respectively, and maps each fiber of $\operatorname{Swl}(f)$ onto the corresponding fiber of $\operatorname{Swl}(g)$.

Proof. The proof has two steps. First we find a homeomorphism of $(\Sigma X) \times S^{1}$ which carries $\operatorname{DblSwl}(f)$ onto $\operatorname{DblSwl}(g)$. This homeomorphism moves $\operatorname{Swl}(f)$ into $\operatorname{DblSwl}(g)$, because $\operatorname{Swl}(f) \subset \operatorname{DblSwl}(f)$. Second we find a homeomorphism of $(\Sigma X) \times S^{1}$ which "twists" the image of $\operatorname{Swl}(f)$ onto $\operatorname{Swl}(g)$ within $\operatorname{DblSwl}(g)$.

Step 1. For each $x \in X$, set $\mathcal{F}(x)=\left\{\left(t x, \mathrm{e}^{2 \pi \mathrm{it}} f(x)\right):-\infty<t<\infty\right\}$ and set $\mathcal{G}(x)=\left\{\left(t x, \mathrm{e}^{2 \pi i t} g(x)\right):-\infty<t<\infty\right\} . \mathcal{F}(x)$ and $\mathcal{G}(x)$ are the x-fibers of $\operatorname{DblSwl}(f)$ and $\operatorname{DbISwl}(g)$, respectively. Both lie in $((-\infty, \infty) x) \times S^{1} \subset(\Sigma(X)) \times S^{1}$.

For each $x \in X$, the x-fibers $\mathcal{F}(x)$ and $\mathcal{G}(x)$ form a "double helix" in the cylinder $((-\infty, \infty) x) \times S^{1}$. The angle $\theta(x)$ between $\mathcal{F}(x)$ and $\mathcal{G}(x)$ in the S^{1}-direction is precisely the angle between $f(x)$ and $g(x)$ in S^{1}, and a twist of the cylinder $((-\infty, \infty) x) \times S^{1}$ in the S^{1}-direction through the angle $\theta(x)$ would move $\mathcal{F}(x)$ to $\mathcal{G}(x)$. Unfortunately, one can't form the "union" of these twists over all the cylinders $((-\infty, \infty) x) \times S^{1}$ to move $\operatorname{DblSwl}(f)$ to $\operatorname{DblSwl}(g)$ in $(\Sigma X) \times S^{1}$, because $\theta(x)$ may vary with x, so that there is no single rotation of $\{-\infty, \infty\} \times S^{1}$ that extends the twists of all the cylinders. Instead of using a twist, one observes that the helix $\mathcal{F}(x)$ can be moved to the helix $\mathcal{G}(x)$ by a slide of the cylinder $((-\infty, \infty) x) \times S^{1}$ in the $(-\infty, \infty) x$-direction. The length of the slide in the $(-\infty, \infty) x$-direction varies with x and is essentially determined by lifting the homotopy joining f to g in S^{1} to a homotopy in $(-\infty, \infty)$. Unlike the previously considered twist, this slide extends to $\{-\infty, \infty\} \times S^{1}$ via the identity. This is because the slide makes no motion in the S^{1}-direction and preserves the "ends" of $(-\infty, \infty) x$. The details follow.

Suppose $h: X \times[0,1] \rightarrow S^{1}$ is a homotopy such that $h(x, 0)=g(x)$ and $h(x, 1)=$ $f(x)$. We exploit the fact that S^{1} is a group under complex multiplication to define the map $k: X \times[0,1] \rightarrow S^{1}$ by $k(x, t)=h(x, t) / h(x, 0)$. Thus, $k(x, 0)=1$ and $k(x, 1) g(x)=f(x)$ for $x \in X$. Let $e:(-\infty, \infty) \rightarrow S^{1}$ denote the exponential covering map $e(t)=\mathrm{e}^{2 \pi \mathrm{it}}$. Let $\tilde{k}: X \times[0,1] \rightarrow(-\infty, \infty)$ be the lift of k (i.e., $e \circ \tilde{k}=k$) such that $\tilde{k}(x, 0)=0$ for all $x \in X$. Define $\sigma: X \rightarrow(-\infty, \infty)$ by $\sigma(x)=\tilde{k}(x, 1)$. Observe that for each $x \in X, f(x) / \mathrm{e}^{2 \pi \mathrm{i} \sigma(x)}=f(x) / e(\tilde{k}(x, 1))=f(x) / k(x, 1)=g(x)$. Since X is compact, there is a $b \in(0, \infty)$ such that $\sigma(X) \subset(-b, b)$. As we will see, $\sigma(x)$ specifies the length of the slide of the cylinder $((-\infty, \infty) x) \times S^{1}$ in the $(-\infty, \infty) x$-direction that moves $\mathcal{F}(x)$ to $\mathcal{G}(x)$.

Now define the function $\Phi:(\Sigma X) \times S^{1} \rightarrow(\Sigma X) \times S^{1}$ by setting $\Phi(t x, z)=((t+$ $\sigma(x)) x, z)$ for $(t, x) \in(-\infty, \infty) \times X$ and $z \in S^{1}$, and by requiring that $\Phi \mid\{-\infty, \infty\} \times$ $S^{1}=$ id. Clearly Φ is continuous at each point of $(\Sigma X) \times S^{1}-\{-\infty, \infty\} \times S^{1}$. For each $z \in S^{1}$, the continuity of Φ at the points $(\pm \infty, z)$ follows from the inclusions

$$
\begin{aligned}
& \Phi(([t, \infty] x) \times\{z\}) \subset((t-b, \infty] x) \times\{z\} \\
& \Phi(([-\infty, t] x) \times\{z\}) \subset([-\infty, t+b) x) \times\{z\}
\end{aligned}
$$

Next we verify that $\Phi(\operatorname{DblSwl}(f)) \subset \operatorname{DblSwl}(g)$. To this end, let $x \in X$ and consider a typical point $\left(t x, \mathrm{e}^{2 \pi \mathrm{it}} f(x)\right)$ of the fiber $\mathcal{F}(x) . \Phi$ moves this point to the point

$$
\begin{aligned}
\left((t+\sigma(x)) x, \mathrm{e}^{2 \pi \mathrm{i} t} f(x)\right) & =\left((t+\sigma(x)) x, \mathrm{e}^{2 \pi \mathrm{i}(t+\sigma(x))} f(x) / \mathrm{e}^{2 \pi \mathrm{i} \sigma(x)}\right) \\
& =\left((t+\sigma(x)) x, \mathrm{e}^{2 \pi \mathrm{i}(t+\sigma(x))} g(x)\right)
\end{aligned}
$$

which is a point of the fiber $\mathcal{G}(x)$. Consequently, $\Phi(\mathcal{F}(x)) \subset \mathcal{G}(x)$. Thus, Φ maps each fiber of $\operatorname{DblSwl}(f)$ into the corresponding fiber of $\operatorname{DblSwl}(g)$. Also $\Phi\left(\{-\infty, \infty\} \times S^{1}\right)=$ $\{-\infty, \infty\} \times S^{1}$. Since $\operatorname{DblSwl}(f)$ and $\operatorname{DblSwl}(g)$ are the unions of their fibers and of $\{-\infty, \infty\} \times S^{1}$, we conclude that $\Phi(\operatorname{DblSwl}(f)) \subset \operatorname{DblSwl}(g)$.

To complete Step 1, we must verify that Φ is a homeomorphism and that $\Phi(\operatorname{DblSwl}(f))=\operatorname{DblSwl}(g)$. We accomplish this by defining the function $\bar{\Phi}:(\Sigma X) \times$ $S^{1} \rightarrow(\Sigma X) \times S^{1}$ by setting $\bar{\Phi}(t x, z)=((t-\sigma(x)) x, z)$ for $(t, x) \in(-\infty, \infty) \times X$ and $z \in S^{1}$, and by requiring that $\bar{\Phi} \mid\{-\infty, \infty\} \times S^{1}=$ id. Arguments similar to those just given show that $\bar{\Phi}$ is continuous and that $\bar{\Phi}(\operatorname{DblSwl}(g)) \subset \operatorname{DblSwl}(f)$. Also it is easily checked that the composition of Φ and $\bar{\Phi}$ in either order is the identity. Hence, Φ is a homeomorphism, and $\Phi(\operatorname{DblSwl}(f)) \supset \Phi(\bar{\Phi}(\operatorname{DblSwl}(g)))=\operatorname{DblSwl}(g)$. So $\Phi(\operatorname{DblSwl}(f))=\operatorname{DblSwl}(g)$.

Step 2 . Here we will find a homeomorphism Ψ of $(\Sigma X) \times S^{1}$ such that

$$
\Psi(\Phi(\operatorname{Swl}(f)))=\operatorname{Swl}(g)
$$

For each $x \in X$, set $\mathcal{F}^{+}(x)=\left\{\left(t x, \mathrm{e}^{2 \pi i t} f(x)\right): 0 \leqslant t<\infty\right\}$ and set $\mathcal{G}^{+}(x)=$ $\left\{\left(t x, \mathrm{e}^{2 \pi i t} g(x)\right): 0 \leqslant t<\infty\right\} . \mathcal{F}^{+}(x)$ and $\mathcal{G}^{+}(x)$ are the x-fibers of $\operatorname{Swl}(f)$ and $\operatorname{Swl}(g)$, respectively.

