
j. differential geometry45 (1997) 1-33INTERIORS OF COMPACT CONTRACTIBLEN-MANIFOLDS ARE HYPERBOLIC (N � 5)FREDRIC D. ANCEL & CRAIG R. GUILBAULTAbstractThe interior of every compact contractible PL n-manifold (n � 5) supportsa complete geodesic metric of strictly negative curvature. This provides anew family of simple examples illustrating the negative answer to a questionof M . Gromov which asks whether metrically convex geodesic spaces whichare topological manifolds must be homeomorphic to Euclidean spaces. The�rst examples verifying the negative answer to this question were given byM. Davis and T. Januszkiewicz [11].0. IntroductionOne goal of Riemannian geometry is to use local information abouta manifold to make conclusions about its global structure. A primeexample is the classical Cartan-Hadamard Theorem which guaranteesthat every complete simply connected Riemannian manifold with non-positive sectional curvature at each point is di�eomorphic to Euclideanspace. The success of Riemannian geometry has inspired generalizationsof its de�nitions and methods to wider classes of spaces. One e�ort,initiated by A. D. Aleksandrov (see [1], [2] and [3]) in the 1950's, andreturned to prominence by M. Gromov in the 1980's, uses propertiesof triangles to extend the notion of curvature, �(X), at a point x, to\geodesic spaces". These are metric spaces in which (as in completeRiemannian manifolds), the distance between two points can always berealized by a geodesic arc between them. A result of this theory whichillustrates the extent to which it generalizes Riemannian geometry isthe following version of the Cartan-Hadamard Theorem. (See [13] and[14]).Received May 10, 1994, and, in revised form, November 21, 1995.1



2 fredric d. ancel & craig r. guilbaultTheorem 0.1(Cartan-Hadamard-Alexandrov). Let (Xd) be a com-plete geodesic space and suppose that �(x) � 0 for all x 2 X. Then Xis metrically convex and hence, contractible.This theorem will be discussed in more detail below.The question of whether there is a full generalization of the Cartan-Hadamard Theorem for geodesic spaces was posed by M . Gromov whoin [13] asked:Question 0.2. If X is a metrically convex geodesic space which isa topological n-manifold, must X be homeomorphic to Rn?A negative answer to Gromov's question was recently given by Davisand Januszkiewicz in [11], where a method is described for constructingcounterexamples in dimensions � 5. These examples are the universalcovers of manifolds produced by a complicated \hyperbolization" pro-cess applied to a non-combinatorial triangulation of Sn. In this note weadd a large collection of simple examples to the list of \exotic" metri-cally convex n-manifolds by proving:Main Theorem. The interior of every compact contractible PL n-manifold (n � 5) supports a complete geodesic metric of strictly negativecurvature.Note. The \PL" hypothesis is unnecessary except possibly whenn = 5. Indeed, if Cn is a compact contractible n-manifold, then itsKirby-Siebenmann invariant, which lies in H4(Cn;Z2) vanishes. Conse-quently, the results of [16], which apply to manifolds with boundary ofdimension � 6, imply that Cn admits a PL structure when n > 5. How-ever, there may exist non-triangulable compact contractible 5-manifolds.Indeed, if there is a non-triangulable homology 4-sphere �, the existenceof which is not precluded by presently known results, then the cone on �can be resolved (by [8] or [17]) to obtain a non-triangulable compact con-tractible 5-manifold. So the \PL" hypothesis is possibly non-redundantwhen n = 5.The proof of the Main Theorem employs a mixture of geometry andtopology { most notably geometric constructions by V. N. Berestovskii[6], and topological results from [4] which utilize a manifold recognitiontheorem of R. D. Edwards [12]. Paper [4] provides a simple pictureof a compact contractible manifold which makes it possible to de�neexplicitly a metric on its interior.The authors wish to acknowledge Paul Thurston for several helpfuldiscussions while this work was being done. We also wish to thank V.



