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Abstract

A compact subset X of the interior of a compact manifold M is a pseudo-spine of M if M — X
is homeomorphic to (M) x [0, co). It is proved that a 4-manifold obtained by attaching k essential
2-handles to a B® x S' has a pseudo-spine which is obtained by attaching k B*s to an S' by
maps of the form z — z™. This result recovers the fact that the Mazur 4-manifold has a disk
pseudo-spine (which may then be shrunk to an arc). To prove this result, the mapping swirl (a
“swirled” mapping cylinder) of a map to a circle is introduced, and a fundamental property of
mapping swirls is established: homotopic maps to a circle have homeomorphic mapping swirls.

Several conjectures concerning the existence of pseudo-spines in compact 4-manifolds are stated
and discussed, including the following two related conjectures: every compact contractible 4-
manifold has an arc pseudo-spine, and every compact contractible 4-manifold has a handlebody
decomposition with no 3- or 4-handles. It is proved that an important class of compact contractible
4-manifolds described by Poénaru satisfies the latter conjecture.

Keywords: Pseudo-spine; Mazur 4-manifold; Mapping swirl; Poénaru 4-manifolds

AMS classification: 5TN13

1. Introduction

A compact subset X of the interior of a compact manifold M is a called a (topological)
spine of M if M is homeomorphic to the mapping cylinder of a map from dM to X.
X is called a pseudo-spine of M if M — X is homeomorphic to (9M) x [0, c0).

It is proved in [1] that for n 2 5, every compact contractible n-manifold has a wild
arc spine. It is observed, however, that in general compact contractible 4-manifolds don’t
have arc spines. In fact, a compact contractible 4-manifold with an arc spine must be
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either a 4-ball or the cone over a nontrivial homotopy 3-sphere (if one exists). Thus, a
compact contractible 4-manifold with a nonsimply connected boundary can’t have an arc
spine.

The Mazur 4-manifold [6] is a compact contractible 4-manifold with a nonsimply
connected boundary. It is a well-known consequence of [5,3] that the Mazur 4-manifold
has an arc pseudo-spine.

The naively optimistic conjecture motivating this paper is: every compact contractible
4-manifold has an arc pseudo-spine. The mathematical content of the paper arises from
the introduction of the mapping swirl construction which allows us to reinterpret and
generalize the method of [5]. In Section 2 of this article the mapping swirl of a map to
S! is defined and two fundamental theorems about it are proved: Theorem 1: Homotopic
maps from a compact metric space to S' have homeomorphic mapping swirls. Theorem 2:
For a compact metric space X and an integer n # 0, the mapping swirl and the mapping
cylinder of the map (z,2) — 2": X x S' — S' are homeomorphic. Section 3 applies
these theorems to produce simple pseudo-spines for the special class of 4-manifolds
obtained by adding finitely many essential 2-handles to B* x S!. This approach recovers
the previously known result that Mazur’s compact contractible 4-manifold has an arc
pseudo-spine. Section 4 speculates about the possibility of finding simple pseudo-spines
for all compact 4-manifolds. In particular, it includes the conjecture that every compact
contractible 4-manifold has an arc pseudo-spine. It also states a closely related conjecture:
every compact contractible 4-manifold has a handlebody decomposition with no 3- or
4-handles. It then presents a proof that this conjecture holds for an important class of
compact contractible 4-manifolds described by Poénaru.

2. Mapping swirls

Let f: X - S! be a map from a compact metric space X to S'. Intuitively, the
mapping swirl of f is obtained from the mapping cylinder of f by “swirling” the fibers
of the mapping cylinder around infinitely many times in the S'-direction as they approach
the S'-end of the mapping cylinder. To make this informal definition precise, we use the
fact that the mapping cylinder of f embeds naturally in (CX) x S!, where CX is the
cone on X. The mapping swirl of f is defined as a subset of (CX) x S'. The swirling
effect is achieved by using the S'-factor. We also define the double mapping swirl of f,
by “swirling” the fibers of the double mapping cylinder of f at both ends. The double
mapping switl of f is defined as a subset of (2X) x S!, where XX is the suspension
of X. The S'-factor is again used to achieve the swirling effect.

Simple examples show that two maps from a compact metric space to S ! may differ by
only a slight homotopy and yet have nonhomeomorphic mapping cylinders and double
mapping cylinders. In contrast, our principal result, Theorem 1, says that homotopic maps
from a compact metric space to S' have homeomorphic mapping swirls. The swirling
process kills the topological difference between the mapping cylinders of homotopic
maps.
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Definition. Let X be a compact metric space. The suspension of X, denoted X' X, is the
quotient space [—o00,00] x X/{{—00} x X, {o0} x X}. Let g:[—00,00] x X = XX
denote the quotient map. For (¢,z) € [—00, 0] x X, let tz = q({(t,z)); and let oo =
q({£oo} x X). The cone on X, denoted CX, is g([0, 00] x X).

Definition. Let f: X — Y be a map between compact metric spaces. The mapping
cylinder of f, denoted Cyl(f), is the subspace

{(tz, f(z)) € (CX) x Y: (t,2) € [0,00) x X} U ({0} x ¥)
of (CX) x Y. The double mapping cylinder of f, denoted DbICyl(f), is the subspace
{(tz, f(z)) € (EX) xY: (t,x) € (—o0,00) X X} U ({—00,00} X Y)

of (¥X) x Y. For —oo < t < oo, call the set {(tz, f(z)): = € X} the t-level of
DbICyl(f); it is homeomorphic to X. Call {£oo} x Y the too-level of DbICyl(f).
Observe that the union of the t-levels of DbICyl(f) for 0 < t < oo is precisely Cyl(f).

To reconcile this definition of the mapping cylinder of f with the usual definition,
consider the map from the disjoint union ([0, co] x X)UY onto the subset of (CX) xY
which we have called Cyl{f) which sends (¢, ) € ([0, 00] x X) to (¢tz, f(x)) and sends
y €Y to (00,y). The set of inverse images of this map determines the decomposition
of ([0,00] x X)UY in which the only nonsingleton elements are sets of the form
(f ' (y) x {oo})U{y} for y € Y. This is exactly the decomposition which is determined
by the inverse images of the “usual” quotient map from ([0, co] x X)UY to the “usual”
mapping cylinder of f. Consequently, Cyl(f) is homeomorphic to the “usual” mapping
cylinder of f. Similarly, DbICyl(f) is homeomorphic to the “usual” double mapping
cylinder of f.

