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Abstract 

A compact subset X of the interior of a compact manifold A4 is a pseudo-spine of A4 if A4 - X 
is homeomorphic to (aM) x [0, m). It is proved that a 4-manifold obtained by attaching Ic essential 
2-handles to a B3 x S’ has a pseudo-spine which is obtained by attaching Ic B2’s to an S’ by 
maps of the form t + tn. This result recovers the fact that the Mazur 4-manifold has a disk 
pseudo-spine (which may then be shrunk to an arc). To prove this result, the mapping swirl (a 
“swirled” mapping cylinder) of a map to a circle is introduced, and a fundamental property of 
mapping swirls is established: homotopic maps to a circle have homeomorphic mapping swirls. 

Several conjectures concerning the existence of pseudo-spines in compact 4-manifolds are stated 
and discussed, including the following two related conjectures: every compact contractible 4- 
manifold has an arc pseudo-spine, and every compact contractible 4-manifold has a handlebody 
decomposition with no 3- or 4-handles. It is proved that an important class of compact contractible 
4-manifolds described by Potnaru satisfies the latter conjecture. 

Keywords: Pseudo-spine; Mazur 4-manifold; Mapping swirl; PoCnaru 4-manifolds 

AMS classification: 57N13 

1. Introduction 

A compact subset X of the interior of a compac’t manifold M is a called a (tapologica/) 

spine of A4 if A4 is homeomorphic to the mapping cylinder of a map from aA to X. 

X is called a pseudo-spine of M if M - X is homeomorphic to (C)M) x [0, co). 

It is proved in [l] that for n 3 5, every compact contractible n-manifold has a wild 

arc spine. It is observed, however, that in general compact contractible 4-manifolds don’t 

have arc spines. In fact, a compact contractible 4-manifold with an arc spine must be 
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either a 4-ball or the cone over a nontrivial homotopy 3-sphere (if one exists). Thus, a 

compact contractible 4-manifold with a nonsimply connected boundary can’t have an arc 

spine. 

The Mazur P-manifold [6] is a compact contractible 4-manifold with a nonsimply 

connected boundary. It is a well-known consequence of [5,3] that the Mazur 4-manifold 

has an arc pseudo-spine. 

The naively optimistic conjecture motivating this paper is: every compact contractible 

4-manifold has an arc pseudo-spine. The mathematical content of the paper arises from 

the introduction of the mapping swirl construction which allows us to reinterpret and 

generalize the method of [5]. In Section 2 of this article the mapping swirl of a map to 

S’ is defined and two fundamental theorems about it are proved: Theorem 1: Homotopic 

maps from a compact metric space to S’ have homeomorphic mapping swirls. Theorem 2: 

For a compact metric space X and an integer n # 0, the mapping swirl and the mapping 

cylinder of the map (z:, Z) * zn : X x S’ + S’ are homeomorphic. Section 3 applies 

these theorems to produce simple pseudo-spines for the special class of 4-manifolds 

obtained by adding finitely many essential 2-handles to B’ x S’. This approach recovers 

the previously known result that Mazur’s compact contractible 4-manifold has an arc 

pseudo-spine. Section 4 speculates about the possibility of finding simple pseudo-spines 

for all compact 4-manifolds. In particular, it includes the conjecture that every compact 

contractible 4-manifold has an arc pseudo-spine. It also states a closely related conjecture: 

every compact contractible 4-manifold has a handlebody decomposition with no 3- or 

4-handles. It then presents a proof that this conjecture holds for an important class of 

compact contractible 4-manifolds described by Poenaru. 

2. Mapping swirls 

Let f : X -+ S’ be a map from a compact metric space X to S’ . Intuitively, the 

mapping swirl of f is obtained from the mapping cylinder of f by “swirling” the fibers 

of the mapping cylinder around infinitely many times in the S’-direction as they approach 

the S’-end of the mapping cylinder. To make this informal definition precise, we use the 

fact that the mapping cylinder of f embeds naturally in (CX) x S’, where CX is the 

cone on X. The mapping swirl of f is defined as a subset of (CX) x S’. The swirling 

effect is achieved by using the S’-factor. We also define the double mapping swirl of f, 

by “swirling” the fibers of the double mapping cylinder of f at both ends. The double 

mapping swirl of f is defined as a subset of (CX) x S’, where CX is the suspension 

of X. The S’-factor is again used to achieve the swirling effect. 

Simple examples show that two maps from a compact metric space to S’ may differ by 

only a slight homotopy and yet have nonhomeomorphic mapping cylinders and double 

mapping cylinders. In contrast, our principal result, Theorem 1, says that homotopic maps 

from a compact metric space to S’ have homeomorphic mapping swirls. The swirling 

process kills the topological difference between the mapping cylinders of homotopic 

maps. 
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Definition. Let X be a compact metric space. The susperzsion of X, denoted CX, is the 

quotient space [-co, co] X X/{{-co} X X, (c3) X X}. Let 4: [-03, m] X X -+ .EX 

denote the quotient map. For (t, x) E [- co, CQ] x X, let tx = q((t, 2)); and let ice = 

q({&co} x X). The cone on X, denoted CX, is q([O, CXI] x X). 

Definition. Let f : X -+ Y be a map between compact metric spaces. The mapping 

cylinder of f, denoted Cyl(f), is the subspace 

{ (tx, f(x)) E (CX) x Y: (4 x) E 10, m) x X} u ((4 x Y) 

of (CX) x Y. The double mapping cylinder of f, denoted DblCyl(f), is the subspace 

{ (tx, f(x)) E (CX) x Y: (t, x) E (-00, c0) x x} u ((-00, c0} x Y) 

of (CX) x Y. For -a < t < co, call the set {(tx,f(x)): 5 E X} the t-level of 

DblCyl(f); it is homeomorphic to X. Call {=tto;)} x Y the fca-level of DblCyl(f). 

Observe that the union of the t-levels of DblCyl(f) for 0 < t < cc is precisely Cyl(f). 

To reconcile this definition of the mapping cylinder of f with the usual definition, 

consider the map from the disjoint union ([0, m] x X) UY onto the subset of (CX) x Y 

which we have called Cyl(f) which sends (t, x) E ([0, co] x X) to (tx, f(x)) and sends 

y E Y to (co, y). The set of inverse images of this map determines the decomposition 

of ([O, CZQ] x X) u Y m which the only nonsingleton elements are sets of the form 

(f-‘(y) x {cQ})u{ 1 f y or y E Y. This is exactly the decomposition which is determined 

by the inverse images of the “usual” quotient map from ([0, co] x X) U Y to the “usual” 

mapping cylinder of f. Consequently, Cyl(f) h 1s omeomorphic to the “usual” mapping 

cylinder of f. Similarly, DblCyl(f) is homeomorphic to the “usual” double mapping 

cylinder of f. 