For $x \in X$, since $\mathcal{F}^{+}(x) \subset \mathcal{F}(x)$, then $\Phi\left(\mathcal{F}^{+}(x)\right) \subset \Phi(\mathcal{F}(x)) \subset \mathcal{G}(x)$; also $\mathcal{G}^{+}(x) \subset$ $\mathcal{G}(x)$. We will describe a homeomorphism Ψ which gives the cylinder $((-\infty, \infty) x) \times S^{1}$ a screw motion that carries the fiber $\mathcal{G}(x)$ onto itself and moves $\Phi\left(\mathcal{F}^{+}(x)\right)$ onto $\mathcal{G}^{+}(x)$. Also Ψ will restrict to the identity on a neighborhood of $\{-\infty, \infty\} \times S^{1}$.

Recall that $b \in(0, \infty)$ such that $\sigma(X) \subset(-b, b)$. There is a map $\tau:(-\infty, \infty) \times$ $X \rightarrow(-\infty, \infty)$ such that for each $x \in X, t \mapsto \tau(t, x):(-\infty, \infty) \rightarrow(-\infty, \infty)$ is an order preserving piecewise linear homeomorphism which restricts to the identity on $(-\infty,-b] \cup[b, \infty)$ and which moves $\sigma(x)$ to 0 . For example, τ can be defined by the formulas:

$$
\begin{array}{ll}
\tau(t, x)=(b /(b+\sigma(x)))(t-\sigma(x)) & \text { for } t \in[-b, \sigma(x)] \\
\tau(t, x)=(b /(b-\sigma(x)))(t-\sigma(x)) & \text { for } t \in[\sigma(x), b] \\
\tau(t, x)=t & \text { for } t \in(-\infty,-b] \cup[b, \infty)
\end{array}
$$

Now define the function $\Psi:(\Sigma X) \times S^{1} \rightarrow(\Sigma X) \times S^{1}$ by setting

$$
\Psi(t x, z)=\left(\tau(t, x) x, \mathrm{e}^{2 \pi \mathrm{i}(\tau(t, x)-t)} z\right) \quad \text { for }(t, x) \in(-\infty, \infty) \times X \text { and } z \in S^{1}
$$

and by requiring that $\Psi \mid\{-\infty, \infty\} \times S^{1}=$ id. Since τ is continuous, then Ψ is continuous at each point of $(\Sigma X) \times S^{1}-\{-\infty, \infty\} \times S^{1}$. Also since $\tau(t, x)=t$ for $t \in(-\infty,-b] \cup$ $[b, \infty)$, then Ψ restricts to the identity on the neighborhood of $\{-\infty, \infty\} \times S^{1}$ in $(\Sigma X) \times$ S^{1} consisting of all points of the form $(t x, z)$ where $t \in[-\infty,-b] \cup[b, \infty], x \in X$ and $z \in S^{1}$. Hence, Ψ is continuous at each point of $\{-\infty, \infty\} \times S^{1}$.

Next we verify that $\Psi(\Phi(\operatorname{Swl}(f))) \subset \operatorname{Swl}(g)$. To this end, let $x \in X$ and consider a typical point p of $\mathcal{F}^{+}(x)$. p has the form ($\operatorname{tr}, \mathrm{e}^{2 \pi \mathrm{it}} f(x)$) where $0 \leqslant t<\infty$. Thus $\Phi(p)=\left((t+\sigma(x)) x, \mathrm{e}^{2 \pi \mathrm{i}(t+\sigma(x))} g(x)\right)$. Hence,

$$
\begin{aligned}
\Psi(\Phi(p)) & =\left(\tau(t+\sigma(x), x) x, \mathrm{e}^{2 \pi \mathrm{i}(\tau(t+\sigma(x), x)-t-\sigma(x))} \mathrm{e}^{2 \pi \mathrm{i}(t+\sigma(x))} g(x)\right) \\
& =\left(\tau(t+\sigma(x), x) x, \mathrm{e}^{2 \pi \mathrm{i} \tau(t+\sigma(x), x)} g(x)\right)
\end{aligned}
$$

Since $u \mapsto \tau(u, x):(-\infty, \infty) \rightarrow(-\infty, \infty)$ is an order preserving homeomorphism, $\tau(\sigma(x), x)=0$ and $t \geqslant 0$, then $\tau(t+\sigma(x), x) \geqslant 0$. It follows that $\Psi(\Phi(p))$ belongs to the fiber $\mathcal{G}^{+}(x)$. This proves $\Psi\left(\Phi\left(\mathcal{F}^{+}(x)\right)\right) \subset \mathcal{G}^{+}(x)$. So $\Psi \circ \Phi$ maps each fiber of $\operatorname{Swl}(f)$ into the corresponding fiber of $\operatorname{Swl}(g)$. Also $\Psi \circ \Phi\left(\{\infty\} \times S^{1}\right)=\{\infty\} \times S^{1}$. Since $\operatorname{Swl}(f)$ and $\operatorname{Swl}(g)$ are the unions of their fibers and of $\{\infty\} \times S^{1}$, we conclude that $\Psi(\Phi(\operatorname{Swl}(f))) \subset \operatorname{Swl}(g)$.

It remains to establish that $\Psi:(\Sigma X) \times S^{1} \rightarrow(\Sigma X) \times S^{1}$ is a homeomorphism and that $\Psi \circ(\operatorname{Swl}(f))=\operatorname{Swl}(g)$. To this end, first note that there is a map $\bar{\tau}:(-\infty, \infty) \times$ $X \rightarrow(-\infty, \infty)$ such that for each $x \in X, t \mapsto \tilde{\tau}(t, x):(-\infty, \infty) \rightarrow(-\infty, \infty)$ is the inverse of the homeomorphism $t \mapsto \tau(t, x):(-\infty, \infty) \rightarrow(-\infty, \infty)$. (Thus, for each $x \in X, l \mapsto \bar{\tau}(t, x):(-\infty, \infty) \rightarrow(-\infty, \infty)$ is an order preserving piecewise linear homeomorphism which restricts to the identity on $(-\infty,-b] \cup[b, \infty)$ such that $\bar{\tau}(0, x)=\sigma(x)$, and $\bar{\tau}(\tau(t, x), x)=t$ and $\tau(\bar{\tau}(t, x), x)=t$ for $-\infty<t<\infty$.) Then define the function $\bar{\Psi}:(\Sigma X) \times S^{1} \rightarrow(\Sigma X) \times S^{1}$ by setting

$$
\bar{\Psi}(t x, z)=\left(\bar{\tau}(t, x) x, \mathrm{e}^{2 \pi \mathrm{i}(\bar{\tau}(t, x)-t)} z\right) \quad \text { for }(t, x) \in(-\infty, \infty) \times X \text { and } z \in S^{1}
$$

and by requiring that $\bar{\Psi} \mid\{-\infty, \infty\} \times S^{1}=$ id. The proof of the continuity of $\bar{\Psi}$ is similar to the proof of the continuity of Ψ.

Next we verify that $\bar{\Psi}(\operatorname{Swl}(g)) \subset \Phi(\operatorname{Swl}(f))$. To this end, let $x \in X$ and consider a typical point p of $\mathcal{G}^{+}(x) . p$ has the form $\left(t x, \mathrm{e}^{2 \pi i t} g(x)\right)$ where $0 \leqslant t<\infty$, and

$$
\bar{\Psi}(p)=\left(\bar{\tau}(t, x) x, \mathrm{e}^{2 \pi \mathrm{i}(\bar{\tau}(t, x)-t)} \mathrm{e}^{2 \pi \mathrm{i} t} g(x)\right)=\left(\tilde{\tau}(t, x) x, \mathrm{e}^{2 \pi \mathrm{i} \bar{\tau}(t, x)} g(x)\right)
$$

Since $u \mapsto \bar{\tau}(u, x):(-\infty, \infty) \rightarrow(-\infty, \infty)$ is an order preserving homeomorphism, $\bar{\tau}(0, x)=\sigma(x)$ and $t \geqslant 0$, then $\bar{\tau}(t, x)=u+\sigma(x)$ for some $u \geqslant 0$. Hence,

$$
\bar{\Psi}(p)=\left((u+\sigma(x)) x, \mathrm{e}^{2 \pi \mathrm{i}(u+\sigma(x))} g(x)\right)
$$

Since $u \geqslant 0$, then the point $\left(u x, \mathrm{e}^{2 \pi \mathrm{i} u} f(x)\right)$ belongs to $\mathcal{F}^{+}(x)$, and $\Phi\left(u x, \mathrm{e}^{2 \pi \mathrm{i} u} f(x)\right)=$ $\left((u+\sigma(x)) x, \mathrm{e}^{2 \pi \mathrm{i}(u+\sigma(x))} g(x)\right)$. Consequently,

$$
\bar{\Psi}(p)=\Phi\left(u x, \mathrm{e}^{2 \pi \mathrm{i} u} f(x)\right) \in \Phi\left(\mathcal{F}^{+}(x)\right)
$$

This proves $\bar{\Psi}\left(\mathcal{G}^{+}(x)\right) \subset \Phi\left(\mathcal{F}^{+}(x)\right)$. So $\bar{\Psi}$ maps each fiber of $\operatorname{Swl}(g)$ into the Φ-image of the corresponding fiber of $\operatorname{Swl}(f)$. Also $\bar{\Psi}\left(\{\infty\} \times S^{1}\right)=\{\infty\} \times S^{1}=\Phi\left(\{\infty\} \times S^{1}\right)$. Since $\operatorname{Swl}(g)$ and $\operatorname{Swl}(f)$ are the unions of their fibers and of $\{\infty\} \times S^{1}$, we conclude that $\bar{\varphi}(\operatorname{Swl}(g)) \subset \Phi(\operatorname{Swl}(f))$.