Definition. Let X be a compact metric space and let f : X — S! be a map. The mapping
swirl of f, denoted SwI(f), is the subspace

{(tz, ™ f(x)) € (CX) x S": (t,z) € [0,00) x X} U ({o0} x §*)
of (CX) x S'. The double mapping swirl of f, denoted DbISwI(f), is the subspace
{(tz,*™ f(z)) € (£X) x 8" (t,z) € (—00,00) x X } U ({~00,00} x §')

of (£X) x S'. For —oco < t < oo, call the set {(tz,e?™f(x)): z € X} the t-level of
DblISwI( f); it is homeomorphic to X. Call {£oo} x S! the (£oo)-level of DbISwI(f).
Observe that the union of the t-levels of DbISwI(f) for 0 < ¢ < oo is precisely Swi(f).
For z € X, call the set {(tz,e’™ f(z)): —0o < t < oo} the z-fiber of DbISwI(f),
and call the set {(tz,e*™f(x)): 0 < t < oo} the z-fiber of SWI(f). If g: X — S!
is another map and z € X, then the z-fiber of Swi(f) (DbISwI(f}) and the z-fiber of
Swl(g) (DbiSwl(g)) are called corresponding fibers.

Theorem 1. If X is a compact metric space, and f,9: X — S' are homotopic maps,
then SwI(f) is homeomorphic to Swl(g). Furthermore, the homeomorphism maps the
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0- and cc-levels of SWI(f) onto the O- and oo-levels of Swi(g), respectively, and maps
each fiber of SWI(f) onto the corresponding fiber of Swl(g).

Proof. The proof has two steps. First we find a homeomorphism of (XX) x S' which
carries DbISwI( f) onto DblSwl(g). This homeomorphism moves Swl(f) into DblSwl(g),
because Swl(f) C DbISwI(f). Second we find a homeomorphism of (¥ X) x S! which
“twists” the image of Swl(f) onto Swl(g) within DblSwl(g).

Step 1. For each = € X, set F(z) = {(tz,e’™f(z)): —o0 < t < oo} and set
G(z) = {(tz,e*™itg(z)): —00 < t < co}. F(z) and G(x) are the z-fibers of DbISwI(f)
and DbISwl(g), respectively. Both lie in ((—o0, 00)z) x S! C (£(X)) x §'.

For each x € X, the z-fibers F(z) and G(x) form a “double helix” in the cylinder
((—o0, 00)z) x S'. The angle 8(z) between F(x) and G(x) in the S'-direction is precisely
the angle between f(z) and g(z) in S', and a twist of the cylinder ((—o0, c0)z) x S! in
the S!-direction through the angle 8(z) would move F(z) to G(z). Unfortunately, one
can’t form the “union” of these twists over all the cylinders ((—o00,00)x) x S' to move
DbISwI(f) to DbISwi(g) in (XX) x S!, because 6(z) may vary with z, so that there is
no single rotation of {—o00,00} x S' that extends the twists of all the cylinders. Instead
of using a twist, one observes that the helix F(z) can be moved to the helix G(z) by
a slide of the cylinder ((—o0,00)z) x S! in the (—o0, 0o)z-direction. The length of the
slide in the (—o0, co)z-direction varies with z and is essentially determined by lifting
the homotopy joining f to g in S! to a homotopy in (—o0, 00). Unlike the previously
considered twist, this slide extends to {—o0, 00} x S! via the identity. This is because
the slide makes no motion in the S'-direction and preserves the “ends” of (—o0, 00)z.
The details follow.

Suppose h: X x [0,1] — S' is a homotopy such that h(x,0) = g(z) and h(z,1) =
f(x). We exploit the fact that S' is a group under complex multiplication to define
the map k: X x [0,1] — S! by k(z,t) = h(z,t)/h(x,0). Thus, k(x,0) = 1 and
k(z,1)g(z) = f(z) for z € X. Let e: (—0o0,00) — S! denote the exponential covering
map e(t) = e*™t. Let k: X x [0, 1] — (—o00, 00) be the lift of k (i.e., eok = k) such that
k(x,0) = 0 for all z € X. Define 0: X — (—o0,00) by o(z) = k(z, 1). Observe that
for each z € X, f(z)/e*™@) = f(z)/e(k(z,1)) = f(z)/k(z,1) = g(z). Since X is
compact, there is a b € (0, 00) such that o(X) C (—b,b). As we will see, o(x) specifies
the length of the slide of the cylinder ((—o0, 00)x) x S! in the (—o0, co)z-direction that
moves F(x) to G(x).

Now define the function ¢: (X X) x S' — (¥ X) x S! by setting &(tz, z) = ((t +
o(z))z, z) for (t,z) € (~o0,00) x X and z € S, and by requiring that &|{—o0, 00} x
S = id. Clearly & is continuous at each point of (XX) x S! — {—o00,00} x §!. For
each z € S, the continuity of & at the points (00, z) follows from the inclusions

®(([t, 00]z) x {2}) C ((t — b, 00]z) x {2},
B(([~o0,t]z) x {z}) C ([—oo,t+b)z) x {z}.

Next we verify that @(DbISwl(f)) C DblSwl(g). To this end, let z € X and consider
a typical point (tz,e>™ f(x)) of the fiber F(z). & moves this point to the point
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((t + o(@) @, e f())

I

((t + o’(m))w’ eZwi(t+d(z))f(w)/ezma(z))
((t + O'(ZE)):E’ eZ‘rri(t+o(a:))g(x))

which is a point of the fiber G(z). Consequently, #(F(z)) C G(z). Thus, & maps each
fiber of DbISwI( f) into the corresponding fiber of DblSwi(g). Also $({—o00,00} x S!) =
{—00,00} x S1. Since DbISwI(f) and DblSwl(g) are the unions of their fibers and of
{—00,00} x S', we conclude that (DbISw1(f)) C DbISwl(g).

To complete Step 1, we must verify that ¢ is a homeomorphism and that
&(DbISwI(f)) = DbISwl(g). We accomplish this by defining the function &: (XX x
S' — (ZX) x 8" by setting &(tz, z) = ((t — o(x))z, 2) for (t,x) € (—o0,00) x X and
z € S, and by requiring that #|{ 00,00} x S! = id. Arguments similar to those just
given show that @ is continuous and that $(DblSwl(g)) C DbISwI(f). Also it is eas-
ily checked that the composition of ¢ and @ in either order is the identity. Hence,
& is a homeomorphism, and $(DbISwi(f)) > &($(DblSwi(g))) = DblSwl(g). So
B(DbISwI(f)) = DbISwi(g).