Definition. Let X be a compact metric space and let f : X + 5” be a map. The mapping 

swirl of f, denoted Swl(f), is the subspace 

U ts,e2Titf(z)) E (CX) X S’: (t,x) E [O,ca) X X} U ({co} X S’) 

of (CX) x 5”. The double mapping swirl of f, denoted DblSwl(f), is the subspace 

U tz, e2xitf(x)) E (CX) x S’: (t, z) E (-00, ~0) x X} U ((-00, co} x S’) 

of (CX) x 5”. For -W < t < cm, call the set {(tx,e2Kitf(z)): x E X} the t-level of 

DblSwl(f); ‘t h I 1s omeomorphic to X. Call {&KI} x S’ the (&m)-level of DblSwl(f). 

Observe that the union of the t-levels of DblSwl(f) for 0 < t < cm is precisely Swl(f). 

For x E X, call the set { (tx, e2mit f(x)): --co < t < ca} the x-fiber of DblSwl(f), 

and call the set { (tx, e2rit f(x)): 0 < t < m} the x-fiber of Swl(f). If g: X + S1 

is another map and x E X, then the x-fiber of Swl(f) (DblSwl(f)) and the x-fiber of 

Swl(g) (DblSwl(g)) are called corresponding fibers. 

Theorem 1. Zf X is a compuct metric space, and f, g : X + S’ are homotopic mups, 

then Swl(f) is homeomorphic to Swl(g). Furthermore, the homeomorphism maps the 
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0- and w-levels of Swl(f) onto the 0- and w-levels of Swl(g), respectively, and maps 

each fiber of Swl(f) onto th e corresponding Jber of Swl(g). 

Proof. The proof has two steps. First we find a homeomorphism of (CX) x S’ which 

carries DblSwl(f) onto DblSwl(g). This homeomorphism moves Swl(f) into DblSwl(g), 

because Swl(f) c DblSwl(f). S econd we find a homeomorphism of (CX) x S’ which 

“twists” the image of Swl(f) onto Swl(g) within DblSwl(g). 

Step 1. For each 5 E X, set F’(z) = {(tz, e2”itf(z)): -oc < t < cc} and set 

G(z) = {(t~,e*~~~ g(z)): --oo < t < co}. .7=(z) and G(z) are the z-fibers of DblSwl(f) 

and DblSwl(g), respectively. Both lie in ((-00, c~)z) x S’ c (C(X)) x S’. 

For each z E X, the z-fibers F’(z) and G(z) form a “double helix” in the cylinder 

((-co,oo)z)xS’.TheangleB(z) b e ween 3(z) and G(z) in the S’-direction is precisely t 

the angle between f(z) and g(s) in S’, and a twist of the cylinder ((-co, co)z) x S’ in 

the S’-direction through the angle Q(z) would move F(z) to G(z). Unfortunately, one 

can’t form the “union” of these twists over all the cylinders ((-co, oc)z) x S’ to move 

DblSwl(f) to DblSwl(g) in (CX) x S’, b ecause Q(z) may vary with 2, so that there is 

no single rotation of {-co, co} x S’ that extends the twists of all the cylinders. Instead 

of using a twist, one observes that the helix F(z) can be moved to the helix G(z) by 

a slide of the cylinder ((- 03, m)z) x S’ in the (-co, co)z-direction. The length of the 

slide in the (-co, oc)z-direction varies with 5 and is essentially determined by lifting 

the homotopy joining f to g in S’ to a homotopy in (-oo, oo). Unlike the previously 

considered twist, this slide extends to (-03, cc} x S’ via the identity. This is because 

the slide makes no motion in the S’-direction and preserves the “ends” of (-co, cc)z. 

The details follow. 

Suppose h: X x [O, I] + S’ is a homotopy such that h(z, 0) = g(z) and h(z, 1) = 

f(x). We exploit the fact that S’ is a group under complex multiplication to define 

the map k: X x [0, l] t S’ by k(z,t) = h(z,t)/h(z,O). Thus, k(x,O) = 1 and 

k(xc, l)s(z) = f(x) f or 3: E X. Let e : (-00, 00) + S’ denote the exponential covering 

map e(t) = ezzit. Let Ic : X x [0, I] + (- 00, oc) be the lift of k (i.e., e 0 ,& = k) such that 

,&(z, 0) = 0 for all II: E X. Define 0: X + (-cc, oc) by g(z) = i(z, 1). Observe that 

for each z E X, f(z)/e2riu(z) = f(z)/e(&(z, 1)) = f(z)/k(z, 1) = g(z). Since X is 

compact, there is a b E (0, cc) such that a(X) C (-b, b). As we will see, g(z) specifies 

the length of the slide of the cylinder ((- co, CO)~) x S’ in the (-co, co)%-direction that 

moves F’(z) to G(z). 

Now define the function @: (CX) x S’ + (CX) x S’ by setting @(tz, z) = ((t + 

~(Ic))z,z) for (t,z) E (- 03, CKJ) x X and z E S’, and by requiring that @I{ -co, oo} x 

S’ = id. Clearly @ is continuous at each point of (CX) x S’ - {-cc, oo} x S’. For 

each z E S’, the continuity of @ at the points (*oo, z) follows from the inclusions 

@((K 4~) x (21) c ((t - t4 4x) x b>> 
Qq([--03,t]x) x {z}) c (r-m + G) x {z>. 

Next we verify that @(DblSwl(f)) c DblSwl(g). To this end, let 3: E X and consider 

a typical point (tz:, e2ni”f(z)) of the fiber F(z). @ moves this point to the point 
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((t + cT(x))x, e2nit f(x)) = ((t + a(x))x, e*~i(t+6(2))f(x)/e*?Tiu(2)) 
= ((t + a(x)) 2, e2ri(t++))g(x)) 

which is a point of the fiber $7(z). Consequently, @(F(z)) C G(z). Thus, @ maps each 

fiber of DblSwl(f) into the corresponding fiber of DblSwl(g). Also @({-oo, co} x S’) = 

{-oc), co} x S’. Since DblSwl(f) and DblSwl(g) are the unions of their fibers and of 

{-cc, co} x S’, we conclude that @(DblSwl(f)) c DblSwl(g). 