compact contractible n-manifolds 3N. Berestovskii and the referee for comments that led to a change inthe �nal form of the proof of the Main Theorem. We will discuss thischange further in Section 5.1. De�nitionsHere we de�ne and comment on various notions of curvature in met-ric spaces. The reader is cautioned that these de�nitions are not allstandard. There are many instances in the literature where the sameterm has been given di�erent meanings, other instances where a sin-gle concept goes by several di�erent names, and still more cases wheredi�erent but (for the most part) equivalent de�nitions have evolved forthe same core idea. Because of this, the terms and de�nitions we havechosen sometimes di�er from those used in the original sources.Throughout this paper all metric spaces are complete and locallycompact. An isometric map from an interval into a metric space (X; �)is called a geodesic arc. A triangle in X consists of three points (calledvertices) together with three geodesic arcs (called edges) connectingthem. We say that (X; �) is a geodesic space if every pair of points in Xcan be connected by a geodesic arc. If Y � X and if every geodesic arcin X between points in Y is contained in Y , then we call Y a stronglygeodesic subspace of X ; if this property holds locally, then Y is calleda locally strongly geodesic subspace. We say that (X; �) is metricallyconvex if for any two geodesic arcs � : [a; b]! X and  : [c; d]! X , themap � : [a; b]� [c; d] ! R de�ned by �(s; t) = �(�(s); (t)) is convex(i.e., �((1� �)p+ �q) � (1� �)�(p) + ��(q) for all p; q 2 [a; b]� [c; d]and 0 � � � 1.) If this property holds locally, then (X; �) is said to belocally metrically convex. Note that metrical convexity implies that thegeodesic arc joining two points is unique up to reparametrization of thedomain by translation.For each K 2 R and each positive integer n, let Mn(K) denotethe (unique up to isometry) complete simply-connected Riemannian n-manifold of constant sectional curvature K; and let �K denote the pathlength distance function on Mn(K). For example, M2(�1) is the hy-perbolic plane, M2(0) is the Euclidean plane R2, and M2(1) is the unitsphere S2 in R3 with the usual path length metric.If T is a triangle in a geodesic space (X; �) and K 2 R, then acomparison triangle for T in M2(K) is a triangle in M2(K) with edgesof the same length as the corresponding edges of T . It is easily seen that



4 fredric d. ancel & craig r. guilbaultfor any K 2 R, every triangle of perimeter < 2�=pK (where we de�ne2�=pK = 1 if K � 0) in a geodesic space has a comparison trianglein M2(K). Moreover, it is a standard fact that a comparison trianglein M2(K) is unique up to isometry of M2(K).Let K 2 R and let T be a triangle in the geodesic space (X; �) withvertices A;B and C and perimeter < 2�=pK. We say that T satis�esCAT(K) if for any P 2 fA;B;Cg and any Q 2 T; �(P;Q)� �K(P 0; Q0)where P 0 and Q0 are the corresponding points on a comparison trianglein M2(K). We say that X satis�es CAT(K) if every triangle in Xwith perimeter < 2�=pK satis�es CAT(K). If a point x of X has aneighborhood in which every triangle with perimeter < 2�=pK satis�esCAT(K), we say that X satis�es CAT(K) at x, and write �(x) � K.It �(x) � K for each x 2 X , we say that X satis�es CAT(K) locally,we write �(X) � K and we also say that X has curvature � K. If�(X) � K < 0, we say that X has strictly negative curvature or that Xis hyperbolic.Remark. Our curvature criterion (the CAT(K) inequality) di�ersfrom Aleksandrov's original criterion, which we denote by CATA(K).Roughly speaking, a triangle in a geodesic space satis�es CATA(K) ifthe sum of its angle measures is less than the sum of the angles measuresof a comparison triangle in M2(K). Of course, one must de�ne anappropriate notion of angle measure in a geodesic space before applyingthis criterion. A development of this strategy is found in [3]. A similarcondition, also credited to Aleksandrov and referred to as \CriterionA" in [20] again uses a type of angle measure in a geodesic space as itscurvature criterion.Yet another curvature criterion, this one similar to the CAT(K) in-equality, will be denoted CAT�(K). A triangle T in a geodesic space sat-is�es CAT �(K) if for any two points P and Q on T; �(P;Q)� �K(P 0; Q0)where P 0 and Q0 are the corresponding points on a comparison trianglein M2(K).Using any of the above de�nitions, one may de�ne the curvature ofa geodesic space to be � K at a point x provided x has a neighborhoodin which the chosen criterion is satis�ed by all triangles with perimeterless that 2�=pK contained in that neighborhood. To see that thesecompeting de�nitions lead to equivalent results, consult Theorem 4 andRemark 8 of [20] and Theorem 3.2 and Remark 5.4 of [3].