Step 2. Here we will find a homeomorphism ¥ of (2X) x S! such that

7 (@(sw(f))) = Swilg).

For each z € X, set F¥(x) = {(tz,e*"f(z)): 0 < ¢t < oo} and set G*(z) =
{(tz,e?™tg(x)): 0 <t < oo}. FH(z) and GT(z) are the z-fibers of Swi(f) and Swl(g),
respectively.

For z € X, since F*(z) C F(z), then #(F*(z)) C (F(z)) C G(x); also G*(z) C
G(z). We will describe a homeomorphism ¥ which gives the cylinder ((—o0, 00)z) x S!
a screw motion that carries the fiber G(z) onto itself and moves #(F*(z)) onto G* ().
Also ¥ will restrict to the identity on a neighborhood of {—o0, 00} x S1.

Recall that b € (0,00) such that o(X) C (—b,b). There is a map 7:(—00,00) x
X — (—o00,00) such that for each z € X, t — 7(f,z):(—00,00) — (~o00,00) is
an order preserving piecewise linear homeomorphism which restricts to the identity on
(—00, —b] U [b,00) and which moves o(z) to 0. For example, 7 can be defined by the
formulas:

m(t,z) = (b/{b+o(z))) (t —o(z)) forte [—bo(z)],
m(t,z) = (b/(b—o(x))) (t — o( for t € [o(z),b],
T(t,z) =t for ¢t € (—o0, —b] U [b, 00).

8
~—
~—

Now define the function ¥: (XX ) x S! — (£X) x S! by setting
U(ta, z) = (T(t, z)z,e? " E2)=02)  for (t,z) € (—00,00) x X and z € S,

and by requiring that ¥|{—o0, 00} x S! = id. Since 7 is continuous, then ¥ is continuous
at each point of (XX ) x S —{—c0, 00} x S!. Also since 7(t,2) =t fort € (—o0, ~bJU
[b, 00), then ¥ restricts to the identity on the neighborhood of {—00, 0} x §! in (X X) x
S! consisting of all points of the form (tz, z) where t € [~co, —b] U [b, 0], z € X and
z € S'. Hence, ¥ is continuous at each point of {—o0, 00} x S'.



282 FD. Ancel, C.R. Guilbault / Topology and its Applications 71 (1996) 277-293

Next we verify that & (S(Swl(f))) C Swl(g). To this end, let x € X and consider
a typical point p of F*(x). p has the form (tz,e*" f(x)) where 0 < ¢t < oco. Thus
(p) = (¢ + o))z, 20+ () g(z)). Hence,

W(@(p)) — (T(t + 0’(:12) m)x’e27ri(T(t+o'(z),z)—t—a(m))GZTri(t+a(z))g(x))
( (t+0’(9§) )T ezTri‘r(t+U(I),:E)g(x))‘

Since u — T(u,z):(—00,00) = (—00,00) is an order preserving homeomorphism,
7(o(z),z) = 0and t > 0, then 7(t + o(x),z) > 0. It follows that ¥(H(p)) belongs
to the fiber G+ (z). This proves ¥(P(F*1(z))) C G (z). So ¥ o $ maps each fiber of
Swi(f) into the corresponding fiber of Swi(g). Also ¥ o #({co} x S') = {oo} x S'.
Since Swi(f) and Swl(g) are the unions of their fibers and of {co} x S', we conclude
that ¥((Swl(f))) C Swl(g).

It remains to establish that & : (¥ X) x §' = (¥X) x §' is a homeomorphism and
that ¥ o (SwI(f)) = Swl(g). To this end, first note that there is a map 7: (—o0, 00) X
X — (—o00,00) such that for each © € X, t — 7(t,z):(—00,00) = (—00,00) is
the inverse of the homeomorphism t — 7(t,z):(—00,00) — (—00,00). (Thus, for
each z € X, t — 7(t,x):(—00,00) = (~o00,0c) is an order preserving piecewise
linear homeomorphism which restricts to the identity on (—oo, —b] U [b, 00) such that
7(0,z) = o(x), and 7(7(t,z),z) =t and 7(7(¢,x),z) =t for —oo < t < o0.) Then
define the function ¥: (XX) x S' — (XX) x S! by setting

U(t, z) = (7(t, )z, TG0 2)  for (t,2) € (—00,00) X X and z € S,

and by requiring that ¥|{—o0, 00} x S! = id. The proof of the continuity of ¥ is similar
to the proof of the continuity of ¥.

Next we verify that ¥(Swl(g)) C ®(Swi(f)). To this end, let z € X and consider a
typical point p of G¥(z). p has the form (tz,e>™g(z)) where 0 < t < 00, and

_@—(p) — (’7_‘(t, I)IE, eZ‘fri("F(t,m)—t)e%'ritg(m)) _ (7"(1‘,, .'L').'I?, elwif(t,z)g(x)) .

Since u > F{u,z):(—00,00) — (—00,00} is an order preserving homeomorphism,
7(0,z) = o(z) and t > 0, then 7(¢,x) = v + o(x) for some u > 0. Hence,

@( ) — ((u+ U(:E ) 27r1(u+o'(z))g(l,))

Since « > 0, then the point (uz,e?™™ f(z)) belongs to F*+(x), and $(uz,e* ™ f(x)) =
(u + o(x))z, e?™(w+o@) g()). Consequently,

U(p) = @(um,ehi“f(x)) € 45(.7-'+($)).

This proves ¥ (Gt (z)) C $(F*(x)). So ¥ maps each fiber of Swl(g) into the $-image
of the corresponding fiber of Swl(f). Also ¥({co} x §') = {co} x S' = &({oo} x S').
Since Swl(g) and Swi(f) are the unions of their fibers and of {co} x S', we conclude
that &{Swl(g)) C S(SwWI{f)).

It is easy to verify that the composition of ¥ and ¥ in either order is the identity.
(Remember that 7(7(¢,z)z) =t and 7(7(t,z),z) = ¢ forx € X and —oco < t < 0.)
Hence, ¥ is a homeomorphism.
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We have seen that &((Swi(f))) C Swi(g) and ¥(Swi(g)) C S(SwI(f)). So

@ (B(Swi(f))) D T(F(Swi(g))) = Swi(g).