To complete Step 1, we must verify that @ is a homeomorphism and that 

@(DblSwl(f)) = DblSwl(g). We accomplish this by defining the function 3: (EX) x 

S’ + (CX) x S’ by setting $(tz, z) = ((t - u(zr))z, z) for (t, z) E (---co, oo) x X and 

z E S’, and by requiring that 3I{--co, cc} x S’ = id. Arguments similar to those just 

given show that 3 is continuous and that m(DblSwl(g)) c DblSwl(f). Also it is eas- 

ily checked that the composition of @ and 3 in either order is the identity. Hence, 

@ is a homeomorphism, and @(DblSwl(f)) > Q@(DblSwl(g))) = DblSwl(g). So 

@(DblSwl(f)) = DblSwl(g). 

Step 2. Here we will find a homeomorphism 9 of (.EX) x S’ such that 

@(@(Swl(f))) = Swl(g). 

For each IC E X, set F+(z) = {(tz, e2rit f(z)): 0 < t < co} and set G+(z) = 

{(tx, e ‘“‘“g(z)): 0 < t < cm}. F’+(x) and @( 5 are the s-fibers of Swl(f) and Swl(g), ) 

respectively. 

For z E X, since F’+(z) c F(z), then @(F’+(z)) c @(F(z)) c G(X); also G+(x) c 

G(z). We will describe a homeomorphism !P which gives the cylinder ((-co, oo)z) x S’ 

a screw motion that carries the fiber G(z) onto itself and moves @(F+(z)) onto G’(z). 

Also !P will restrict to the identity on a neighborhood of {--00, oo} x S’. 

Recall that b E (0, co) such that a(X) C (4, b). There is a map 7: (-co, 00) x 

X + (-cc, co) such that for each z E X, t F+ T(t,x) : (-co, CQ) + (-CQ, co) is 

an order preserving piecewise linear homeomorphism which restricts to the identity on 

(-oo -bl U [b, 00) and which moves g(z) to 0. For example, r can be defined by the 

formulas: 

7-(t, 2) = (b/(b + c(x))) (t - g(x)) for t E [ - b, g(x)], 
r(t, z) = (b/(b - a(z))) (t - a(x)) for t E [a(s), b], 

7(t, z) = t for t E (-00, -b] U [b, oo). 

Now define the function 9 : (CX) x S’ + (CX) x S’ by setting 

!P(tz, 2) = (7(t, z)z, e2ai(T(t~z)-t).z) for (t, z) E (-co, oo) x X and z E S’, 

and by requiring that !&I { - oo, co} x 5” = id. Since I- is continuous, then !P is continuous 

at each point of (CX) x S’ - {-co, oc} x S’. Also since T(t, z) = t for t E (-oc, -b] U 

[b, co), then !P restricts to the identity on the neighborhood of {-co, co} x S’ in (CX) x 

S’ consisting of all points of the form (tx, z) where t E [-co, -b] U [b, co], z E X and 

z E S' . Hence, P is continuous at each point of { -00, co} x S' . 
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Next we verify that P(@(Swl(f))) C Swl(g). To this end, let IC E X and consider 

a typical point p of F+(z). p has the form (tz,e*~‘“f(z)) where 0 < t < co. Thus 

Q(p) = ((t + a(z))z, e2Ti(t+“(“))g(z)). Hence, 

P(@(p)) = (7(t + a(z), z)z, e 2~l(-r(t+o(z),z)-t-u(s))e*ni(t+u(2))~(~)) 

= (7(t + ff(~),2)~,e*~~~(~+~(~),~)g(~)). 

Since u * ~(21, z) : (- 00, cm) t (-00, cm) is an order preserving homeomorphism, 

T(CJ(Z), z) = 0 and t 3 0, then T(t + a(z), z) 3 0. It follows that @(Q(p)) belongs 

to the fiber g+(z). This proves @(@(F+(z))) c g+(z). So @ o @ maps each fiber of 

Swl(f) into the corresponding fiber of Swl(g). Also 9 o @({oo} x S’) = {co} x S’. 

Since Swl(j”) and Swl(g) are the unions of their fibers and of {co} x S’, we conclude 

that S(@(Swl(f))) C Swl(g). 

It remains to establish that k : (CX) x S’ + (CX) x 5” is a homeomorphism and 

that 9 o (Swl(f)) = Swl(g). To this end, first note that there is a map ?: (--00, co) x 

X + (-W,OO) such that for each z E X, t ++ ?(t,z): (-m,cm) + (-co, co) is 

the inverse of the homeomorphism t * r(t,z) : (-co,cm) 3 (-m,m). (Thus, for 

each 5 E X, t e 7(t, z) : (- 03, CXI) + (-cm, cc) is an order preserving piecewise 

linear homeomorphism which restricts to the identity on (-co, -b] U [b, CO) such that 

7(0, z) = a(z), and ?(r(t,z),z) = t and r(?(t, Z),IC) = t for -oo < t < co.) Then 

define the function 3: (CX) x S’ + (CX) x S1 by setting 

F(tz, z) = (7(t, 5)x, e2”i(‘(t~“)-t)z) for (t, x) E (-03, co) x X and z E S’, 

and by requiring that $I{ - co, CQ} x 5” = id. The proof of the continuity of 3 is similar 

to the proof of the continuity of P. 

Next we verify that q(Swl(g)) c @(Swl(f)). To this end, let 5 E X and consider a 

typical point p of G+(z). p has the form (tx, e*“‘“g(z)) where 0 < t < 00, and 

g(p) = (7(t,2)2,e *xi(s(t,z)-t)e*“itg(2)) = (+=(t, x)x, e2~it(t+)g(x:)). 

Since 2~ ++ T(z1, z) : (-co, co) + (- 03, cm) is an order preserving homeomorphism, 

~(0, z) = G(Z) and t 3 0, then ‘t(t, cc) = u + o(x) for some u 3 0. Hence, 

5(p) = ((u + a(z)) 2, e2”‘(u+u(z))g(z)). 

Since IL > 0, then the point (212, e 2~L*Lf(z)) belongs to F’+(z), and @(WE, e2?ri”f(z)) = 

((u + D(X))%, e *+(“+“(“))g(z)). Consequently, 

F(p) = @(uz, e2+u. f(4) E QV+(+ 

This proves s(g+(z)) C @(F+(z)). SO 3 ma s each fiber of Swl(g) into the Q-image p‘ 

of the corresponding fiber of Swl(f). Also 3({oo} x 5”) = {co} x S’ = @({co} x S’). 

Since Swl(g) and Swl(j) are the unions of their fibers and of { c~} x S’ , we conclude 

that m(SwI(g)) c @(Swl(f)). 
It is easy to verify that the composition of 9 and 3 in either order is the identity. 

(Remember that ;i(-r(t, x)x) = t and 7(7(t, cc), x) = t for IC E X and --CO < t < 00.) 