It is easy to verify that the composition of Ψ and $\bar{\Psi}$ in either order is the identity. (Remember that $\bar{\tau}(\tau(t, x) x)=t$ and $\tau(\bar{\tau}(t, x), x)=t$ for $x \in X$ and $-\infty<t<\infty$.) Hence, Ψ is a homeomorphism.

We have seen that $\Psi(\Phi(\operatorname{Swl}(f))) \subset \operatorname{Swl}(g)$ and $\bar{\Psi}(\operatorname{Swl}(g)) \subset \Phi(\operatorname{Swl}(f))$. So

$$
\Psi(\Phi(\operatorname{Swl}(f))) \supset \Psi(\bar{\Psi}(\operatorname{Swl}(g)))=\operatorname{Swl}(g)
$$

Thus, the homeomorphism $\Psi \circ \Phi$ maps $\operatorname{Swl}(f)$ onto $\operatorname{Swl}(g)$.
In the course of the proof, we have seen that for each $x \in X, \Psi\left(\Phi\left(\mathcal{F}^{+}(x)\right)\right) \subset$ $\mathcal{G}^{+}(x)$ and $\bar{\Psi}\left(\mathcal{G}^{+}(x)\right) \subset \Phi\left(\mathcal{F}^{+}(x)\right)$. So $\Psi\left(\Phi\left(\mathcal{F}^{+}(x)\right)\right) \supset \Psi\left(\bar{\Psi}\left(\mathcal{G}^{+}(x)\right)\right)=\mathcal{G}^{+}(x)$. Thus, $\Psi\left(\Phi\left(\mathcal{F}^{+}(x)\right)\right)-\mathcal{G}^{+}(x)$. In other words, the homeomorphism $\Psi \circ \Phi$ maps each fiber of $\operatorname{Swl}(f)$ onto the corresponding fiber of $\operatorname{Swl}(g)$.

A typical point of the 0 -level of $\operatorname{Swl}(f)$ has the form $(0 x, f(x))$ and

$$
\begin{aligned}
\Psi(\Phi(0 x, f(x))) & =\Psi\left(\sigma(x) x, \mathrm{e}^{2 \pi \mathrm{i} \sigma(x)} g(x)\right) \\
& =\left(\tau(\sigma(x), x) x, \mathrm{c}^{2 \pi \mathrm{i}(\tau(\sigma(x), x)-\sigma(x))} \mathrm{e}^{2 \pi \mathrm{i} \sigma(x)} g(x)\right)=(0 x, g(x))
\end{aligned}
$$

because $\tau(\sigma(x), x)=0$. Thus, $\Psi \circ \Phi$ maps the 0 -level of $\operatorname{Swl}(f)$ onto the 0 -level of $\operatorname{Swl}(g)$.

Since $\Psi\left(\Phi\left(\{-\infty\} \times S^{1}\right)\right)=\Psi\left(\{-\infty\} \times S^{1}\right)=\{-\infty\} \times S^{1}$, then $\Psi \circ \Phi$ maps the ∞-level of $\operatorname{Swl}(f)$ onto the ∞-level of $\operatorname{Swl}(g)$.

The next theorem and its corollaries make it possible to identify the mapping swirls of a special types of maps.

Theorem 2. If X is a compact metric space, n is a nonzero integer, and $f: X \times S^{1} \rightarrow S^{1}$ is the map $f(x, z)=z^{n}$, then $\operatorname{Cyl}(f)$ is homeomorphic to $\operatorname{Swl}(f)$. Furthermore, the homeomorphism maps the t-level of $\operatorname{Cyl}(f)$ onto the t-level of $\operatorname{Swl}(f)$ for $0 \leqslant t \leqslant \infty$.

Proof. We will find a homeomorphism from $C\left(X \times S^{1}\right) \times S^{1}$ to itself which carries $\mathrm{Cyl}(f)$ onto $\operatorname{Swl}(f)$ by twisting motion in the S^{1}-direction in the $C\left(X \times S^{1}\right)$ factor of $C\left(X \times S^{1}\right) \times S^{1}$. This is possible because of the S^{1}-factor in the domain of f and the special form of f.

Define the function

$$
\phi: C\left(X \times S^{1}\right) \rightarrow C\left(X \times S^{1}\right)
$$

by setting $\phi(t(x, z))=t\left(x, \mathrm{e}^{-2 \pi \mathrm{it} / n} z\right)$ for $t \in[0, \infty)$ and $(x, z) \in X \times S^{1}$ and $\phi(\infty)=$ ∞. ϕ is clearly continuous on $C\left(X \times S^{1}\right)-\{\infty\}$; and because ϕ maps the t-level of $C\left(X \times S^{1}\right)$ into itself, then ϕ is continuous at ∞. We show that ϕ is a homeomorphism of $C\left(X \times S^{1}\right)$ by exhibiting its inverse. Indeed, let us define the function $\bar{\phi}: C\left(X \times S^{1}\right) \rightarrow$ $C\left(X \times S^{1}\right)$ by setting $\bar{\phi}(t(x, z))=t\left(x, \mathrm{e}^{2 \pi i t / n} z\right)$ for $t \in[0, \infty)$ and $(x, z) \in X \times S^{1}$ and $\bar{\phi}(\infty)=\infty$. Then $\bar{\phi}$ is continuous by an argument similar to the one just given. Also it is easily checked that the composition of ϕ and $\bar{\phi}$ in either order is the identity. So ϕ and $\bar{\phi}$ are homeomorphisms.

Next define a homeomorphism $\Phi: C\left(X \times S^{1}\right) \times S^{1} \rightarrow C\left(X \times S^{1}\right) \times S^{1}$ by $\Phi=\phi \times$ id. Clearly $\bar{\Phi}=\bar{\phi} \times$ id defines the homeomorphism of $C\left(X \times S^{1}\right) \times S^{1}$ which is the inverse of Φ.

We now prove that $\Phi(\operatorname{Cyl}(f))=\operatorname{Swl}(f)$. Let $0 \leqslant t<\infty$, and consider a typical point $p=(t(x, z), f(x, z))=\left(t(x, z), z^{n}\right)$ of the t-level of $\operatorname{Cyl}(f)$ where $(x, z) \in X \times S^{1}$. Set $z^{\prime}=\mathrm{e}^{-2 \pi \mathrm{i} t / n} z$. Then

$$
\begin{aligned}
\Phi(p) & =\left(\phi\left(t(x, z), z^{n}\right)\right)=\left(t\left(x, \mathrm{e}^{-2 \pi \mathrm{i} t / n} z\right), z^{n}\right) \\
& =\left(t\left(x, \mathrm{e}^{-2 \pi \mathrm{it} / n} z\right), \mathrm{e}^{2 \pi \mathrm{i} t}\left(\mathrm{e}^{-2 \pi \mathrm{it} / n} z\right)^{n}\right) \\
& =\left(t\left(x, z^{\prime}\right), \mathrm{e}^{2 \pi \mathrm{i} t}\left(z^{\prime}\right)^{n}\right)=\left(t\left(x, z^{\prime}\right), \mathrm{e}^{2 \pi \mathrm{it}} f\left(x, z^{\prime}\right)\right)
\end{aligned}
$$

So $\Phi(p)$ belongs to the t-level of $\operatorname{Swl}(f)$. Also $\Phi\left(\{\infty\} \times S^{1}\right)=\{\infty\} \times S^{1}$. It follows that $\Phi(\operatorname{Cyl}(f)) \subset \operatorname{Swl}(f)$, and Φ maps the t-level of $\operatorname{Cyl}(f)$ into the t-level of $\operatorname{Swl}(f)$ for $0 \leqslant t \leqslant \infty$.