Thus, the homeomorphism ¥ o ¢ maps Swl(f) onto Swi(g).

In the course of the proof, we have seen that for each z € X, ¥(®(F*(z))) C
Gt(z) and ¥(G* (z)) C B(F*(x)). So ¥ (H(F+(z))) D F(F(Gt(x))) = G*(x). Thus,
U(P(F*(x))) = GT{(z). In other words, the homeomorphism ¥ o $ maps each fiber of
Swl(f) onto the corresponding fiber of Swi(g).

A typical point of the O-level of Swl{f) has the form (Oz, f(z)) and

¥ ((0z, f(x))) = W(a(x)x,e%i”(z)g(m))
— (T(U(x), x)x’cZﬂ'i(‘r(a’(z),z)—a(z))CZWio(z)g(x)) — (037, g(z))

because 7(o(z),x) = 0. Thus, ¥ o & maps the O-level of Swi(f) onto the O-level of
Swl(g).

Since ¥(P({~o0} x S1)) = ¥({~00} x S') = {—c0} x S!, then ¥ o $ maps the
oo-level of Swi(f) onto the co-level of Swi(g). O

The next theorem and its corollaries make it possible to identify the mapping swirls
of a special types of maps.

Theorem 2. If X is a compact metric space, n is a nonzero integer, and f: X x S! — §!
is the map f(x,z) = 2", then Cyl(f) is homeomorphic to SWI(f). Furthermore, the
homeomorphism maps the t-level of Cyl(f) onto the t-level of SWI(f) for 0 <t < co.

Proof. We will find a homeomorphism from C(X x S') x S! to itself which carries
Cyl(f) onto SwI(f) by twisting motion in the S'-direction in the C(X x S!) factor of
C(X x S') x S'. This is possible because of the S'-factor in the domain of f and the
special form of f.

Define the function

$:C(X xS") »C(X x 8"

by setting ¢(t(z, 2)) = t(z,e~2™/"2) for t € [0,00) and (z,2) € X x S' and ¢(c0) =
00. ¢ is clearly continuous on C(X x S') — {co}; and because ¢ maps the t-level of
C(X x S') into itself, then ¢ is continuous at co. We show that ¢ is a homeomorphism of
C(X x S'") by exhibiting its inverse. Indeed, let us define the function ¢: C(X x §') —
C(X x S') by setting ¢(t(z, 2)) = t(x,e?™/™2) for t € [0,00) and (z,z) € X x S" and
#(c0) = 0o. Then ¢ is continuous by an argument similar to the one just given. Also
it is easily checked that the composition of ¢ and ¢ in either order is the identity. So ¢
and ¢ are homeomorphisms.

Next define a homeomorphism @: C(X x S') x S! — C(X x S')x S by & = ¢ x id.
Clearly & = ¢ x id defines the homeomorphism of C(X x S') x S' which is the inverse
of &.
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We now prove that ®(Cyl(f)) = Swi(f). Let 0 < ¢ < o0, and consider a typical point
p = (t(z,2), f(x,2)) = (t(z,2),2") of the t-level of Cyl(f) where (z,2) € X x S'.
Set 2’ = e~2mt/" 5 Then

&(p) = (qﬁ(t(x,z),z")) = (t(x,e_z"it/”z),z”)
— (t(CL', e—-ZTrit/nz),e%rit (ev?.ﬂ'it/nz)”)
— (t(a:,z'),ezmt(zl)") _ (t($,zl)’e27ritf(m,zl))'

So &(p) belongs to the t-level of Swi(f). Also $({oo} x S') = {00} x S'. It follows
that &(Cyl(f)) C SwI(f), and @ maps the t-level of Cyl(f) into the t-level of Swi(f)
for 0 <t < oo.

A similar argument shows that & maps the t-level of Swi(f) into the t-level of Cyl(f)
for 0 < t < oo. Indeed, if 0 < t < 0o and p = (t(x, 2)e?™ f(x, 2)) = (t(z, 2), e*™it2")
is a typical point of the t-level of SwI(f), and we set 2’ = e>™¢/" 2, then

&(p) = (&(t(w,z)ez”itz")) = (t(m,ez’”t/"z), (ezmt/"z)n) = (t(z,z'),f(m,z))

which is a point of the t-level of Cyl(f). Also #({oo} x S') = {oo} x S'. Hence,
B(SwI(f)) C Cyl(f). Since @ = &', it follows that H(Cyl(f)) = Swl(f), and & maps
the t-level of Cyl(f) onto the t-level of SwI(f) for 0 <t < oco. O

We now exploit Theorems 1 and 2 together to state two corollaries which allows us
to identify the mapping swirls of certain kinds of maps.

Corollary 1. If X is a compact metric space, f:X x S' — Sl and g: X x S' — St
are homotopic maps, and g(z,z) = z™ where n is a nonzero integer, then SWI(f) is
homeomorphic to Cyl(g). Furthermore, the homeomorphism maps the 0- and oco-levels
of SWI(f) onto the 0- and oo-levels of Cyl(g).

Corollary 2. If f:S' — S' is a map of degree n # 0, then SWI(f) is homeomorphic
to Cyl(z — z™). Furthermore, the homeomorphism maps the 0- and co-levels of Swi(f)
onto the 0- and co-levels of Cyl(z — z™). In particular, SWI(f) is an annulus if n = %1,
and SwWI(f) is a Mobius strip if n = £2.

The last assertion of this corollary follows from the observation that the mapping
cylinder of the map z — 2™ : S' — 5! is an annulus if n = £1, and it is a M&bius strip
if n=+2.

3. Pseudo-spines of 4-manifolds

Recall that a compact subset X of the interior of a compact manifold M is a pseudo-
spine of M if M — X is homeomorphic to (0M) x {0, c0).