Hence, Ik is a homeomorphism. 
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We have seen that P(@(Swl(f))) c Swl(g) and Ik(Swl(g)) c @(Swl(f)). So 

@(@(Swl(f))) 1 qqSwl(g))) = Swl(g). 

Thus, the homeomorphism 9 o @ maps Swl(f) onto Swl(g). 

In the course of the proof, we have seen that for each z E X, !P(@(_F+(z))) c 

G+(z) and 3(@(z)) C @(F+(z)). So !P(@(.F+(z))) > P($(G+(x))) = G+(z). Thus, 

@(@(F’+(z))) = G+(z). In other words, the homeomorphism !P o @ maps each fiber of 

Swl(f) onto the corresponding fiber of Swl(g). 

A typical point of the O-level of Swl(f) has the form (Oz, f(z)) and 

P(@(Oz, f(z))) = !P(~(z)s, e2ri0(z)g(z)) 

= (,(,(x), ~)~,e2~i(T(u(2)~2)-u(z))e2xi0(s)g(~)) = (05, g(z)) 

because ~(g(z), z) = 0. Thus, P o @ maps the O-level of Swl(f) onto the O-level of 

Swl(g). 
Since P(@({--co} x 5”)) = P({--co} x 5”) = {-cm} x S’, then P o @ maps the 

m-level of Swl(f) onto the co-level of Swl(g). 0 

The next theorem and its corollaries make it possible to identify the mapping swirls 

of a special types of maps. 

Theorem 2. If X is a compact metric space, n is a nonzero integel; and f : X x 5” + S’ 
is the map f(z,z) = zn, then Cyl(f) h IS omeomorphic to Swl(f). Furthermore, the 

homeomorphism maps the t-level of Cyl( f) onto the t-level of Swl(f) for 0 < t < co. 

Proof. We will find a homeomorphism from C(X x S’) x S’ to itself which carries 

Cyl(f) onto Swl(f) by twisting motion in the S’-direction in the C(X x 5”) factor of 

C(X x S’) x S’. This is possible because of the S’-factor in the domain of f and the 

special form of f. 

Define the function 

&C(XxS’) +c(xxs’) 

by setting 4(t(z, 2)) = t(z, e-2nitln z) for t E [0, cm) and (2, z) E X x S’ and $(oo) = 

00. q+ is clearly continuous on C(X x S’) - (00); and because q5 maps the t-level of 

C(X x S’) into itself, then ~LJ is continuous at 03. We show that 4 is a homeomorphism of 

C(X x S’) by exhibiting its inverse. Indeed, let us define the function 4 : C(X x S’) + 
C(X x S’) by setting &t(z, 2)) = t(z, ezTitln z) for t E [0, co) and (2, z) E X x S’ and 

&co) = co. Then 4 IS continuous by an argument similar to the one just given. Also 

it is easily checked that the composition of q3 and $ in either order is the identity. So 4 

and 4 are homeomorphisms. 

Next define a homeomorphism @ : C(X x S’) x S’ + C(X x S’) x S’ by @ = 4 x id. 

Clearly 3 = 4 x id defines the homeomorphism of C(X x S’) x S’ which is the inverse 

of @. 
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We now prove that @(Cyl(f)) = Swl(f). Let 0 < t < 00, and consider a typical point 

p = (t(~, z), f(~, z)) = (t(~, z), z7’) of the t-level of Cyl(f) where (z, z) E X x 5”. 

Set z’ = e-2r’tlnz. Then 

G(p) = (4(t(~, z), z’“)) = (t(~, e-2nitlnz), zn) 

= (t(x,e -2?rit/nz), e2ait (e-2ait/nZ)n) 

= (t(x, z’), e2xit (z’)~) = (t(x, z’), e2Titf(x, z’)). 

So G(p) belongs to the t-level of Swl(f). Also @({c~} x S’) = {oo} x S’. It follows 

that @(Cyl(f)) C Swl(f), and @ maps the t-level of Cyl(f) into the t-level of Swl(f) 

forO<t<oo. 

A similar argument shows that 3 maps the t-level of Swl(f) into the t-level of Cyl(f) 

for 0 < t 6 co. Indeed, if 0 < t < cc and p = (t(x, z)e2aitf(x, z)) = (t(x, z), e2Titzn) 

is a typical point of the t-level of Swl(f), and we set z’ = e2’rit/nz, then 

3(p) = (J(t(x, z)e2ritzn)) = (t(x, e2Tit’nz), (e2rit’lLz)n) = (t(x, z’), f(x, z)) 

which is a point of the t-level of Cyl(f). Also s({oo} x S’) = {CO} x 5”. Hence, 

Z(Swl(f)) c Cyl(f). S’ mce 3 = G-t, it follows that @(Cyl(f)) = Swl(f), and @ maps 

the t-level of Cyl(f) onto the t-level of Swl(f) for 0 < t < co. 0 

We now exploit Theorems 1 and 2 together to state two corollaries which allows us 

to identify the mapping swirls of certain kinds of maps. 

Corollary 1. If X is a compact metric space, f : X x 5” -+ S’ and g : X x S’ + 5” 

are homotopic maps, and g(x, z) = zn where n is a nonzero integel; then Swl( f) is 

homeomorphic to Cyl(g). Furthermore, the homeomorphism maps the 0- and c&evels 

ofSwl(f) onto the 0- and oo-levels ofCyl(g). 

Corollary 2. If f : 5” t S’ is a map of degree n # 0, then Swl(f) is homeomorphic 

to Cyl(z ti z”). Furthermore, the homeomorphism maps the 0- and co-levels of Swl(f) 

onto the 0- and m-levels ofCyl(z +F z”). In particulal; Swl(f) is an annulus ifn = 51, 

and Swl(f) is a Mtibius strip ifn = 1t2. 

The last assertion of this corollary follows from the observation that the mapping 

cylinder of the map z + z’& : S’ t 57’ is an annulus if n = +l, and it is a Mobius strip 

if n = %2. 

3. Pseudo-spines of 4-manifolds 

Recall that a compact subset X of the interior of a compact manifold M is a pseudo- 

spine of M if M - X is homeomorphic to (8M) x [0, CO). 