compact contractible n-manifolds 52. Outline of the proof of the Main TheoremThe Main Theorem places a negative curvature metric on the interiorof every compact contractible PL manifold of dimension � 5. Here weoutline the construction to motivate our later considerations.Let O(W ) denote the open cone of the topological space W . (Aprecise de�nition is given in Section 5.) Given a compact contractiblen-manifold Cn(n � 5), the main result of [4] allows us to representint(Cn) as the union of three pieces: two open cones O(Q0) and O(Q1),and the product of an open cone O(�) with [0; 1]. (See Figures 2 and3 in Section 6.) Here, Q0; Q1 and � are simplicial complexes and � isidenti�ed with a subcomplex �i of Qi for i = 0; 1. (In fact, Qi is acompact (n�1)-manifold and �i is its boundary.) Moreover, as subsetsof int(Cn);O(Q0) and O(Q1) are disjoint, and for i = 0 or 1;O(Qi)intersects O(�)� [0; 1] in the set O(�i) = O(�)� fig.Let K < 0. We will impose a CAT(K) structure on int(Cn) byputting CAT(K) structures on the three pieces O(Q0);O(Q1) andO(�) � [0; 1] so that for i = 0 or 1;O(�i) and O(�)� fig are isomet-ric strongly geodesic subsets of O(Qi) and O(�) � [0; 1], respectively.Then the union of the CAT(K) structures on the three pieces yields aCAT(K) structure on int(Cn). The construction of CAT(K) metrics onthe three pieces is described in Section 5, and exploits techniques devel-oped by Berestovskii in [6] and extended in [3]. These techniques �rstallow us to put CAT(1) structures on the simplicial complexes Q0; Q1and � so that for i = 0 or 1, �i is a strongly geodesic subset of Qiwhich is isometric to �. The techniques then allow us to place CAT(K)structures on the open cones O(Q0);O(Q1) and O(�) so that for i = 0or 1, O(�i) is a strongly geodesic subspace of O(Qi) which is isometricto O(�). It then remains to put a CAT(K) structure on O(�)� [0; 1] inwhich O(�)� f0g and O(�)� f1g are strongly geodesic subspaces iso-metric to O(�). This is accomplished via Lemmas 5.4 and 5.5. The �rstof these lemmas shows how to impose a CAT(K) structure on X �R,given a CAT(K) structure on X ; and the second lemma shows that if,in addition, X is an open cone, then the CAT(K) structure on X � Rcan be chosen so that each level X�ftg is a strongly geodesic subspaceisometric to X . These lemmas clearly solve the remaining problem ofputting the appropriate CAT(K) structure on O(�) � [0; 1], �nishingthe argument.In an earlier version of this paper, Lemmas 5.4 and 5.5 were onlyconjectured, and a more ad hoc method was used to put a CAT(K)