Let || || denote the Euclidean norm on R™: {z| = (z} + 2% + - + x2)1/2. Set
B" = {zx ¢ R™ ||z] <1} and 5™ = {z € R™*": |jz| = 1}.
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For each integer n, let 7, : S! — S! denote the map v, (z) = 2", and let X (n) denote
the adjunction space B? U, S!. Thus, X(£1) is a 2-dimensional disk, and X (4-2)
is a projective plane. If |n| > 2, then X (n) is a 2-dimensional polyhedron which is
not a 2-manifold. For nonzero integers ny, na, ..., nk, let X(ny,na,...,ng) denote the
adjunction space (B? x {1,2,...,k})Ur S' where I": S! x {1,2,...,k} — S' is the
map defined by I'(z,i) = s, (2) for z € S" and 1 < i < k. Thus, X (n1,na,...,n4) is
homeomorphic to a union of X(n;), X(nz),..., X{ng) in which all the “edge circles”
of the X (n;)’s are identified with a single copy of S'.

A simple closed curve C in the boundary of a manifold N is called essential if it is
not homotopically trivial in ON. If C is essential, then any 2-handle attached to N along
C is also called essential.

Theorem 3. Suppose Cy,Cs, ..., Cy, are disjoint essential simple closed curves in 3 B? x
S, and M* is the 4-manifold obtained by attaching disjoint 2-handles to B} x S along
Ci,Ca,...,Cy. Let 7:3B> x S§' — S! denote the projection map. For 1 < i < k, let
n; denote the degree of the map m|C;:C; — S'. Then M* has a pseudo-spine which is
homeomorphic to X{ny,na,...,ng).

Proof. Note that n; # 0 because C; is essential for 1 < i < k. We write M* =
(BY x S"Y U (Hy U Hy U--- U Hy) where H; is the 2-handle attached to B? x §'
along C;. Thus, for 1 < i < k, there is a homeomorphism h;: B? x B? — H; such
that (B* x SY) N H; = h;((3B%) x B?) € 3B* x §' and h;((3B?) x {0}) = C;. For
1 <i <k, set D; = h;i(B? x {0}); then dD; = C; and D; is the “core disk” of H;.

Clearly B* x S! is homeomorphic to Cyl(r) by a homeomorphism that takes d B> x S'
onto the 0-level of Cyl(x). In addition, Theorem 2 provides a homeomorphism from
Cyl(m) to Swi{w) which takes the O-level of Cyl(n) to the O-level of Swi(rm). The
composition of these homeomorphisms allows us to identify B* x S! with Swi(7) so
that 3B* x S’ is identified with the 0-level of Swl(w). Thus, we can regard C;, Cs, ..., Ci
as disjoint simple closed curves lying in the 0-level of Swi(w).

Let 1 < 4 < k. Observe that Swl(w|C;) can be naturally identified with a subset of
Swl(7) so that the O-level of Swl(7|C;) is the subset of the 0-level of Swl(w) identified
with C;, and oo-levels of Swi(7|C;) and Swl(m) coincide. Since 7|C;:C; — S! is a
map of degree n;, then Corollary 3 provides a homeomorphism from Swl(|C;) to the
mapping cylinder of the map z ~ 2™ : S' — S! which preserves O-levels and co-levels.
Since C; is the O-level of Swi(n|C;) and C; = 3D;, then clearly Swl(#|C;) U D; is
homeomorphic to X (n;).

Set X = U, Swi(n|C;) U D;. Then X is a compact subset of int(M*), and X is
clearly homeomorphic to X (ni,na,...,ng).

It remains to prove that M* — X is homeomorphic to (dM*) x [0, 00). Observe that
M* — X is the union of Swi(r) — J*_, Swi(x|C;) and the sets H; — D; for 1 <i < k.
Furthermore, Swl(w) — U?:; Swl{m|C;) is the union of the fibers of Swl(r) that emanate
from the points of (3B* x S') — Ule Cj, and each of these fibers is homeomorphic to
[0, 00). We will “extend” these fibers to fill the sets H; — D;, 1 < i < k.
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We will define a homeomorphism G': (dM*) x [0,00) — M* — X. To begin, there is
clearly a homeomorphism F: (3B? x ') x [0, 00) — Swl(7) — ({o0} x S') which takes
{(z,2)} x [0,00) onto the (z,z)-fiber of Swi(r), for (z,2z) € dB* x S'. Indeed, the
formula F((z, z),t) = (t(z, z),e*™z) for ((z,2),t) € (0B* x 8') x [0, 00) determines
such a homeomorphism.

For each i, 1 <1 < k, set

A; =hi((d0B*) x B*) and B; = h;(B* x (3B%)).

A; is called the attaching tube of H;, and B; is called the belt tube of H,. Then A; =
Swl(7) N H; and

an* (aB’xS Ulnt >u<0B1~,>.

=1

We set

k
G‘ ((633 xS - im(Ai)> % [0, 00)

i=1
k
= F’ ((aB3 xS - int(A,)) x [0, o0).

i=1
It remains to define G|B; x [0,00) for 1 < ¢ < k. Consider a point p € B;. Then
p = hi(z,y) where (z,y) € B2 x (3B%). If x = 0, then G({p} x [0,0)) is the “deleted
radius” h;({(0,ty): 0 < t < 1}) of the disk h;({0} x B?) joining the center point
hi(0,0) to p. If  # 0, then G{{p} x [0,0)) is the union of an arc in H; joining the
point p to a point ¢ € A; together with the ray F({q} x [0, 00)). Moreover, the arc in
H; joining p to g is the h;-image of the subarc of the “hyperbola” {(sz,ty): st = 1}
joining the point (z,y) to the point (z/||z||, ||z|ly). So g = hi(z/||z||, ||z |ly).

The precise definition of G follows. As we stated earlier,

G‘((aB3xS Umt ) 0, 00)

2
- F' ((ZBB3 x Sy — Uint(Ai)> x [0, 00).

i=1
Now suppose 1 < i < k, p € B; and p = h;(x,y), where (z,y) € B>x (3B?). If z = 0,
then

G(p,t) =hi<0, (t—|1— l)y) for 0 < t < oo.
If x # 0, then

) hi((t+1)w,<%>y>’ rosts || T
e = F(hi(ﬁ,nxtu:),tﬂ—ﬁ)’ TR
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The following remarks are intended to further clarify the properties of G. G maps

k
<(aB3 x Sy — Uint(Ai)) x [0, 00)
i=1

[

onto

i=1

Swi
For 1 €1 <k

k
((6B3 x S') — Uint(Ai)>>.
k,

G maps
1
{(p,t) € Bix[0,00): 0<t < =1, p=hulwy), (w9) € B? x (aBZ)}
onto H; — D;, and G maps

{(p,t) € B; x [0,00): 1< 1< 00, p=hi(z,t), (z,y) € B? x (aBZ)}

1
Iz
onto Swl(w|A; —~ C;). O

Corollary 3. Suppose C is a simple closed curve in (dB*)x S, and M* = (B3x S"\UH
where H is a 2-handle attached to B* x S" along C. Let n: B* x §' — S! denote the
projection map, and suppose that the map w|C :C — S is degree one. Then M* has
an arc pseudo-spine.