Let // 11 denote the Euclidean norm on R”: 11x11 = (XT + xg + .. + x:)1/2, Set 

B” = {x E RF: llzll < l} and S” = {Z E !I?+‘: l\zll = 1). 
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For each integer n, let ^in : 5” + S’ denote the map ~~(2) = 9, and let X(n) denote 

the adjunction space B2 U,, S’. Thus, X(51) IS a 2-dimensional disk, and X(+2) 

is a projective plane. If (n[ > 2, then X(n) is a 2-dimensional polyhedron which is 

not a 2-manifold. For nonzero integers n’, n2, . . . , nk, let X(n’, n2,. . , nk) denote the 

adjunction space (B2 x { 1,2,. . . , k}) Ur S’ where r : S’ x { 1,2, . . . , Ic} -+ S’ is the 

map defined by r(z, i) = yn, (z) f or z E S’ and 1 < i < Ic. Thus, X(n’,nz,. . . ,nk) is 

homeomorphic to a union of X(n' ), X(n2), . . . , X(nk) in which all the “edge circles” 

of the X(ni)‘s are identified with a single copy of S’ 
A simple closed curve C in the boundary of a manifold N is called essential if it is 

not homotopically trivial in aN. If C is essential, then any 2-handle attached to N along 

C is also called essential. 

Theorem 3. Suppose Cl, C2, . , CI, are disjoint essential simple closed curves in a B” x 

S’, and M4 is the 4-manifold obtained by attaching disjoint 2-handles to B’ x S’ along 

C’, C2,. , Ck. Let r: aB” x S’ + S’ denote the projection map. For 1 < i < lc, let 

ni denote the degree of the map r[Ci : Ci + S’. Then M4 has a pseudo-spine which is 

homeomorphic to X(n’, n2,. . . , nk). 

Proof. Note that ni # 0 because Ci is essential for 1 < i < Ic. We write M4 = 

(B” x S’) U (H’ U H2 U . U Hk) where Hi is the 2-handle attached to B’ x S’ 

along Ci. Thus, for 1 < i < k, there is a homeomorphism hi : B2 x B2 + Hi such 

that (B” x S’) fl Hi = hi((aB2) x B2) C aB’ x S’ and hi((aB2) X (0)) = C,. For 

1 < i 6 k, set Di = hi(B2 x (0)); then aDi = Ci and Di is the “core disk” of Hi. 

Clearly B” x S’ is homeomorphic to Cyl(n) by a homeomorphism that takes aB’ x S’ 

onto the O-level of Cyl(rr). In addition, Theorem 2 provides a homeomorphism from 

Cyl(rr) to Swl(rr) which takes the O-level of Cyl(~) to the O-level of Swl(rr). The 

composition of these homeomorphisms allows us to identify B’ x S’ with Swl(rr) so 

that aB” x S’ is identified with the O-level of Swl(rr). Thus, we can regard C’ , C2, . , Ck 

as disjoint simple closed curves lying in the O-level of Swl(rr). 

Let 1 < i < k. Observe that SWl(rlCi) can be naturally identified with a subset of 

Swl(7r) so that the O-level of Swl(rlC~) is the subset of the O-level of Swl(rr) identified 

with C,, and co-levels of Swl(rlCi) and Swl( TT coincide. Since rr[C, : Ci + S’ is a ) 

map of degree ni, then Corollary 3 provides a homeomorphism from Swl(~lCz) to the 

mapping cylinder of the map z c-) znE : S’ + S’ which preserves O-levels and co-levels. 

Since Ci is the O-level of Swl(rr/Ci) and Ci = aDi, then clearly Swl(rICi) U Di is 

homeomorphic to X (ni). 

Set X = Uzk,, Swl(TlCi) U Di. Then X is a compact subset of int(M4), and X is 

clearly homeomorphic to X(n’, n2,. . . , nk). 

It remains to prove that M4 - X is homeomorphic to (aM4) x [0, m). Observe that 

M4 - X is the union of Swl(r) - U,“=, Swl(nlCi) and the sets Hi - Di for I < i < k. 

Furthermore, Swl(rr) - U,“=’ Swl(nlCi) is the union of the fibers of Swl(rr) that emanate 

from the points of (aB” x S’) - Uf=, Ci, and each of these fibers is homeomorphic to 

[0, co). We will “extend” these fibers to fill the sets Hi - Di, 1 < i < k. 
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We will define a homeomorphism G: (aM4) x [0, co) -+ M4 - X. To begin, there is 

clearly a homeomorphism F: (aB’ x 5”) x [0, co) + Swl(r) - ({c~} x St) which takes 

{ (5, z)} x [O,oo) onto the (x, x)-fiber of Swl(n), for (x, 2) E aB” x St. Indeed, the 

formula F((z, z), t) = (t(z, z), e2nit z) for ((x, z), t) E (a@ x 5”) x [0, oo) determines 

such a homeomorphism. 

For each i, 1 < i < Ic, set 

Ai = hi( (aB2) x I?') and Bi = hi (B’ x (aB2)). 

A, is called the attaching tube of Hi, and Bi is called the belt tube of Hi. Then Ai = 

Swl(n) n H, and 

We set 

G (aB” x S’) - ; int(Ai) x [O,a) 
i=l 

= F (aB” x S’) - ; int(Ai) x [O, m). 
i=l 

It remains to define GIB, x [0, co) for 1 < i < k. Consider a point p E Bi. Then 

p = hi(x, y) where (5, y) E B2 x (aB2). If 5 = 0, then G({p} x [0, co)) is the “deleted 

radius” hi({(O,ty): 0 < t < 1)) of the disk h,({O} x B’) joining the center point 

hi(O, 0) to p. If z # 0, then G({p} x [0, co)) is t h e union of an arc in Hi joining the 

point p to a point q E Ai together with the ray F({q} x [0, co)). Moreover, the arc in 

Hi joining p to q is the hi-image of the subarc of the “hyperbola” {(sz, ty): st = 1) 

joining the point (z,y) to the point (x/IIzlI, llzlly). So q = hi(a/ilxll, ilxlly). 

The precise definition of G follows. As we stated earlier, 

G 

Ii 

(aB’ x S’) - bint(Ai) 

1 
x [O,m) 

2=1 

= F 

I( 

(aB’ x 5”) - fJ int(Ai) 

) 
x [O,m). 

i=l 

Now suppose 1 < i < Ic, p E Bi and p = hi(X, y), where (x, y) E B2 x (aB2). If z = 0, 

then 

G(p,t)=hi(O,(&)y) forO<t<cc. 

If z # 0, then 

GW) = 
hi((t+l)x, (&)Y), ifO<t<h-1, 

F(hi(~~ll~ll~),t+l-~), if&-lGt<m. 
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The following remarks are intended to further clarify the properties of G. G maps 

( (aB3 x S’) - (j int(Ai) 

) 
x 10, m) 

i=l 

onto 

swl 711 (a@ x S’) - iJint(di) 

cc i=l )) 

For 1 < i < k, G maps 

{W)t& x [o+): oSt<&-l, p=h&,y), (z,v) EB*X (aB*)} 

onto Hi - Di, and G maps 

{(p, t) E Bi X [O, 00): h - 1 < 1 < W, p = hi(Z, t), (Ic, y) E B2 x (aBZ)) 

onto Swl(nlAi - Ci). q 

Corollary 3. Suppose C is a simple closed curve in (a B’) x S’, and M4 = (B’ x S' ) UH 

where H is a 2-handle attached to B’ x S’ along C. Let n: B’ x 5” t S’ denote the 

projection map, and suppose that the map TIC : C + S1 is degree one. Then M4 has 

an arc pseudo-spine. 