A similar argument shows that $\bar{\Phi}$ maps the t-level of $\operatorname{Swl}(f)$ into the t-level of $\operatorname{Cyl}(f)$ for $0 \leqslant t \leqslant \infty$. Indeed, if $0 \leqslant t<\infty$ and $p=\left(t(x, z) \mathrm{e}^{2 \pi \mathrm{it}} f(x, z)\right)=\left(t(x, z), \mathrm{e}^{2 \pi \mathrm{it}} z^{n}\right)$ is a typical point of the t-level of $\operatorname{Swl}(f)$, and we set $z^{\prime}=\mathrm{e}^{2 \pi i t / n} z$, then

$$
\Phi(p)=\left(\bar{\phi}\left(t(x, z) \mathrm{e}^{2 \pi \mathrm{it}} z^{n}\right)\right)=\left(t\left(x, \mathrm{e}^{2 \pi \mathrm{i} t / n} z\right),\left(\mathrm{e}^{2 \pi \mathrm{i} t / n} z\right)^{n}\right)=\left(t\left(x, z^{\prime}\right), f(x, z)\right)
$$

which is a point of the t-level of $\operatorname{Cyl}(f)$. Also $\bar{\Phi}\left(\{\infty\} \times S^{1}\right)=\{\infty\} \times S^{1}$. Hence, $\bar{\Phi}(\operatorname{Swl}(f)) \subset \operatorname{Cyl}(f)$. Since $\bar{\Phi}=\Phi^{-1}$, it follows that $\Phi(\operatorname{Cyl}(f))=\operatorname{Swl}(f)$, and Φ maps the t-level of $\operatorname{Cyl}(f)$ onto the t-level of $\operatorname{Swl}(f)$ for $0 \leqslant t \leqslant \infty$.

We now exploit Theorems 1 and 2 together to state two corollaries which allows us to identify the mapping swirls of certain kinds of maps.

Corollary 1. If X is a compact metric space, $f: X \times S^{1} \rightarrow S^{1}$ and $g: X \times S^{1} \rightarrow S^{1}$ are homotopic maps, and $g(x, z)=z^{n}$ where n is a nonzero integer, then $\operatorname{Swl}(f)$ is homeomorphic to $\mathrm{Cyl}(g)$. Furthermore, the homeomorphism maps the 0 - and ∞-levels of $\operatorname{Swl}(f)$ onto the 0 - and ∞-levels of $\mathrm{Cyl}(g)$.

Corollary 2. If $f: S^{1} \rightarrow S^{1}$ is a map of degree $n \neq 0$, then $\operatorname{Swl}(f)$ is homeomorphic to $\operatorname{Cyl}\left(z \mapsto z^{n}\right)$. Furthermore, the homeomorphism maps the 0 - and ∞-levels of $\operatorname{Swl}(f)$ onto the 0 - and ∞-levels of $\operatorname{Cyl}\left(z \mapsto z^{n}\right)$. In particular, $\operatorname{Swl}(f)$ is an annulus if $n= \pm 1$, and $\operatorname{Swl}(f)$ is a Möbius strip if $n= \pm 2$.

The last assertion of this corollary follows from the observation that the mapping cylinder of the map $z \mapsto z^{n}: S^{1} \rightarrow S^{1}$ is an annulus if $n= \pm 1$, and it is a Möbius strip if $n= \pm 2$.

3. Pseudo-spines of 4-manifolds

Recall that a compact subset X of the interior of a compact manifold M is a pseudospine of M if $M-X$ is homeomorphic to $(\partial M) \times[0, \infty)$.

Let $\left\|\|\right.$ denote the Euclidean norm on $\left.\mathbb{R}^{n}:\right\| x \|=\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}$. Set $B^{n}=\left\{x \in \mathbb{R}^{n}:\|x\| \leqslant 1\right\}$ and $S^{n}=\left\{x \in \mathbb{R}^{n+1}:\|x\|=1\right\}$.

For each integer n, let $\gamma_{n}: S^{1} \rightarrow S^{1}$ denote the map $\gamma_{n}(z)=z^{n}$, and let $X(n)$ denote the adjunction space $B^{2} \cup_{\gamma_{n}} S^{1}$. Thus, $X(\pm 1)$ is a 2 -dimensional disk, and $X(\pm 2)$ is a projective plane. If $|n|>2$, then $X(n)$ is a 2 -dimensional polyhedron which is not a 2-manifold. For nonzero integers $n_{1}, n_{2}, \ldots, n_{k}$, let $X\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ denote the adjunction space $\left(B^{2} \times\{1,2, \ldots, k\}\right) \cup_{\Gamma} S^{1}$ where $\Gamma: S^{1} \times\{1,2, \ldots, k\} \rightarrow S^{1}$ is the map defined by $\Gamma(z, i)=\gamma_{n_{i}}(z)$ for $z \in S^{1}$ and $1 \leqslant i \leqslant k$. Thus, $X\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ is homeomorphic to a union of $X\left(n_{1}\right), X\left(n_{2}\right), \ldots, X\left(n_{k}\right)$ in which all the "edge circles" of the $X\left(n_{i}\right)$'s are identified with a single copy of S^{1}.

A simple closed curve C in the boundary of a manifold N is called essential if it is not homotopically trivial in ∂N. If C is essential, then any 2 -handle attached to N along C is also called essential.

Theorem 3. Suppose $C_{1}, C_{2}, \ldots, C_{k}$ are disjoint essential simple closed curves in $\partial B^{3} \times$ S^{1}, and M^{4} is the 4-manifold obtained by attaching disjoint 2 -handles to $B^{3} \times S^{1}$ along $C_{1}, C_{2}, \ldots, C_{k}$. Let $\pi: \partial B^{3} \times S^{1} \rightarrow S^{1}$ denote the projection map. For $1 \leqslant i \leqslant k$, let n_{i} denote the degree of the map $\pi \mid C_{i}: C_{i} \rightarrow S^{1}$. Then M^{4} has a pseudo-spine which is homeomorphic to $X\left(n_{1}, n_{2}, \ldots, n_{k}\right)$.

Proof. Note that $n_{i} \neq 0$ because C_{i} is essential for $1 \leqslant i \leqslant k$. We write $M^{4}=$ $\left(B^{3} \times S^{1}\right) \cup\left(H_{1} \cup H_{2} \cup \cdots \cup H_{k}\right)$ where H_{i} is the 2-handle attached to $B^{3} \times S^{1}$ along C_{i}. Thus, for $1 \leqslant i \leqslant k$, there is a homeomorphism $h_{i}: B^{2} \times B^{2} \rightarrow H_{i}$ such that $\left(B^{3} \times S^{1}\right) \cap H_{i}=h_{i}\left(\left(\partial B^{2}\right) \times B^{2}\right) \subset \partial B^{3} \times S^{1}$ and $h_{i}\left(\left(\partial B^{2}\right) \times\{0\}\right)=C_{i}$. For $1 \leqslant i \leqslant k$, set $D_{i}=h_{i}\left(B^{2} \times\{0\}\right)$; then $\partial D_{i}=C_{i}$ and D_{i} is the "core disk" of H_{i}.

Clearly $B^{3} \times S^{1}$ is homeomorphic to $\operatorname{Cyl}(\pi)$ by a homeomorphism that takes $\partial B^{3} \times S^{1}$ onto the 0-level of $\operatorname{Cyl}(\pi)$. In addition, Theorem 2 provides a homeomorphism from $\operatorname{Cyl}(\pi)$ to $\operatorname{Swl}(\pi)$ which takes the 0 -level of $\operatorname{Cyl}(\pi)$ to the 0 -level of $\operatorname{Swl}(\pi)$. The composition of these homeomorphisms allows us to identify $B^{3} \times S^{1}$ with $\operatorname{Swl}(\pi)$ so that $\partial B^{3} \times S^{1}$ is identified with the 0 -level of $\operatorname{Swl}(\pi)$. Thus, we can regard $C_{1}, C_{2}, \ldots, C_{k}$ as disjoint simple closed curves lying in the 0-level of $\operatorname{Swl}(\pi)$.

Let $1 \leqslant i \leqslant k$. Observe that $\operatorname{Swl}\left(\pi \mid C_{i}\right)$ can be naturally identified with a subset of $\operatorname{Swl}(\pi)$ so that the 0-level of $\operatorname{Swl}\left(\pi \mid C_{i}\right)$ is the subset of the 0 -level of $\operatorname{Swl}(\pi)$ identified with C_{i}, and ∞-levels of $\operatorname{Swl}\left(\pi \mid C_{i}\right)$ and $\operatorname{Swl}(\pi)$ coincide. Since $\pi \mid C_{i}: C_{i} \rightarrow S^{1}$ is a map of degree n_{i}, then Corollary 3 provides a homeomorphism from $\operatorname{Swl}\left(\pi \mid C_{i}\right)$ to the mapping cylinder of the map $z \mapsto z^{n_{i}}: S^{1} \rightarrow S^{1}$ which preserves 0 -levels and ∞-levels. Since C_{i} is the 0 -level of $\operatorname{Swl}\left(\pi \mid C_{i}\right)$ and $C_{i}=\partial D_{i}$, then clearly $\operatorname{Swl}\left(\pi \mid C_{i}\right) \cup D_{i}$ is homeomorphic to $X\left(n_{i}\right)$.