6 fredric d. ancel & craig r. guilbaultstructure on O(�) � [0; 1]. In particular, it was noted that results ofBerestovskii impose a CAT(K) structure on O(S(�)) where S(�) de-notes the suspension of �; and it was observed that O(�)� [0; 1] embedsnaturally in O(S(�)) so that for each t 2 [0; 1];O(�)�ftg embeds ontoa strongly geodesic subspace which is isometric to O(�). In responseto the referees encouragement and a communication from Berestovskii,we found proofs of these lemmas and substituted them for the ad hocargument.3. Elementary properties of the spaces Mn(K)Here we record some simple properties of the spaces Mn(K) whichwe will use below.If K 6= 0 and " = K=jKj, then Mn(K) and Mn(") are closelyrelated by the following observation. If M is a Riemannian manifoldand c > 0, then multiplying M 's Riemannian metric by 1=c has thee�ect of multiplying M 's sectional curvature operator by c. This iseasily veri�ed directly from the de�nitions of the curvature and sectionalcurvature operators. Consequently, the identity map from M with theoriginal Riemannian metric to M with 1=c times the original metric isan angle preserving (i.e., conformal) di�eomorphism which multipliesdistance by 1=pc. So if K 6= 0; " = K=jKj and k =pjKj, then we canregard Mn(") and Mn(K) as having the same underlying manifold andthe same angle measures; and if two points are at distance d in Mn("),then they are at distance d=k in Mn(K).Let K < 0, set k = pjKj, and let T be a triangle in Mn(K) withsides of lengths a; b and c and angles of measures �; � and  where side ais opposite angle �, side b is opposite angle �, and side c is opposite angle. If K = �1, then Mn(K) is hyperbolic n-space and the hyperbolicsine and cosine laws are:sin(�)sinh(a) = sin(�)sinh(b) = sin()sinh(c)and cosh(c) = cosh(a) cosh(b)� sinh(a) sinh(b) cos():(See [9, p. 238].) In general, if K < 0, then when viewed in Mn(�1), Thas the same angle measures �; � and , and has sides of length ka; kband kc. So the hyperbolic sine and cosine laws yield the equations:



compact contractible n-manifolds 7sin(�)sinh(ka) = sin(�)sinh(kb) = sin()sinh(kc)and cosh(kc) = cosh(ka) cosh(kb)� sinh(ka) sinh(kb) cos():These equations may be regarded as the sine and cosine laws forMn(K).Next we introduce rectangular coordinates on M2(K) when K < 0.We describe two inequivalent ways to do this, and we �nd transforma-tion formulas relating the two. Let K < 0 and set k =pjKj. Choose apoint O 2 M2(K), and choose geodesic lines � and � in M2(K) whichintersect orthogonally at O. Think of O as the origin and � and � as theX- and Y -axes. Choose isometrics x 7! Ax : R! � and y 7! By : R! �such that A0 = B0 = O. For each x 2 R, let �x denote the geodesicline in M2(K) through Ax orthogonal to �. Also for each y 2 R, let �ydenote the geodesic line in M2(K) through By orthogonal to �. Then�0 = � and �0 = �, and both f�x : x 2 Rg and f�y : y 2 Rg �berM2(K).For each x 2 R, let y 7! Ayx : R! �x be the unique isometry such thatA0x = Ax and A1x and B1 lie in the same component of M2(K) � � .For each y 2 R, let x 7! Byx : R! �y be the unique isometry such thatBy0 = By and By1 and A1 lie in the same component ofM2(K)��. ThenM2(K) = fAyx : x; y 2 Rg = fByx : x; y 2 Rg. and we regard the func-tions (x; y) 7! Ayx : R�R!M2(K) and (x; y) 7! Byx : R�R!M2(K)as two ways to assign rectangular coordinates to the points of M2(K).Since in general Ayx 6= Byx for x; y 2 R, these two ways are inequivalent.Let M2(K)+ denote the \right half space" of M2(K); i.e., setM2(K)+ = fAts : s � 0 and t 2 Rg= fBts : s � 0 and t 2 Rg.Consider a point P in M2(K). Then there are rectangular coor-dinates (x0; y0) and (x; y) 2 R� R such that Ay0x0 = Byx = P . (SeeFigure 1.) We assert that (x0; y0) and (x; y) are related by the followingtransformation formulas:(1) 8>>>>>>>><>>>>>>>>: x = 1k sinh�1(sinh(kx0) cosh(ky0))y = 1k tanh�1 �tanh(ky0)cosh(kx0)�x0 = 1k tanh�1 �tanh(kx)cosh(ky)�y0 = 1k sinh�1(sinh(ky) cosh(kx)) 9>>>>>>>>=>>>>>>>>;