Proof. Theorem 3 provides M4 with a pseudo-spine X that is homeomorphic to the 

2-dimensional disk X( 1). According to [3], X can be “squeezed” to an arc in int(M4). 

In other words, there is an arc A in int(M4) and an onto map f : M4 + M4 such that 

f(X) = A and f maps M4 - X homeomorphically onto M4 - A. (Interpreted literally, 

[3] applies only in manifolds of dimension 3. However, the methods of [3] work in 

manifolds of all dimensions 3 3. This is fully explained on p. 95 of [2].) Consequently, 

M4 - A is homeomorphic to aM4 x [0, co), making A an arc pseudo-spine of M4. 0 

Since Mazur’s compact contractible 4-manifold [6] is obtained by attaching a 2-handle 

to B’ x S’ along a degree one curve, we recover the result of [5,3]. 

Corollary 4. Mazur S compact contractible 4-manifold has an arc pseudo-spine. 

4. Conjectures 

The results proved in this paper exhibit simple pseudo-spines for a very modest col- 

lection of 4-manifolds: those obtained by attaching essential 2-handles to B’ x 5”. The 

following conjectures are founded on the possibly naive hope that these results can be 

extended to a more general class of compact 4-manifolds. 
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Conjecture 1. If a compact 4-manifold with boundary is homotopy equivalent to 

X(n1,722,. . . , nk) (where ni, n2,. , nk are nonzero integers), then it has a pseudo- 

spine which is homeomorphic to X(ni , n2, . . . , nk). 

In the case of a compact contractible 4-manifold, Conjecture 1 combined with the 

result of [3] would yield: 

Conjecture 2. Every compact contractible 4-manifold has an arc pseudo-spine. 

Corollary 3 provides an arc pseudo-spine for every compact contractible 4-manifold 

that is obtained by attaching a 2-handle to B’ x S’. Such a 4-manifold has a handlebody 

decomposition consisting of a single O-handle, a single l-handle and a single 2-handle. 

No 3- or 4-handles are needed. This suggests breaking Conjecture 2 into the following 

two parts. 

Conjecture 2A. Every piecewise linear compact contractible 4-manifold has a handle- 

body decomposition with no 3- or 4-handles. 

Conjecture 2B. Every compact contractible 4-manifold that has a handlebody decom- 

position with no 3- or 4-handles has an arc pseudo-spine. 

Here is a less general and apparently more elementary question than those raised by 

the previous conjectures. If M4 and N4 are 4-manifolds with boundary, define their 

boundary connected sum M4 Ua N4 to be the adjunction space M4 uh N4 where h is a 

homeomorphism from a collared 3-ball in 3M4 to a collared 3-ball in L?N4. 

Conjecture 3. If two compact 4-manifolds have arc pseudo-spines, then so does their 

boundary-connected sum. 

If two compact contractible 4-manifolds are each obtained by attaching a single 

2-handle to B’ x S’, then their boundary connected sum has a tree pseudo-spine which 

is homeomorphic to the letter “H”. This is proved by using the methods of the proof of 

Theorem 3 and [3]. (Recall that a tree is a compact contractible l-dimensional polyhe- 

dron.) This raises the question of whether a tree pseudo-spine can be simplified to an arc 

pseudo-spine. We can ask, more generally, whether a compact l-dimensional polyhedral 

pseudo-spine be simplified to a homotopy equivalent canonical model. 

Conjecture 4. If a compact 4-manifold has a tree pseudo-spine, then it has an arc pseudo- 

spine. 

Conjecture 5. If a compact noncontractible 4-manifold has a pseudo-spine which is a 

compact l-dimensional polyhedron, then it has a pseudo-spine which is a wedge of 

circles. 
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There are clear limitations on the amount to which a pseudo-spine can be simplified 

within its homotopy class. If a compact 4-manifold has a point pseudo-spine, then it is a 

cone over its boundary, which implies that its boundary is simply connected. On the other 

hand, there are compact contractible 4-manifolds with nonsimply connected boundaries 

which have arc pseudo-spines (e.g., the Mazur manifold). Clearly, the arc pseudo-spines 

of such manifolds can’t be simplified to points. 

The study of spines and pseudo-spines pursued in this paper and in [1] was partially 

motivated by the question of whether a compact contractible n-manifold other than the 

n-ball can have disjoint spines. (The existence of disjoint spines is equivalent to the 

existence of disjoint pseudo-spines.) In [4] it is shown that for n 3 9, there is a large 

family of distinct compact contractible n-manifolds with disjoint spines. We conjecture 

a different situation in dimension 4. 

Conjecture 6. The only compact contractible 4-manifold that has disjoint spines is the 

4-ball. 

We conclude with some remarks concerning Conjectures 2, 2A and 2B. The “classi- 

cal” examples of compact contractible 4-manifolds include, in addition to the Mazur 

4-manifold, those described by PoCnaru in [7]. We will sketch the construction of 

Poenaru’s examples, and we will explain why many Poenaru 4-manifolds have han- 

dlebody decompositions with no 3- or 4-handles. Hence, they provide some evidence 

for Conjecture 2A. The authors, however, do not know whether Potnaru’s examples 

have arc pseudo-spines. These manifolds are, thus, a likely place to take up the study of 

Conjectures 2 and 2B. 

The following discussion fits most naturally into the piecewise linear category. For 

this reason we identify the n-ball B” with [0, lln for the remainder of the paper. A 

locally unknotted piecewise linearly embedded 2-dimensional disk D in B4 such that 

D n ( aB4) = a D is called a slice disk in B4 and aD is called a slice knot in aB4. 

A piecewise linear simple closed curve J is aB4 is called a ribbon knot if there is a 

piecewise linear map f : B2 + aB4 which maps aB* onto J such that the singular set 

of f- 

{p E aB4: f-‘(p) contains more than one point} 

-is the union of a pairwise disjoint collection of piecewise linear arcs Al, AZ,. . , Al, 

in aB4 and for 1 < i < k, f-’ (Ai) is the union of two disjoint piecewise linear arcs Ai 

and A: in B2 where Ai c int(B’), A: n ( aB2) = aAI,‘, and f maps each of Ai and A’, 

homeomorphically onto Ai. Clearly f can be homotoped rel aB2 to a piecewise linear 

embedding whose image is a slice disk by pushing fjint(B2) radially into int(B4) and 

pushing f 1 Ai “deeper” than the rest of flint(B2). The slice disk formed in this manner 

is called a ribbon disk. Thus, every ribbon knot is a slice knot. The converse assertion: 

every slice knot is a ribbon knot, is one of the fundamental unresolved problems of knot 

theory. 