Set $X=\bigcup_{i=1}^{k} \operatorname{Swl}\left(\pi \mid C_{i}\right) \cup D_{i}$. Then X is a compact subset of $\operatorname{int}\left(M^{4}\right)$, and X is clearly homeomorphic to $X\left(n_{1}, n_{2}, \ldots, n_{k}\right)$.

It remains to prove that $M^{4}-X$ is homeomorphic to (∂M^{4}) $\times[0, \infty$). Observe that $M^{4}-X$ is the union of $\operatorname{Swl}(\pi)-\bigcup_{i=1}^{h} \operatorname{Swl}\left(\pi \mid C_{i}\right)$ and the sets $H_{i}-D_{i}$ for $1 \leqslant i \leqslant k$. Furthermore, $\operatorname{Swl}(\pi)-\bigcup_{i=1}^{k} \operatorname{Swl}\left(\pi \mid C_{i}\right)$ is the union of the fibers of $\operatorname{Swl}(\pi)$ that emanate from the points of $\left(\partial B^{3} \times S^{1}\right)-\bigcup_{i=1}^{k} C_{i}$, and each of these fibers is homeomorphic to $[0, \infty)$. We will "extend" these fibers to fill the sets $H_{i}-D_{i}, 1 \leqslant i \leqslant k$.

We will define a homeomorphism $G:\left(\partial M^{4}\right) \times[0, \infty) \rightarrow M^{4}-X$. To begin, there is clearly a homeomorphism $F:\left(\partial B^{3} \times S^{1}\right) \times[0, \infty) \rightarrow \operatorname{Swl}(\pi)-\left(\{\infty\} \times S^{1}\right)$ which takes $\{(x, z)\} \times[0, \infty)$ onto the (x, z)-fiber of $\operatorname{Swl}(\pi)$, for $(x, z) \in \partial B^{3} \times S^{1}$. Indeed, the formula $F((x, z), t)=\left(t(x, z), \mathrm{e}^{2 \pi \mathrm{it}} z\right)$ for $((x, z), t) \in\left(\partial B^{3} \times S^{1}\right) \times[0, \infty)$ determines such a homeomorphism.

For each $i, 1 \leqslant i \leqslant k$, set

$$
A_{i}=h_{i}\left(\left(\partial B^{2}\right) \times B^{2}\right) \quad \text { and } \quad B_{i}=h_{i}\left(B^{2} \times\left(\partial B^{2}\right)\right)
$$

A_{i} is called the attaching tube of H_{i}, and B_{i} is called the belt tube of H_{i}. Then $A_{i}=$ $\operatorname{Swl}(\pi) \cap H_{i}$ and

$$
\partial M^{4}=\left(\left(\partial B^{3} \times S^{l}\right)-\bigcup_{i=1}^{k} \operatorname{int}\left(A_{i}\right)\right) \cup\left(\bigcup_{i=1}^{k} B_{i}\right)
$$

We set

$$
\begin{aligned}
& G \mid\left(\left(\partial B^{3} \times S^{1}\right)-\bigcup_{i=1}^{k} \operatorname{int}\left(A_{i}\right)\right) \times[0, \infty) \\
& \quad=F \mid\left(\left(\partial B^{3} \times S^{1}\right)-\bigcup_{i=1}^{k} \operatorname{int}\left(A_{i}\right)\right) \times[0, \infty)
\end{aligned}
$$

It remains to define $G \mid B_{i} \times[0, \infty)$ for $1 \leqslant i \leqslant k$. Consider a point $p \in B_{i}$. Then $p=h_{i}(x, y)$ where $(x, y) \in B^{2} \times\left(\partial B^{2}\right)$. If $x=0$, then $G(\{p\} \times[0, \infty))$ is the "deleted radius" $h_{i}(\{(0, t y): 0<t \leqslant 1\})$ of the disk $h_{i}\left(\{0\} \times B^{2}\right)$ joining the center point $h_{i}(0,0)$ to p. If $x \neq 0$, then $G(\{p\} \times[0, \infty))$ is the union of an arc in H_{i} joining the point p to a point $q \in A_{i}$ together with the ray $F(\{q\} \times[0, \infty))$. Moreover, the arc in H_{i} joining p to q is the h_{i}-image of the subarc of the "hyperbola" $\{(s x, t y): s t=1\}$ joining the point (x, y) to the point $(x /\|x\|,\|x\| y)$. So $q=h_{i}(x /\|x\|,\|x\| y)$.

The precise definition of G follows. As we stated earlier,

$$
\begin{aligned}
& G \mid\left(\left(\partial B^{3} \times S^{1}\right)-\bigcup_{i=1}^{k} \operatorname{int}\left(A_{i}\right)\right) \times[0, \infty) \\
& \quad=F \mid\left(\left(\partial B^{3} \times S^{1}\right)-\bigcup_{i=1}^{k} \operatorname{int}\left(A_{i}\right)\right) \times[0, \infty)
\end{aligned}
$$

Now suppose $1 \leqslant i \leqslant k, p \in B_{i}$ and $p=h_{i}(x, y)$, where $(x, y) \in B^{2} \times\left(\partial B^{2}\right)$. If $x=0$, then

$$
G(p, t)-h_{i}\left(0,\left(\frac{1}{t+1}\right) y\right) \quad \text { for } 0 \leqslant t<\infty
$$

If $x \neq 0$, then

$$
G(p, t)= \begin{cases}h_{i}\left((t+1) x,\left(\frac{1}{t+1}\right) y\right), & \text { if } 0 \leqslant t \leqslant \frac{1}{\|x\|}-1 \\ F\left(h_{i}\left(\frac{x}{\|x\|},\|x\| y\right), t+1-\frac{1}{\|x\|}\right), & \text { if } \frac{1}{\|x\|}-1 \leqslant t<\infty\end{cases}
$$

The following remarks are intended to further clarify the properties of G. G maps

$$
\left(\left(\partial B^{3} \times S^{1}\right)-\bigcup_{i=1}^{k} \operatorname{int}\left(A_{i}\right)\right) \times[0, \infty)
$$

onto

$$
\operatorname{Swl}\left(\pi \mid\left(\left(\partial B^{3} \times S^{1}\right)-\bigcup_{i=1}^{k} \operatorname{int}\left(A_{i}\right)\right)\right)
$$

For $1 \leqslant i \leqslant k, G$ maps

$$
\left\{(p, t) \in B_{i} \times[0, \infty): 0 \leqslant t \leqslant \frac{1}{\|x\|}-1, p=h_{i}(x, y),(x, y) \in B^{2} \times\left(\partial B^{2}\right)\right\}
$$

onto $H_{i}-D_{i}$, and G maps

$$
\left\{(p, t) \in B_{i} \times[0, \infty): \frac{1}{\|x\|}-1 \leqslant 1<\infty, p=h_{i}(x, t),(x, y) \in B^{2} \times\left(\partial B^{2}\right)\right\}
$$

onto $\operatorname{Swl}\left(\pi \mid A_{i}-C_{i}\right)$.
Corollary 3. Suppose C is a simple closed curve in $\left(\partial B^{3}\right) \times S^{1}$, and $M^{4}=\left(B^{3} \times S^{1}\right) \cup H$ where H is a 2-handle attached to $B^{3} \times S^{1}$ along C. Let $\pi: B^{3} \times S^{1} \rightarrow S^{1}$ denote the projection map, and suppose that the map $\pi \mid C: C \rightarrow S^{1}$ is degree one. Then M^{4} has an arc pseudo-spine.

Proof. Theorem 3 provides M^{4} with a pseudo-spine X that is homeomorphic to the 2 -dimensional disk $X(1)$. According to [3], X can be "squeezed" to an arc in int $\left(M^{4}\right)$. In other words, there is an arc A in $\operatorname{int}\left(M^{4}\right)$ and an onto map $f: M^{4} \rightarrow M^{4}$ such that $f(X)=A$ and f maps $M^{4}-X$ homeomorphically onto $M^{4}-A$. (Interpreted literally, [3] applies only in manifolds of dimension 3. However, the methods of [3] work in manifolds of all dimensions $\geqslant 3$. This is fully explained on p .95 of [2].) Consequently, $M^{4}-A$ is homeomorphic to $\partial M^{4} \times[0, \infty)$, making A an arc pseudo-spine of M^{4}.

Since Mazur's compact contractible 4 -manifold [6] is obtained by attaching a 2 -handle to $B^{3} \times S^{1}$ along a degree one curve, we recover the result of $[5,3]$.

Corollary 4. Mazur's compact contractible 4-manifold has an arc pseudo-spine.

4. Conjectures

The results proved in this paper exhibit simple pseudo-spines for a very modest collection of 4 -manifolds: those obtained by attaching essential 2-handles to $B^{3} \times S^{1}$. The following conjectures are founded on the possibly naive hope that these results can be extended to a more general class of compact 4-manifolds.