Proof. Theorem 3 provides M* with a pseudo-spine X that is homeomorphic to the
2-dimensional disk X (1). According to [3], X can be “squeezed” to an arc in int(M*).
In other words, there is an arc A in int(M*) and an onto map f: M* — M* such that
f(X)= A and f maps M* — X homeomorphically onto M* — A. (Interpreted literally,
[3] applies only in manifolds of dimension 3. However, the methods of [3] work in
manifolds of all dimensions > 3. This is fully explained on p. 95 of {2].) Consequently,
M* — A is homeomorphic to 9M* x [0, c0), making A an arc pseudo-spine of M*. O

Since Mazur’s compact contractible 4-manifold [6] is obtained by attaching a 2-handle
to B3 x S! along a degree one curve, we recover the result of [5,3].

Corollary 4. Mazur’s compact contractible 4-manifold has an arc pseudo-spine.

4. Conjectures

The results proved in this paper exhibit simple pseudo-spines for a very modest col-
lection of 4-manifolds: those obtained by attaching essential 2-handles to B3 x S'. The
following conjectures are founded on the possibly naive hope that these results can be
extended to a more general class of compact 4-manifolds.
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Conjecture 1. If a compact 4-manifold with boundary is homotopy equivalent to
X(ny,ny,...,nk) (where ny,na,...,n, are nonzero integers), then it has a pseudo-
spine which is homeomorphic to X (n;, na, ..., ng).

In the case of a compact contractible 4-manifold, Conjecture 1 combined with the
result of [3] would yield:

Conjecture 2. Every compact contractible 4-manifold has an arc pseudo-spine.

Corollary 3 provides an arc pseudo-spine for every compact contractible 4-manifold
that is obtained by attaching a 2-handle to B x S'. Such a 4-manifold has a handlebody
decomposition consisting of a single O-handle, a single 1-handle and a single 2-handle.
No 3- or 4-handles are needed. This suggests breaking Conjecture 2 into the following
two parts.

Conjecture 2A. Every piecewise linear compact contractible 4-manifold has a handle-
body decomposition with no 3- or 4-handles.

Conjecture 2B. Every compact contractible 4-manifold that has a handlebody decom-
position with no 3- or 4-handles has an arc pseudo-spine.

Here is a less general and apparently more elementary question than those raised by
the previous conjectures. If M* and N* are 4-manifolds with boundary, define their
boundary connected sum M* Uy N* to be the adjunction space M* Uy, N* where h is a
homeomorphism from a collared 3-ball in 3M* to a collared 3-ball in IN*.

Conjecture 3. If two compact 4-manifolds have arc pseudo-spines, then so does their
boundary-connected sum.

If two compact contractible 4-manifolds are each obtained by attaching a single
2-handle to B? x S!, then their boundary connected sum has a tree pseudo-spine which
is homeomorphic to the letter “H”. This is proved by using the methods of the proof of
Theorem 3 and [3]. (Recall that a tree is a compact contractible 1-dimensional polyhe-
dron.) This raises the question of whether a tree pseudo-spine can be simplified to an arc
pseudo-spine. We can ask, more generally, whether a compact 1-dimensional polyhedral
pseudo-spine be simplified to a homotopy equivalent canonical model.

Conjecture 4. If a compact 4-manifold has a tree pseudo-spine, then it has an arc pseudo-
spine.

Conjecture 5. If a compact noncontractible 4-manifold has a pseudo-spine which is a
compact 1-dimensional polyhedron, then it has a pseudo-spine which is a wedge of
circles.
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There are clear limitations on the amount to which a pseudo-spine can be simplified
within its homotopy class. If a compact 4-manifold has a point pseudo-spine, then it is a
cone over its boundary, which implies that its boundary is simply connected. On the other
hand, there are compact contractible 4-manifolds with nonsimply connected boundaries
which have arc pseudo-spines (e.g., the Mazur manifold). Clearly, the arc pseudo-spines
of such manifolds can’t be simplified to points.

The study of spines and pseudo-spines pursued in this paper and in [1] was partially
motivated by the question of whether a compact contractible n-manifold other than the
n-ball can have disjoint spines. (The existence of disjoint spines is equivalent to the
existence of disjoint pseudo-spines.) In [4] it is shown that for n > 9, there is a large
family of distinct compact contractible n-manifolds with disjoint spines. We conjecture
a different situation in dimension 4.

Conjecture 6. The only compact contractible 4-manifold that has disjoint spines is the
4-ball.

We conclude with some remarks concerning Conjectures 2, 2A and 2B. The “classi-
cal” examples of compact contractible 4-manifolds include, in addition to the Mazur
4-manifold, those described by Poénaru in [7]. We will sketch the construction of
Poénaru’s examples, and we will explain why many Poénaru 4-manifolds have han-
dlebody decompositions with no 3- or 4-handles. Hence, they provide some evidence
for Conjecture 2A. The authors, however, do not know whether Poénaru’s examples
have arc pseudo-spines. These manifolds are, thus, a likely place to take up the study of
Conjectures 2 and 2B.

The following discussion fits most naturally into the piecewise linear category. For
this reason we identify the n-ball B™ with [0,1]™ for the remainder of the paper. A
locally unknotted piecewise linearly embedded 2-dimensional disk D in B* such that
D (dB*) = 0D is called a slice disk in B* and 3D is called a slice knot in dB*.
A piecewise linear simple closed curve J is dB* is called a ribbon knot if there is a
piecewise linear map f: B> — 0B* which maps dB? onto J such that the singular set
of f—

{p € 3B* f~'(p) contains more than one point}

—is the union of a pairwise disjoint collection of piecewise linear arcs Ay, 4,, ..., A
in 9B* and for 1 <4 < k, f~!(A,) is the union of two disjoint piecewise linear arcs A/
and AY in B? where A. C int(B?), AY N (3B?%) = dA”, and f maps each of A/ and A/
homeomorphically onto A;. Clearly f can be homotoped rel 382 to a piecewise linear
embedding whose image is a slice disk by pushing flint(B?) radially into int(B*) and
pushing f|A’ “deeper” than the rest of f|int(B?). The slice disk formed in this manner
is called a ribbon disk. Thus, every ribbon knot is a slice knot. The converse assertion:
every slice knot is a ribbon knot, is one of the fundamental unresolved problems of knot
theory.