Poenaru’s construction of a compact contractible 4-manifold begins with a slice disk D 

in B4 such that aD is knotted in aB4 and with a knotted piecewise linear simple closed 
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curve K in the boundary of a second 4-ball B4. Let N be a regular neighborhood of D in 

B4 such that Nft(aB4) 1s a regular neighborhood of aD in aB4. Set A = cl(B4-N)nN. 

Then A is a solid torus (i.e., A is piecewise linearly homeomorphic to St x B*), and 

we can think of N as a 2-handle attached to cl(B4 - N) along A to yield B4. Let T 

be a regular neighborhood of K in aB4. Then T is a solid torus. Let g : T + A be a 

piecewise linearly homeomorphism. Now define the Poenaru 4-manifold P4(D, K) to be 

the adjunction space B4 U, cl(B4 - N). W e can think of B4 as a “knotted 2-handle” with 

knotted attaching tube T which is attached to cl(B4 -N) by the homeomorphism g : T -+ 

A to yield P4(D, K). To see that P4(D, K) IS contractible, notice that cl(B4 - N) 

becomes contractible if the core curve of A is “killed’, and attaching B4 to cl(B4 - N) 

by g “kills” this curve. However, aP4(D, K) is not simply connected because it is the 

union of the two nontrivial knot complements cl(aB4 - (N n (aB4))) and cl(aB4 - T). 

See [7] for further details. 

Finally we verify that some Poenaru 4-manifolds have handlebody decompositions 

with no 3- or 4-handles. 

Proposition. If D is a ribbon disk in B4 and K is a piecewise linear knot in ag4, 

then the Poe’naru 4-manifold P4(D, K) h as a handlebody decomposition with no 3- or 

4-handles. 

Proof. Let N, A, T and g be as in the paragraph describing the construction of P4(D, K). 

To prove the Proposition, we will established two assertions. 

(a) cl(B4 - N) h as a handlebody decomposition with no 3- or 4-handles. 

(b) There is a piecewise linear homeomorphism from B4 to B’ x [0, l] which identifies 

T with a subset To x (0) of B’ x (0) so that B’ x [0, l] is obtained from To x [0, l] by 

attaching l- and 2-handles to (aTo) x [0, 11. 

The proof of the Proposition is then completed by noting that since cl(B4 - N) is 

piecewise linearly homeomorphic to (To x [0, I]) U, cl(B4 - N), then by assertion (a), 

(To x [0, 11) u, cl(B4 - N) h as a handlebody decomposition with no 3- or 4-handles. 

Furthermore, by assertion (b), (B’ x [0, 11) U,cl(B4 - N) is obtained from (To x [0, l])U, 

cl( B4 - N) by attaching 1- and 2-handles. We conclude that (B’ x [0, 11) U, cl(B4 - N) = 

P4(D, K) has a handlebody decomposition.with no 3- or 4-handles. 

We now demonstrate assertion (a): cl(B4 - N) has a handlebody decomposition with 

no 3- or 4-handles. (Evidently, a related fact is proved in [8], though the language there 

is quite different.) We can identify B4 with B’ x [0, l] so that aD c int(B’) x { 1). 

Furthermore, we can assume that the ribbon disk D is positioned in a special way that we 

now describe. D arises from a map .f : B2 -+ int(B3) x {l} with singular set equal to the 

union of a pairwise disjoint collection of arcs A,, AZ,. . , & such that for 1 < i 6 k, 

f-‘(Ai) is the union of two disjoint arcs A: and A; in B* where A’, c int(B2), 

A: n (aB2) = aA:, and f maps each of Ai and A’,’ homeomorphically onto Ai. 

We impose a “collared” handlebody decomposition on B* as follows. The O-handles 

are disjoint disks El, E2, . , Ek in int(B2) such that Ai C int(Ei) and Ei n A; = 8 

for 1 < i,j < Ic. For 1 < i < Ic, we add an exterior collar to Ei to obtain a slightly 
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larger disk E$ in int(B*) SO that ET, E$, . . . , Ez are pairwise disjoint and are disjoint 

from A:‘, A;, . , A’,‘. Next we connect the Ic disks EF, E:, . . . , El with Ic - 1 disjoint 

l-handles or “bands” Fl , Fz, . . . , Fk-1 in int(B*) - U,“=, int(ET). Set 

G= (~+J(p$ 
Then G is a disk in int(B*). For 1 < j < Ic - 1, each of the sets (aFj) fl (iJ,“=, ET) 

and (a Fj) n (i3G) is the union of two disjoint arcs in a Fi , and these four arcs subdivide 

aF, and have disjoint interiors. We add an exterior collar to G to obtain a slightly larger 

disk Gf in int(B*). Of course, B* - int(G+) is an annulus. 

To form the ribbon disk D from the map f, we push f “vertically” down the [0, l]-fibers 

of B’ x [0, l] and make some minor “horizontal” adjustments to achieve an embedding 

with the following properties. (We now identify B* with its image II.) The O-handles 

Et,Ez,..., El, lie in the level B’ x {l/4}. For 1 < i < Ic, the collar E,’ - int(E,) 

lies vertically over aEi in the product B’ x [l/4, l/2] so that aET lies in the level 

B’ x {l/2}. The l-handles Fl, Fz, . . . , Fk-1 lie in the level B’ x { l/2}. The collar 

G+ - int(G) lies vertically over aG in the product B” x [l/2,3/4] so that aG+ lies 

in the level B” x {3/4}. Th e annulus D - int(G+) lies in the product B’ x [3/4, l] so 

that each level circle of the annulus lies in a B’ x {t}-level and, of course, aD lies in 

B” x (1). 

Let rr : B’ x [0, l] + B’ denote projection. The regular neighborhood N of D can be 

assumed to have the following form: 

N = (N, x [l/4 - 6,1/4 + S]) u (N* x [l/4 + &l/2 - S]) 

u (N3 x [l/2 - 6,1/2 + 61) U (N4 x [l/2 + b,3/4]) U Ns 

where Nt , N2, N3 and N4 are regular neighborhoods of T(D n (B” x {t})) in int(B’) 

for t = l/4,3/8, l/2 and 5/8, respectively. N5 is a regular neighborhood of the annulus 

D - int(G+) in B” x [3/4,1], and 0 < b < l/8. 