Conjecture 1. If a compact 4 -manifold with boundary is homotopy equivalent to $X\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ (where $n_{1}, n_{2}, \ldots, n_{k}$ are nonzero integers), then it has a pseudospine which is homeomorphic to $X\left(n_{1}, n_{2}, \ldots, n_{k}\right)$.

In the case of a compact contractible 4-manifold, Conjecture 1 combined with the result of [3] would yield:

Conjecture 2. Every compact contractible 4-manifold has an arc pseudo-spine.

Corollary 3 provides an arc pseudo-spine for every compact contractible 4-manifold that is obtained by attaching a 2 -handle to $B^{3} \times S^{1}$. Such a 4 -manifold has a handlebody decomposition consisting of a single 0 -handle, a single 1 -handle and a single 2 -handle. No 3- or 4-handles are needed. This suggests breaking Conjecture 2 into the following two parts.

Conjecture 2A. Every piecewise linear compact contractible 4 -manifold has a handlebody decomposition with no 3- or 4-handles.

Conjecture 2B. Every compact contractible 4-manifold that has a handlebody decomposition with no 3 - or 4 -handles has an arc pseudo-spine.

Here is a less general and apparently more elementary question than those raised by the previous conjectures. If M^{4} and N^{4} are 4-manifolds with boundary, define their boundary connected sum $M^{4} \cup_{\partial} N^{4}$ to be the adjunction space $M^{4} \cup_{h} N^{4}$ where h is a homeomorphism from a collared 3-ball in ∂M^{4} to a collared 3-ball in ∂N^{4}.

Conjecture 3. If two compact 4-manifolds have arc pseudo-spines, then so does their boundary-connected sum.

If two compact contractible 4 -manifolds are each obtained by attaching a single 2-handle to $B^{3} \times S^{1}$, then their boundary connected sum has a tree pseudo-spine which is homeomorphic to the letter " H ". This is proved by using the methods of the proof of Theorem 3 and [3]. (Recall that a tree is a compact contractible 1-dimensional polyhedron.) This raises the question of whether a tree pseudo-spine can be simplified to an arc pseudo-spine. We can ask, more generally, whether a compact 1-dimensional polyhedral pseudo-spine be simplified to a homotopy equivalent canonical model.

Conjecture 4. If a compact 4-manifold has a tree pseudo-spine, then it has an arc pseudospine.

Conjecture 5. If a compact noncontractible 4-manifold has a pseudo-spine which is a compact 1 -dimensional polyhedron, then it has a pseudo-spine which is a wedge of circles.

There are clear limitations on the amount to which a pseudo-spine can be simplified within its homotopy class. If a compact 4-manifold has a point pseudo-spine, then it is a cone over its boundary, which implies that its boundary is simply connected. On the other hand, there are compact contractible 4-manifolds with nonsimply connected boundaries which have arc pseudo-spines (e.g., the Mazur manifold). Clearly, the arc pseudo-spines of such manifolds can't be simplified to points.

The study of spines and pseudo-spines pursued in this paper and in [1] was partially motivated by the question of whether a compact contractible n-manifold other than the n-ball can have disjoint spines. (The existence of disjoint spines is equivalent to the existence of disjoint pseudo-spines.) In [4] it is shown that for $n \geqslant 9$, there is a large family of distinct compact contractible n-manifolds with disjoint spines. We conjecture a different situation in dimension 4.

Conjecture 6. The only compact contractible 4-manifold that has disjoint spines is the 4-ball.

We conclude with some remarks concerning Conjectures 2, 2A and 2B. The "classical" examples of compact contractible 4-manifolds include, in addition to the Mazur 4 -manifold, those described by Poénaru in [7]. We will sketch the construction of Poénaru's examples, and we will explain why many Poénaru 4-manifolds have handlebody decompositions with no 3- or 4-handles. Hence, they provide some evidence for Conjecture 2A. The authors, however, do not know whether Poénaru's examples have arc pseudo-spines. These manifolds are, thus, a likely place to take up the study of Conjectures 2 and 2B.

The following discussion fits most naturally into the piecewise linear category. For this reason we identify the n-ball B^{n} with $[0,1]^{n}$ for the remainder of the paper. A locally unknotted piecewise linearly embedded 2-dimensional disk D in B^{4} such that $D \cap\left(\partial B^{4}\right)=\partial D$ is called a slice disk in B^{4} and ∂D is called a slice knot in ∂B^{4}. A piecewise linear simple closed curve J is ∂B^{4} is called a ribbon knot if there is a piecewise linear map $f: B^{2} \rightarrow \partial B^{4}$ which maps ∂B^{2} onto J such that the singular set of f -

$$
\left\{p \in \partial B^{4}: f^{-1}(p) \text { contains more than one point }\right\}
$$

-is the union of a pairwise disjoint collection of piecewise linear arcs $A_{1}, A_{2}, \ldots, A_{k}$ in ∂B^{4} and for $1 \leqslant i \leqslant k, f^{-1}\left(A_{i}\right)$ is the union of two disjoint piecewise linear arcs A_{i}^{\prime} and $A_{i}^{\prime \prime}$ in B^{2} where $A_{i}^{\prime} \subset \operatorname{int}\left(B^{2}\right), A_{i}^{\prime \prime} \cap\left(\partial B^{2}\right)=\partial A_{i}^{\prime \prime}$, and f maps each of A_{i}^{\prime} and $A_{i}^{\prime \prime}$ homeomorphically onto A_{i}. Clearly f can be homotoped rel ∂B^{2} to a piecewise linear embedding whose image is a slice disk by pushing $f \operatorname{lint}\left(B^{2}\right)$ radially into $\operatorname{int}\left(B^{4}\right)$ and pushing $f \mid A_{i}^{\prime}$ "deeper" than the rest of $f \mid \operatorname{int}\left(B^{2}\right)$. The slice disk formed in this manner is called a ribbon disk. Thus, every ribbon knot is a slice knot. The converse assertion: every slice knot is a ribbon knot, is one of the fundamental unresolved problems of knot theory.

Poénaru's construction of a compact contractible 4-manifold begins with a slice disk D in B^{4} such that ∂D is knotted in ∂B^{4} and with a knotted piecewise linear simple closed
curve K in the boundary of a second 4-ball \widetilde{B}^{4}. Let N be a regular neighborhood of D in B^{4} such that $N \cap\left(\partial B^{4}\right)$ is a regular neighborhood of ∂D in ∂B^{4}. Set $A=\operatorname{cl}\left(B^{4}-N\right) \cap N$. Then A is a solid torus (i.e., A is piecewise linearly homeomorphic to $S^{1} \times B^{2}$), and we can think of N as a 2 -handle attached to $\operatorname{cl}\left(B^{4}-N\right)$ along A to yield B^{4}. Let T be a regular neighborhood of K in $\partial \widetilde{B}^{4}$. Then T is a solid torus. Let $g: T \rightarrow A$ be a piecewise linearly homeomorphism. Now define the Poénaru 4-manifold $P^{4}(D, K)$ to be the adjunction space $\widetilde{B}^{4} \cup_{g} \mathrm{cl}\left(B^{4}-N\right)$. We can think of \widetilde{B}^{4} as a "knotted 2-handle" with knotted attaching tube T which is attached to $\mathrm{cl}\left(B^{4}-N\right)$ by the homeomorphism $g: T \rightarrow$ A to yield $P^{4}(D, K)$. To see that $P^{4}(D, K)$ is contractible, notice that $\operatorname{cl}\left(B^{4}-N\right)$ becomes contractible if the core curve of A is "killed", and attaching \widetilde{B}^{4} to $\operatorname{cl}\left(B^{4}-N\right)$ by g "kills" this curve. However, $\partial P^{4}(D, K)$ is not simply connected because it is the union of the two nontrivial knot complements $\operatorname{cl}\left(\partial B^{4}-\left(N \cap\left(\partial B^{4}\right)\right)\right)$ and $\operatorname{cl}\left(\partial B^{4}-T\right)$. See [7] for further details.

Finally we verify that some Poénaru 4-manifolds have handlebody decompositions with no 3- or 4-handles.

Proposition. If D is a ribbon disk in B^{4} and K is a piecewise linear knot in $\partial \widetilde{B}^{4}$, then the Poénaru 4-manifold $P^{4}(D, K)$ has a handlebody decomposition with no 3- or 4-handles.

Proof. Let N, A, T and g be as in the paragraph describing the construction of $P^{4}(D, K)$. To prove the Proposition, we will established two assertions.
(a) $\mathrm{cl}\left(B^{4}-N\right)$ has a handlebody decomposition with no 3- or 4-handles.
(b) There is a piecewise linear homeomorphism from \widetilde{B}^{4} to $B^{3} \times[0,1]$ which identifies T with a subset $T_{0} \times\{0\}$ of $B^{3} \times\{0\}$ so that $B^{3} \times[0,1]$ is obtained from $T_{0} \times[0,1]$ by attaching 1 - and 2-handles to $\left(\partial T_{0}\right) \times[0,1]$.