Poénaru’s construction of a compact contractible 4-manifold begins with a slice disk D
in B* such that 3D is knotted in dB* and with a knotted piecewise linear simple closed
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curve K in the boundary of a second 4-ball B* Let N bea regular neighborhood of D in
B* such that NN (3 B*) is a regular neighborhood of 3D in 3B*. Set A = cl(B*—~N)NN.
Then A is a solid torus (i.e., A is piecewise linearly homeomorphic to S! x B?), and
we can think of N as a 2-handle attached to cl(B* — N) along A to yield B* Let T
be a regular neighborhood of K in dB*. Then T is a solid torus. Let g:T — Abea
piecewise linearly homeomorphism. Now define the Poénaru 4-manifold P*(D, K') to be
the adjunction space B*U, cl(B*— N). We can think of B* as a “knotted 2-handle” with
knotted attaching tube T which is attached to cl(B*— N) by the homeomorphism g : T' —
A to yield P4(D,K). To see that P*(D,K) is contractible, notice that cl(B* — N)
becomes contractible if the core curve of A is “killed”, and attaching B* to cI(B* — N)
by g “kills” this curve. However, dP4(D, K) is not simply connected because it is the
union of the two nontrivial knot complements cl(3B* — (N N (dB*))) and cl(d3B* - T).
See [7] for further details.

Finally we verify that some Poénaru 4-manifolds have handlebody decompositions
with no 3- or 4-handles.

Proposition. If D is a ribbon disk in B* and K is a piecewise linear knot in dB*,
then the Poénaru 4-manifold P*(D, K) has a handlebody decomposition with no 3- or
4-handles.

Proof. Let N, A, T and g be as in the paragraph describing the construction of P*(D, K).
To prove the Proposition, we will established two assertions.

(a) cI(B* — N) has a handlebody decomposition with no 3- or 4-handles.

(b) There is a piecewise linear homeomorphism from B* to B* x [0, 1] which identifies
T with a subset Ty x {0} of B x {0} so that B x {0, 1] is obtained from Tp x [0, 1] by
attaching 1- and 2-handles to (97p) x [0, 1].

The proof of the Proposition is then completed by noting that since cl(B* — N) is
piecewise linearly homeomorphic to (Tp x [0,1]) Ug cl( B* — N), then by assertion (a),
(To x [0,1]) Uy cl(B* — N) has a handlebody decomposition with no 3- or 4-handles.
Furthermore, by assertion (b), (B* x [0, 1])U,cl(B*— N) is obtained from (T x [0, 1]) U,
cl(B*— N) by attaching 1- and 2-handles. We conclude that (B* x [0, 1])Ugcl(B*—N) =
P*(D, K) has a handlebody decomposition with no 3- or 4-handles.

We now demonstrate assertion (a): cl(B* — N) has a handlebody decomposition with
no 3- or 4-handles. (Evidently, a related fact is proved in [8], though the language there
is quite different.) We can identify B* with B* x {0,1] so that 3D C int{B*) x {1}.
Furthermore, we can assume that the ribbon disk D is positioned in a special way that we
now describe. D arises from a map f: B> — int(B?) x {1} with singular set equal to the
union of a pairwise disjoint collection of arcs Ay, A,, ..., Ag such that for 1 < i < k,
F~1(A;) is the union of two disjoint arcs A, and A7 in B? where A} C int(B?),
A N (3B?%) = dA!, and f maps each of A} and A} homeomorphically onto A;.

We impose a “collared” handlebody decomposition on B? as follows. The O-handles
are disjoint disks Ey, Es, ..., Ex in int(B?) such that A} C int(E;) and E; N AY = 0
for 1 <i,7 < k. For 1 <4 < k, we add an exterior collar to E; to obtain a slightly
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larger disk E;" in int(B?) so that Ef", E;f, ..., E) are pairwise disjoint and are disjoint
from A}, AY,..., A}. Next we connect the k disks E;t, Ef , ..., E;f with k— 1 disjoint
1-handles or “bands” F}, F>, ..., Fx_; in int(B?) — Ule int(E;"). Set

o (0m)(5)

Then G is a disk in int(B2). For 1 < j < k — 1, each of the sets (3F;) N (U;_, E;")
and (0F;) N (9G) is the union of two disjoint arcs in dF}, and these four arcs subdivide
0F; and have disjoint interiors. We add an exterior collar to G to obtain a slightly larger
disk Gt in int(B?). Of course, B> — int(G™) is an annulus.

To form the ribbon disk D from the map f, we push f “vertically” down the [0, 1]-fibers
of B x [0, 1] and make some minor “horizontal” adjustments to achieve an embedding
with the following properties. (We now identify B? with its image D.) The O-handles
E\,Ey,...,Ex lie in the level B® x {1/4}. For 1 < i < k, the collar E} — int(E;)
lies vertically over E; in the product B* x [1/4,1/2] so that 3E;" lies in the level
B* x {1/2}. The 1-handles Fy, F3,..., Fx_ lie in the level B® x {1/2}. The collar
G* — int(G) lies vertically over 3G in the product B* x [1/2,3/4] so that 3G+ lies
in the level B* x {3/4}. The annulus D — int(G*) lies in the product B* x [3/4, 1] so
that each level circle of the annulus lies in a B x {t}-level and, of course, 3D lies in
B3 x {1}.

Let 7: B3 x [0, 1] — B? denote projection. The regular neighborhood N of D can be
assumed to have the following form:

N=(Ny x[1/4=61/4+6]) U(Nyx [1/4+6,1/2 - 5])
U(N3 x [1/2—68,1/2+6]) U (Ny x [1/246,3/4]) U Ns

where Ny, Ny, N3 and Ny are regular neighborhoods of w(D N (B3 x {t})) in int(B?)
fort = 1/4,3/8,1/2 and 5/8, respectively. Ns is a regular neighborhood of the annulus
D —int(G*) in B* x [3/4,1],and 0 < § < 1/8.