Nr is a regular neighborhood of the union of the Ic disks r(Ei), 1 < i < Ic; and N2 is 

a regular neighborhood of the union of the /C simple closed curves n(aEi), 1 6 i < Ic. 

Thus, Nt has k components each of which is a 3-ball containing one of the disks r(E,), 

and N2 has k components each of which is a solid torus containing one of the simple 

closed curves rr( aEi). Moreover, we can assume that N2 C Nt , and that cl(Nt - Nz) 

has k components each of which is a 3-ball that intersects cl(B’ - Nt ) in a pair of 

disjoint boundary disks. This allows us to view each component of cl(Nt - N2) as a 

3-dimensional l-handle attached to cl(B” - Nt ). Hence, cl(B” - N2) is obtained by 

attaching k 3-dimensional l-handles (the components of cl(Nt - N2)) to cl(B3 - Nt ). 

Let X denote the union of the simple closed curves i3E?, 1 < i < k, and the 

“bands” Fj, 1 < j < k. NY is a regular neighborhood of r(X). Hence, we can assume 

that N2 c Ns and that Ns is obtained from N2 by attaching k - 1 3-dimensional 

l-handles, each l-handle containing one of the disks r(Fj). N4 is a regular neighborhood 

of r(aG), and aG is obtained from X by removing from X all of Fj except for the 
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two arcs comprising Fj n (aG) for I < j < k - 1. It follows that we can assume that 

N4 C NJ, and that cl(Ns - N4) has k - 1 components each of which is a 3-ball that 

intersects cl(Bs - N 3 ) m a boundary annulus. This allows us to view each component of 

cl(N3 - N4) as a 3-dimensional 2-handle attached to cl(B’ - i’V3). Hence, cl(Bs - N4) 

is obtained by attaching k - 1 3-dimensional 2-handles (the components of cl(N3 - N4)) 

to cl(B’ - N3). 

The following seven assertions clearly imply that cl(B4 - N) has a handlebody de- 

composition involving no 3- or 4-handles. 

(i) Ya = B3 x [0, l/4 - 61 is a 4-ball and can, thus, be regarded as a O-handle. 

(ii) Ya+ = Ya U (cl(B’ - Nl) x [l/4 - 6, l/2 - S]) is homeomorphic to Ya. 

(iii) Yr = cl(B’ x [0, l/2 - 61 - N) is obtained from Ya+ by attaching l-handles. 

(iv) Yt+ = Yt U (cl(B’ - Ns) x [l/2 - S, 3/4]) is homeomorphic to Yt. 

(v) YZ = cl(B” x [0,3/4] - N) is obtained from Yt+ by attaching 2-handles. 

(vi) Yz+ = Y2 U (cl(B’ - N4) x [3/4, 11) is homeomorphic to Y2. 

(vii) cl(B4 - N ) is homeomorphic to Yz+. 

Assertions (i), (ii), (iv) and (vi) are immediate. 

To prove assertion (iii), observe that Yt = Ye+ U (cl(Nt - N2) x [l/4 + 6, l/2 - 61). 

Since cl(Nt - Nz) can be viewed as the union of k 3-dimensional l-handles attached 

to cl(B’ - Nt), then cl(N1 - Nz) x [l/4 + 6, l/2 - 61 can be viewed as the union of 

k 4-dimensional l-handles attached to Y a+ along (ad(P - IV,)) x [l/4 + 6, l/2 - 61. 

Hence, Yt is obtained from Ya+ by attaching k 4-dimensional l-handles. 

To prove assertion (v), observe that Y2 = &+ U (cl(iVs - N4) x [l/2 + 6,3/4]). Since 

cl(Ns - iV4) can be viewed as the union of k - 1 3-dimensional 2-handles attached to 

cl(B’ - NY), then cl(N3 - N4) x [l/2 + 6,3/4] can be viewed as the union of k - 1 
4-dimensional 2-handles attached to Yt + along (acl(B” - NY)) x [l/2 + 8,3/4]. Hence, 

Y2 is obtained from Yl+ by attachin, 0 k - 1 4-dimensional 2-handles. 

Finally, to prove assertion (vii), we observe that the original map f : B2 + B3 x {I} 

embeds the annulus B2 - int(G’). Hence, there is a piecewise linear ambient isotopy 

of B3 x { 1) which “drags” f(aG+) through the level circles of the annulus f(B2 - 

int(G+)). This ambient isotopy can be “spread out” as a level preserving piecewise linear 

homeomorphism h of B’ x [3/4, l] which restricts to the identity on B’ x {3/4}, which 

carries the “cylinder” rr(aG+) x [3/4,1] onto the annulus D-int(G+), and which carries 

N4 x [3/4, l] onto Ns. (If h(N4 x [3/4, 11) # NS initially, we correct this by redefining 

Ns.) We extend h over B” x [0,3/4] via the identity. Then h carries Y2+ onto 

Y2 ucl(B” x [3/4, l] - Ns) = cl(B’ x [0, l] - N) = cl(B4 - N). 

This completes the proof of assertion (a): cl(B4 - N) has a handlebody decomposition 

with no 3- or 4-handles. 

It remains to demonstrate assertion (b): there is a piecewise linear homeomorphism 

from B4 to B’ x [0, l] which identifies T with a subset TO x (0) of B’ x (0) so that 

B’ x [0, l] is obtained from TO x [0, l] by attaching l- and 2-handles to (aTo) x [0, I]. 

Let C3 be a 3-ball in ag4 such that T c int(C’). C” - int(T) has a handlebody 

decomposition based on T; in other words, C’ can be obtained by attaching 0-, l-, 2- 
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and 3-handles to T. The O-handles of this decomposition can be eliminated by cancelling 

them with some l-handles, and the 3-handles can be eliminated by cancelling them with 

some 2-handles. These cancellations can be performed without moving T, but then C’ 

may be forced to move. At the end of the process, T is still a subset of the (possibly 

repositioned) 3-ball C”. (T may no longer be interior to C’.) Now C’ is obtained by 

attaching I- and 2-handles to T. Since C’ is a piecewise linear 3-ball in ag4, there is 

a piecewise linear homeomorphism Ic : B” x [0, l] + g4 such that Ic(B’ x (0)) = C’. 

There is a solid torus To in B3 such that k(To x (0)) = T. It follows that B” can be 

obtained from To by adding 3-dimensional I- and 2-handles. By “crossing” each of these 

handles with [0, 11, we see that B” x [0, l] can be obtained from To x [0, l] by attaching 

4-dimensional l- and 2-handles to (aTo) x [0, 11. This proves assertion (b). 0 
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