8 fredric d. ancel & craig r. guilbault
x

x’ Ax’

y P0 �y0��By Figure 1To prove these formulas, set r = �K(O; P ) and let � denote the angleByOP . (See Figure 1.) We apply the hyperbolic sine and cosine lawsin the triangles OAx0P and OByP to obtain the equations(2a) sinh(kx)sin � = sinh(kr)1 = sinh(ky0)sin ��2 � �� ;(2b) cosh(kr) cosh(kx) cosh(ky);(2c) cosh(kr) cosh(kx0) cosh(ky0);(2d) cosh(kx) = cosh(ky) cosh(kr)� sinh(ky) sinh(kr) cos�;(2e) cosh(ky0) = cosh(kx0) cosh(kr)� sinh(kx0) sinh(kr) cos��2 � �� :Equations (2a) imply(3a) sinh(kx) = sinh(kr) cos��2 � �� ;(3b) sinh(ky0) = sinh(kr) cos�:Equations (2b) and (2c) imply(4) cosh(kx) cosh(ky) = cosh(kx0) cosh(ky0):



compact contractible n-manifolds 9Substituting (2c) and (3a) in (2e) yieldscosh(ky0) = cosh2(kx0) cosh(ky0)� sinh(kx0) sinh(kx):Solving this equation for sinh(kx) and using the identity cosh2(kx0)�sinh2(kx0) = 1 gives us(5) sinh(kx) = sinh(kx�) cosh(ky0):Similarly, substituting (2b) and (3b) in (2d) and solving for sinh(ky0)yield(6) sinh(ky0) = sinh(ky) cosh(kx)Using equations (6) and (4), we obtaintanh(ky) = sinh(ky)cosh(ky) = sinh(ky0)cosh(kx) cosh(ky) = sinh(ky0)cosh(kx0) cosh(ky0) :Hence,(7) tanh(ky) = tanh(ky0)cosh(kx0) :A similar application of equations (6) and (4) gives(8) tanh(kx0) = tanh(kx)cosh(ky) :The transformation formulas (1) now follow from equations (5), (6),(7) and (8).4. Curvature, metric convexity and contractibilityIn this section we briey discuss some connections between curva-ture, metric convexity and contractibility. This will allow us to outlinea proof of the Cartan-Hadamard-Aleksandrov Theorem, and to see thelink between this result and Question 0.2.Let K � 0 and suppose X is a simply connected geodesic space suchthat �(X) � K. Then X satis�es CAT(K) by Theorems 7 and 13 of [5].It follows thatX is metrically convex by Proposition 29 of [20]. It is theneasy to prove the contractibility of X . Fix a point x0 2 X and simply\slide" any other point of X toward x0 along the (unique) geodesic arc



10 fredric d. ancel & craig r. guilbaultjoining the two points. The metric convexity of X guarantees that thisprocess is well de�ned and continuous.We conclude that if X is simply connected and �(X) � 0, then Xis contractible. This is the Cartan-Hadamard-Aleksandrov Theorem.We also see that for K � 0, a contractible manifold of curvature� K which is not homeomorphic to Rn provides a negative answer toGromov's question which satis�es CAT(K).5. Open cones and productsHere we describe methods for putting geometric structures on opencones and products of open cones with intervals. Such spaces are crucialto the proof of the Main Theorem because, as was explained earlier, theinterior of every compact contractible manifold can be assembled fromsuch pieces.First we state a fundamental theorem of Berestovskii which putsa CAT(1) structure on every �nite simplicial complex. This result isthe ultimate source of all geometry imposed on spaces in this paper.Because it limits us to triangulated spaces, it also accounts for the\PL" hypothesis in the Main Theorem. Indeed, if a result compara-ble to Berestovskii's were known for all compact topological manifolds(including the non-triangulable ones), then the Main Theorem with-out the \PL" hypothesis would follow by a trivial modi�cation of thepresent proof.Berestovskii's theorem even imposes CAT(1) structures on non-con-nected simplicial complexes. Since such objects cannot possibly begeodesic spaces, we require a notion which generalizes CAT(K) to non-connected spaces. To this end, for K > 0, de�ne a metric space (W; d)to be a K-domain if it satis�es the following:(a) if d(w;w0) < �=pK, then w and w0 can be joined by a geodesicin W ,(b) triangles in W with perimeter less than 2�=pK satisfy CAT(K).Note that a K-domain need not be connected, and, thus, may notbe a geodesic space.If � is a simplicial complex, let j�j denote its underlying polyhedron.By a K domain metric on a simplicial complex � we mean a metric don j�j such that for every subcomplex � of � (including � = �), therestriction of d to j�j makes j�j into a K domain. In [6], Berestovskiishowed that each �nite dimensional simplex (regarded as the simpli-