The proof of the Proposition is then completed by noting that since $\operatorname{cl}\left(B^{4}-N\right)$ is piecewise linearly homeomorphic to $\left(T_{0} \times[0,1]\right) \cup_{g} \operatorname{cl}\left(B^{4}-N\right)$, then by assertion (a), $\left(T_{0} \times[0,1]\right) \cup_{g} \mathrm{cl}\left(B^{4}-N\right)$ has a handlebody decomposition with no 3- or 4-handles. Furthermore, by assertion (b), $\left(B^{3} \times[0,1]\right) \cup_{g} \mathrm{cl}\left(B^{4}-N\right)$ is obtained from $\left(T_{0} \times[0,1]\right) \cup_{g}$ $\mathrm{cl}\left(B^{4}-N\right)$ by attaching 1- and 2-handles. We conclude that $\left(B^{3} \times[0,1]\right) \cup_{g} \operatorname{cl}\left(B^{4}-N\right)=$ $P^{4}(D, K)$ has a handlebody decomposition with no 3- or 4-handles.

We now demonstrate assertion (a): $\operatorname{cl}\left(B^{4}-N\right)$ has a handlebody decomposition with no 3- or 4-handles. (Evidently, a related fact is proved in [8], though the language there is quite different.) We can identify B^{4} with $B^{3} \times[0,1]$ so that $\partial D \subset \operatorname{int}\left(B^{3}\right) \times\{1\}$. Furthermore, we can assume that the ribbon disk D is positioned in a special way that we now describe. D arises from a map $f: B^{2} \rightarrow \operatorname{int}\left(B^{3}\right) \times\{1\}$ with singular set equal to the union of a pairwise disjoint collection of arcs $A_{1}, A_{2}, \ldots, A_{k}$ such that for $1 \leqslant i \leqslant k$, $f^{-1}\left(A_{i}\right)$ is the union of two disjoint arcs A_{i}^{\prime} and $A_{i}^{\prime \prime}$ in B^{2} where $A_{i}^{\prime} \subset \operatorname{int}\left(B^{2}\right)$, $A_{i}^{\prime \prime} \cap\left(\partial B^{2}\right)=\partial A_{i}^{\prime \prime}$, and f maps each of A_{i}^{\prime} and $A_{i}^{\prime \prime}$ homeomorphically onto A_{i}.

We impose a "collared" handlebody decomposition on B^{2} as follows. The 0 -handles are disjoint disks $E_{1}, E_{2}, \ldots, E_{k}$ in $\operatorname{int}\left(B^{2}\right)$ such that $A_{i}^{\prime} \subset \operatorname{int}\left(E_{i}\right)$ and $E_{i} \cap A_{j}^{\prime \prime}=\emptyset$ for $1 \leqslant i, j \leqslant k$. For $1 \leqslant i \leqslant k$, we add an exterior collar to E_{i} to obtain a slightly
larger disk $E_{i}^{+} \operatorname{in} \operatorname{int}\left(B^{2}\right)$ so that $E_{1}^{+}, E_{2}^{+}, \ldots, E_{k}^{+}$are pairwise disjoint and are disjoint from $A_{1}^{\prime \prime}, A_{2}^{\prime \prime}, \ldots, A_{k}^{\prime \prime}$. Next we connect the k disks $E_{1}^{+}, E_{2}^{+}, \ldots, E_{k}^{+}$with $k-1$ disjoint 1-handles or "bands" $F_{1}, F_{2}, \ldots, F_{k-1}$ in $\operatorname{int}\left(B^{2}\right)-\bigcup_{i=1}^{k} \operatorname{int}\left(E_{i}^{+}\right)$. Set

$$
G=\left(\bigcup_{i=1}^{k} E_{i}^{+}\right) \cup\left(\bigcup_{j=1}^{k-1} F_{j}\right)
$$

Then G is a disk in $\operatorname{int}\left(B^{2}\right)$. For $1 \leqslant j \leqslant k-1$, each of the sets $\left(\partial F_{j}\right) \cap\left(\bigcup_{j=1}^{k} E_{i}^{+}\right)$ and $\left(\partial F_{j}\right) \cap(\partial G)$ is the union of two disjoint arcs in ∂F_{j}, and these four arcs subdivide ∂F_{j} and have disjoint interiors. We add an exterior collar to G to obtain a slightly larger disk G^{+}in $\operatorname{int}\left(B^{2}\right)$. Of course, $B^{2}-\operatorname{int}\left(G^{+}\right)$is an annulus.

To form the ribbon disk D from the map f, we push f "vertically" down the $[0,1]$-fibers of $B^{3} \times[0,1]$ and make some minor "horizontal" adjustments to achieve an embedding with the following properties. (We now identify B^{2} with its image D.) The 0 -handles $E_{1}, E_{2}, \ldots, E_{k}$ lie in the level $B^{3} \times\{1 / 4\}$. For $1 \leqslant i \leqslant k$, the collar $E_{i}^{+}-\operatorname{int}\left(E_{i}\right)$ lies vertically over ∂E_{i} in the product $B^{3} \times[1 / 4,1 / 2]$ so that ∂E_{i}^{+}lies in the level $B^{3} \times\{1 / 2\}$. The 1 -handles $F_{1}, F_{2}, \ldots, F_{k-1}$ lie in the level $B^{3} \times\{1 / 2\}$. The collar $G^{+}-\operatorname{int}(G)$ lies vertically over ∂G in the product $B^{3} \times[1 / 2,3 / 4]$ so that ∂G^{+}lies in the level $B^{3} \times\{3 / 4\}$. The annulus $D-\operatorname{int}\left(G^{+}\right)$lies in the product $B^{3} \times[3 / 4,1]$ so that each level circle of the annulus lies in a $B^{3} \times\{t\}$-level and, of course, ∂D lies in $B^{3} \times\{1\}$.

Let $\pi: B^{3} \times[0,1] \rightarrow B^{3}$ denote projection. The regular neighborhood N of D can be assumed to have the following form:

$$
\begin{aligned}
N= & \left(N_{1} \times[1 / 4-\delta, 1 / 4+\delta]\right) \cup\left(N_{2} \times[1 / 4+\delta, 1 / 2-\delta]\right) \\
& \cup\left(N_{3} \times[1 / 2-\delta, 1 / 2+\delta]\right) \cup\left(N_{4} \times[1 / 2+\delta, 3 / 4]\right) \cup N_{5}
\end{aligned}
$$

where N_{1}, N_{2}, N_{3} and N_{4} are regular neighborhoods of $\pi\left(D \cap\left(B^{3} \times\{t\}\right)\right)$ in int $\left(B^{3}\right)$ for $t=1 / 4,3 / 8,1 / 2$ and $5 / 8$, respectively. N_{5} is a regular neighborhood of the annulus $D-\operatorname{int}\left(G^{+}\right)$in $B^{3} \times[3 / 4,1]$, and $0<\delta<1 / 8$.
N_{1} is a regular neighborhood of the union of the k disks $\pi\left(E_{i}\right), 1 \leqslant i \leqslant k$; and N_{2} is a regular neighborhood of the union of the k simple closed curves $\pi\left(\partial E_{i}\right), 1 \leqslant i \leqslant k$. Thus, N_{1} has k components each of which is a 3-ball containing one of the disks $\pi\left(F_{i i}\right)$, and N_{2} has k components each of which is a solid torus containing one of the simple closed curves $\pi\left(\partial E_{i}\right)$. Moreover, we can assume that $N_{2} \subset N_{1}$, and that $\operatorname{cl}\left(N_{1}-N_{2}\right)$ has k components each of which is a 3-ball that intersects $\mathrm{cl}\left(B^{3}-N_{1}\right)$ in a pair of disjoint boundary disks. This allows us to view each component of $\operatorname{cl}\left(N_{1}-N_{2}\right)$ as a 3-dimensional 1-handle attached to $\operatorname{cl}\left(B^{3}-N_{1}\right)$. Hence, $\operatorname{cl}\left(B^{3}-N_{2}\right)$ is obtained by attaching k 3-dimensional 1-handles (the components of $\operatorname{cl}\left(N_{1}-N_{2}\right)$) to $\operatorname{cl}\left(B^{3}-N_{1}\right)$.

Let X denote the union of the simple closed curves $\partial E_{i}^{+}, 1 \leqslant i \leqslant k$, and the "bands" $F_{j}, 1 \leqslant j \leqslant k . N_{3}$ is a regular neighborhood of $\pi(X)$. Hence, we can assume that $N_{2} \subset N_{3}$ and that N_{3} is obtained from N_{2} by attaching $k-1$ 3-dimensional 1-handles, each 1-handle containing one of the disks $\pi\left(F_{j}\right) . N_{4}$ is a regular neighborhood of $\pi(\partial G)$, and ∂G is obtained from X by removing from X all of F_{j} except for the
two arcs comprising $F_{j} \cap(\partial G)$ for $1 \leqslant j \leqslant k-1$. It follows that we can assume that $N_{4} \subset N_{3}$, and that $\operatorname{cl}\left(N_{3}-N_{4}\right)$ has $k-1$ components each of which is a 3-ball that intersects $\mathrm{cl}\left(B^{3}-N_{3}\right)$ in a boundary annulus. This allows us to view each component of $\mathrm{cl}\left(N_{3}-N_{4}\right)$ as a 3-dimensional 2-handle attached to $\operatorname{cl}\left(B^{3}-N_{3}\right)$. Hence, $\operatorname{cl}\left(B^{3}-N_{4}\right)$ is obtained by attaching $k-1$-dimensional 2-handles (the components of $\operatorname{cl}\left(N_{3}-N_{4}\right)$) to $\operatorname{cl}\left(B^{3}-N_{3}\right)$.