N, is a regular neighborhood of the union of the k disks #(E;), 1 <i < k; and N, is
a regular neighborhood of the union of the k simple closed curves 7(3E;), 1 <1 < k.
Thus, N has k components each of which is a 3-ball containing one of the disks 7 (E;),
and N, has k& components each of which is a solid torus containing one of the simple
closed curves m(0F;). Moreover, we can assume that N> C Ny, and that cl(N — N,)
has k components each of which is a 3-ball that intersects cl(B* — Ny) in a pair of
disjoint boundary disks. This allows us to view each component of cl(N; — N;) as a
3-dimensional 1-handle attached to cl(B* — N;). Hence, cl(B* — N,) is obtained by
attaching k 3-dimensional 1-handles (the components of cl(N; — N,)) to cl(B* — Ny).

Let X denote the union of the simple closed curves 6Ei+ , 1 €1 < k, and the
“bands” Fj, 1 < j < k. N3 is a regular neighborhood of 7(X). Hence, we can assume
that N, C N3 and that V3 is obtained from N, by attaching & — 1 3-dimensional
1-handles, each 1-handle containing one of the disks 7(F};). Ny is a regular neighborhood
of 7(dG), and 3G is obtained from X by removing from X all of F; except for the
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two arcs comprising F; N (0G) for | € j < k — 1. It follows that we can assume that
Ny C Nj, and that cl(IN3 — Ns) has k — | components each of which is a 3-ball that
intersects cI(B* — N3) in a boundary annulus. This allows us to view each component of
cl(N3 — Ny) as a 3-dimensional 2-handle attached to cl(B* — N3). Hence, cl(B* — Ny)
is obtained by attaching k — 1 3-dimensional 2-handles (the components of cl( N3 — Na))
to cl(B? -~ N3).

The following seven assertions clearly imply that cI(B* — N) has a handlebody de-
composition involving no 3- or 4-handles.

(i) Yo = B* x [0,1/4 — 8] is a 4-ball and can, thus, be regarded as a O-handle.
(i) Yoi = Yo U (cI(B* — Ny) x [1/4 — 6,1/2 — 6]) is homeomorphic to Yp.
(iif) Y7 = cl(B? x [0,1/2 — 8] — N) is obtained from Yo, by attaching 1-handles.
(iv) Yiy = Y1 U (cl(B? — N3) x [1/2 — §,3/4]) is homeomorphic to Y;.

(v) Y2 = cl(B? x [0,3/4] — N) is obtained from Y; by attaching 2-handles.

(vi) Yoy = Y2 U (cl(B? — Ny) x [3/4,1]) is homeomorphic to Y5.

(vii) cl(B* — N) is homeomorphic to Y, .

Assertions (i), (ii), (iv) and (vi) are immediate.

To prove assertion (iii), observe that Y} = Yo, U (cI(N] — Np) x [1/4 4 §,1/2 - §]).
Since cl(Ny — N3) can be viewed as the union of k 3-dimensional 1-handles attached
to cI(B* — Ny), then cl(N; — Ny) x [1/4 + §,1/2 — 8] can be viewed as the union of
k 4-dimensional 1-handles attached to Yo along (3cl(B* — Ny)) x [1/4 4+ 6,1/2 — §).
Hence, Y} is obtained from Yy, by attaching & 4-dimensional 1-handles.

To prove assertion (v), observe that Y, = Y1 U (cl(N3 — Ny) x [1/2+ 6,3 /4]). Since
cl(N3 — Ny) can be viewed as the union of & — 1 3-dimensional 2-handles attached to
cl(B* — N3), then cl(N3 — Ny) x [1/2 + 6,3/4] can be viewed as the union of k — 1
4-dimensional 2-handles attached to Y, along (3cl(B* — N3)) x [1/2 + 6,3/4]. Hence,
Y, is obtained from Y, by attaching ¥ — 1 4-dimensional 2-handles.

Finally, to prove assertion (vii), we observe that the original map f: B* — B* x {1}
embeds the annulus B? — int(G™T). Hence, there is a piecewise linear ambient isotopy
of B? x {1} which “drags” f(3G*) through the level circles of the annulus f(B? —
int(G)). This ambient isotopy can be “spread out” as a level preserving piecewise linear
homeomorphism k of B* x [3/4, 1] which restricts to the identity on B x {3/4}, which
carries the “cylinder” 7(0G™*) x [3/4, 1] onto the annulus D —int(G™), and which carries
Ns x [3/4,1] onto Ns. (If h(Ns x [3/4,1]) # Ns initially, we correct this by redefining
Ns.) We extend h over B x [0,3/4] via the identity. Then h carries Y5, onto

Y,Ucl(B* x [3/4,1] = Ns) = cl(B* x [0,1] = N) = cl(B* — N).

This completes the proof of assertion (a): cI(B* — N) has a handlebody decomposition
with no 3- or 4-handles.

It remains to demonstrate assertion (b): there is a piecewise linear homeomorphism
from B* to B3 x [0, 1] which identifies T with a subset Ty x {0} of B* x {0} so that
B?* x [0,1] is obtained from Ty x [0, 1] by attaching 1- and 2-handles to (37p) x [0, 1].
Let C* be a 3-ball in 8B* such that T C int(C?). C? — int(T) has a handlebody
decomposition based on T; in other words, C* can be obtained by attaching 0-, 1-, 2-
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and 3-handles to T'. The 0-handles of this decomposition can be eliminated by cancelling
them with some 1-handles, and the 3-handles can be eliminated by cancelling them with
some 2-handles. These cancellations can be performed without moving T', but then C?
may be forced to move. At the end of the process, T is still a subset of the (possibly
repositioned) 3-ball C*. (T’ may no longer be interior to C*.) Now C? is obtained by
attaching 1- and 2-handles to 7. Since C? is a piecewise linear 3-ball in dB*, there is
a piecewise linear homeomorphism & : B* x [0, 1] — B* such that k(B? x {0}) = C?.
There is a solid torus T in B? such that k(Tp x {0}) = T. It follows that B* can be
obtained from T by adding 3-dimensional 1- and 2-handles. By “crossing” each of these
handles with [0, 1], we see that B x [0, 1] can be obtained from Tp x [0, 1] by attaching
4-dimensional 1- and 2-handles to (97p) x [0, 1]. This proves assertion (b). O
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