compact contractible n-manifolds 11cial complex determined by its faces) admits a 1-domain metric. (SeeLemma 2 of [6].) Since every �nite simplicial complex � can be embed-ded in a simplex � of su�ciently high dimension so that � and all itssubcomplexes are subcomplexes of �, we have the following version ofBerestovskii's theorem.Lemma 5.1. Every �nite simplicial complex � admits a 1-domainmetric. (Hence, the polyhedron underlying every subcomplex of � be-comes a 1-domain under this metric.)As we mentioned above, we could remove the \PL" hypothesis fromthe statement of the Main Theorem if we knew a version of Lemma5.1 for compact topological manifolds. In particular, it would su�ce toestablish the following assertion. Given a (possibly non-triangulable)compact topological n-manifold W without boundary and a compact(n�1)-dimensional submanifold V ofW without boundary such that Vseparates W and V is collared in W (i.e., there is a topological embed-ding of V �R into W which sends V f0g onto V ), then there is a metricd on W which makes W a 1-domain and such that the restriction of dto V makes V a 1-domain.Since open cones are contractible, it is consistent with Theorem 0.1that they admit CAT(K) metrics for K � 0. Moreover, since an opencone has such a simple structure, one can hope to de�ne a CAT(K)metric on it by an explicit formula. Indeed, one of the virtues of 1-domains is that the open cone over a 1-domain admits an explicitlyde�ned CAT(K) metric. The formula for this metric is based on thecosine law for Mn(K). The idea for de�ning a metric on a cone via acosine law originates in [6] and is more fully elaborated in [3]. We willoutline the essential points.If W is a topological space, the open cone over W is the quotientspace O(W ) = (W � [0;1))=(W � f0g). The vertex of O(W ) is thepoint of O(W ) which is the image of W � f0g under the quotient mapW � [0;1) ! O(W ). The space W is called the base of O(W ). For(w; r) 2 W � [0;1), we let rw denote the point of O(W ) which is theimage of (w; r) under the quotient map W � [0;1)! O(W ). Thus, foreach w 2 W; 0w denotes the vertex of O(W ).Let (W; d) be a metric space. De�ne the metric � on W by theformula �(w;w0) = minfd(w;w0); �g. Then � is equivalent to d. LetK < 0, and set k =pjKj. De�ne the K cosine law metric on O(W ) to