The following seven assertions clearly imply that $\mathrm{cl}\left(B^{4}-N\right)$ has a handlebody decomposition involving no 3- or 4-handles.
(i) $Y_{0}=B^{3} \times[0,1 / 4-\delta]$ is a 4 -ball and can, thus, be regarded as a 0 -handle.
(ii) $Y_{0+}=Y_{0} \cup\left(\mathrm{cl}\left(B^{3}-N_{1}\right) \times[1 / 4-\delta, 1 / 2-\delta]\right)$ is homeomorphic to Y_{0}.
(iii) $Y_{1}=\operatorname{cl}\left(B^{3} \times[0,1 / 2-\delta]-N\right)$ is obtained from Y_{0+} by attaching 1-handles.
(iv) $Y_{1+}=Y_{1} \cup\left(\mathrm{cl}\left(B^{3}-N_{3}\right) \times[1 / 2-\delta, 3 / 4]\right)$ is homeomorphic to Y_{1}.
(v) $Y_{2}=\mathrm{cl}\left(B^{3} \times[0,3 / 4]-N\right)$ is obtained from Y_{1+} by attaching 2-handles.
(vi) $Y_{2+}=Y_{2} \cup\left(\operatorname{cl}\left(B^{3}-N_{4}\right) \times[3 / 4,1]\right)$ is homeomorphic to Y_{2}.
(vii) $\mathrm{cl}\left(B^{4}-N\right)$ is homeomorphic to Y_{2+}.

Assertions (i), (ii), (iv) and (vi) are immediate.
To prove assertion (iii), observe that $Y_{1}=Y_{0+} \cup\left(\mathrm{cl}\left(N_{1}-N_{2}\right) \times\left[\begin{array}{ll}1 / 4+\delta, 1 / 2 & \delta\end{array}\right]\right)$. Since $\operatorname{cl}\left(N_{1}-N_{2}\right)$ can be viewed as the union of k 3-dimensional 1-handles attached to $\operatorname{cl}\left(B^{3}-N_{1}\right)$, then $\operatorname{cl}\left(N_{1}-N_{2}\right) \times[1 / 4+\delta, 1 / 2-\delta]$ can be viewed as the union of k 4-dimensional 1-handles attached to Y_{0+} along $\left(\partial \mathrm{cl}\left(B^{3}-N_{1}\right)\right) \times[1 / 4+\delta, 1 / 2-\delta]$. Hence, Y_{1} is obtained from Y_{0+} by attaching $k 4$-dimensional 1-handles.

To prove assertion (v), observe that $Y_{2}=Y_{1+} \cup\left(\mathrm{cl}\left(N_{3}-N_{4}\right) \times[1 / 2+\delta, 3 / 4]\right)$. Since $\mathrm{cl}\left(N_{3}-N_{4}\right)$ can be viewed as the union of $k-1$ 3-dimensional 2-handles attached to $\operatorname{cl}\left(B^{3}-N_{3}\right)$, then $\operatorname{cl}\left(N_{3}-N_{4}\right) \times[1 / 2+\delta, 3 / 4]$ can be viewed as the union of $k-1$ 4-dimensional 2-handles attached to Y_{1+} along $\left(\partial \mathrm{cl}\left(B^{3}-N_{3}\right)\right) \times[1 / 2+\delta, 3 / 4]$. Hence, Y_{2} is obtained from Y_{1+} by attaching $k-14$-dimensional 2-handles.

Finally, to prove assertion (vii), we observe that the original map $f: B^{2} \rightarrow B^{3} \times\{1\}$ embeds the annulus $B^{2}-\operatorname{int}\left(G^{+}\right)$. Hence, there is a piecewise linear ambient isotopy of $B^{3} \times\{1\}$ which "drags" $f\left(\partial G^{+}\right)$through the level circles of the annulus $f\left(B^{2}-\right.$ $\operatorname{int}\left(G^{+}\right)$). This ambient isotopy can be "spread out" as a level preserving piecewise linear homeomorphism h of $B^{3} \times[3 / 4,1]$ which restricts to the identity on $B^{3} \times\{3 / 4\}$, which carries the "cylinder" $\pi\left(\partial G^{+}\right) \times[3 / 4,1]$ onto the annulus $D-\operatorname{int}\left(G^{+}\right)$, and which carries $N_{4} \times[3 / 4,1]$ onto N_{5}. (If $h\left(N_{4} \times[3 / 4,1]\right) \neq N_{5}$ initially, we correct this by redefining N_{5}.) We extend h over $B^{3} \times[0,3 / 4]$ via the identity. Then h carries Y_{2+} onto

$$
Y_{2} \cup \mathrm{cl}\left(B^{3} \times[3 / 4,1]-N_{5}\right)=\operatorname{cl}\left(B^{3} \times[0,1]-N\right)=\operatorname{cl}\left(B^{4}-N\right)
$$

This completes the proof of assertion (a): $\mathrm{cl}\left(B^{4}-N\right)$ has a handlebody decomposition with no 3- or 4-handles.

It remains to demonstrate assertion (b): there is a piecewise linear homeomorphism from \widetilde{B}^{4} to $B^{3} \times[0,1]$ which identifies T with a subset $T_{0} \times\{0\}$ of $B^{3} \times\{0\}$ so that $B^{3} \times[0,1]$ is obtained from $T_{0} \times[0,1]$ by attaching 1- and 2-handles to $\left(\partial T_{0}\right) \times[0,1]$. Let C^{3} be a 3-ball in $\partial \widetilde{B}^{4}$ such that $T \subset \operatorname{int}\left(C^{3}\right) . C^{3}-\operatorname{int}(T)$ has a handlebody decomposition based on T; in other words, C^{3} can be obtained by attaching $0-, 1-, 2$ -
and 3 -handles to T. The 0 -handles of this decomposition can be eliminated by cancelling them with some 1 -handles, and the 3 -handles can be eliminated by cancelling them with some 2 -handles. These cancellations can be performed without moving T, but then C^{3} may be forced to move. At the end of the process, T is still a subset of the (possibly repositioned) 3-ball C^{3}. (T may no longer be interior to C^{3}.) Now C^{3} is obtained by attaching 1- and 2-handles to T. Since C^{3} is a piecewise linear 3-ball in $\partial \widetilde{B}^{4}$, there is a piecewise linear homeomorphism $k: B^{3} \times[0,1] \rightarrow \widetilde{B}^{4}$ such that $k\left(B^{3} \times\{0\}\right)=C^{3}$. There is a solid torus T_{0} in B^{3} such that $k\left(T_{0} \times\{0\}\right)=T$. It follows that B^{3} can be obtained from T_{0} by adding 3-dimensional 1- and 2-handles. By "crossing" each of these handles with $[0,1]$, we see that $B^{3} \times[0,1]$ can be obtained from $T_{0} \times[0,1]$ by attaching 4 -dimensional 1- and 2-handles to $\left(\partial T_{0}\right) \times[0,1]$. This proves assertion (b).

Acknowledgment

The authors wish to thank Andrew Casson and Martin Scharlemann for a helpful discussion concerning Conjectures 2, 2A and 2B and the Proposition.

References

[1] F.D. Ancel and C.R. Guilbault, Compact contractible n-manifolds have arc spines ($n \geqslant 5$), Pacific J. Math. 168 (1995) 1-10.
[2] R.J. Daverman, Decompositions of Manifolds (Academic Press, Orlando, FL, 1986).
[3] R.J. Daverman and W.T. Eaton, An equivalence for the embeddings of cells in a 3-manifold, Trans. Amer. Math. Soc. 145 (1969) 369-381.
[4] C.R. Guilbault, Some compact contractible manifolds containing disjoint spines, Topology 34 (1995) 99-108.
[5] C.H. Giffen, Disciplining dunce hats in 4-manifolds, unpublished manuscript, 1976.
[6] B. Mazur, A note on some contractible 4-manifolds, Ann. of Math. 73 (1961) 221-228.
[7] V. Poénaru, Les décompositions de l'hypercube en produit topologique, Bull. Soc. Math. France 88 (1960) 113-129.
[8] T. Yanagawa, On ribbon 2-knots II, Osaka J. Math. 6 (1969) 465-473.

[^0]: * Corresponding author. E-mail: ancel@csd.uwm.edu.
 ${ }^{1}$ E-mail: craigg@csd.uwm.edu.