12 fredric d. ancel & craig r. guilbaultbe the function �K : O(W )� O(W )! [0;1) de�ned by the formula�K(r1w1; r2w2) = (1=k) cosh�1 � cosh(kr1) cosh(kr2)� sinh(kr1) sinh(kr2) cos(�(w1; w2))�:Clearly, this formula is motivated by the cosine law in Mn(K). In fact,Mn(K) is isometric to (O(Sn�1); �K).Lemma 5.2 ([3, p.17]). Let (W; d) be a metric space, K < 0, andset k =pjKj. Then the K cosine law metric �K is indeed a metric onO(W ). �K is a complete metric on O(W ) if and only if d is a completemetric on W . Furthermore, (O(W ); �K) is a geodesic space satisfyingCAT(K) if and only if (W; d) is a 1-domain.Corollary 5.3. Let d be a 1-domain metric on a �nite simplicialcomplex �. Let K < 0 and let �K be the K cosine law metric on O(j�j).Let � be any subcomplex of �. Then �K restricts to the K cosine lawmetric on O(j�j), and O(j�j) is a strongly geodesic subspace of O(j�j).Proof. It is obvious from the formula for �K that �K restricts tothe K cosine law metric on O(j�j). To prove that O(j�j) is a stronglygeodesic subspace of O(j�j) �rst note that O(j�j) with the restrictedmetric is itself a geodesic space. Since O(j�j) is CAT(K), it is metricallyconvex. (See Proposition 29 of [20].) Hence, geodesics in O(j�j) betweenpoints of O(j�j) are unique. It follows that O(j�j) is a strongly geodesicsubspace of O(j�j) q.e.d.As stated above, we �nd it necessary to put metrics of negative cur-vature not only on open cones, but also on the products of certain opencones with the interval [0; 1]. Moreover,we need to do this in such awaythat the \0-level" and the \1-level" are strongly geodesic subspaces,each isometric to the original open cone. This task splits naturally intotwo steps, the �rst of which is interesting in its own right. In the �rststep, Lemma 5.4, we show how to put a negatively curved metric onX �R given a negatively curved metric on X . (The \warped product"construction of [7] accomplishes a similar objective for negatively curvedRiemannian manfolds by unrelated methods.) Second, in Lemma 5.5,under the additional hypothesis that X is an open cone, we modify themetric on X�R so that each level X�ftg is a totally geodesic subspaceisometric to X . We remark that we do not know how to make the levelsX � ftg totally geodesic without the additional hypothesis that X isan open cone. Indeed, we conjecture that, with no assumptions on X



compact contractible n-manifolds 13beyond negative curvature, it is impossible to put a negatively curvedmetric on X �R so that the levels are totally geodesic.Lemma 5.4. Suppose (X; �) is a metric space and K < 0 such that(X; �) satis�es CAT(K). Then there is a metric � on X � R with thefollowing properties:a) If � is a complete metric on X, then � is a complete metric onX �R.b) (X �R; �) is a geodesic space satisfying CAT(K).c) x 7! (x; 0) : (X; �)! (X �R; �) is an isometric embedding ontoa strongly geodesic subspace.d) For each x 2 X; t 7! (x; t) : R ! (X � R; �) is an isometricembedding onto a strongly geodesic subspace.e) If Y is a strongly geodesic subspace of X, then Y �R is a stronglygeodesic subspace of X �R.f ) If Y is a strongly geodesic subspace of X, then the restriction of� to Y �R is completely determined by the restriction of a to Y .Proof. First we give a geometric description of how to compute � .Then we give an explicit formula. Let (x; s); (y; t) 2 X � R.�((x; s); (y; t)) is evaluated by the following procedure. Construct ageodesic quadrilateral PQQ0P 0 inM2(K) such that PQ is perpendicularto PP 0 and QQ0, �K(P;Q) = �(X; Y ); �K(P; P 0) = jsj; �K(Q;Q0) = jtj,and Q and Q0 are on the same (opposite) side of PP 0 if s and t havethe same (opposite) sign. (See Figure 2.) (This description determinesPQQ0P 0 uniquely up to isometry in M2(K).) Call PQQ0P 0 a referencequadrilateral for (x; s); (y; t). Then set �((x; s); (y; t)) = �K(P 0; Q0).Let k =pjKj. We now verify that r is determined by the followingformula:�((x; s); (y; t))= (1=k) cosh�1 � cosh(ks) cosh(kt) cosh(k�(x; y))� sinh(ks) sinh(kt)�for (x; s); (y; t)2 X �R. Abbreviate �(x; y) to � and �((x; s); (y; t)) to� , set � = �K(P;Q0), and let � denote the angle at P in the triangle



14 fredric d. ancel & craig r. guilbaultPP 0Q0. Then from the hyperbolic cosine law in the triangle PP 0Q0, weobtaincosh(k�) = cosh(kjsj) cosh(k�)� sinh(kjsj) sinh(k�) cos(�):From the hyperbolic cosine and sine laws in the triangle PQQ0; weobtain cosh(k�) = cosh(kjtj) cosh(k�)and sinh(k�)1 = sinh(kjtj)sin(�((�=2)� �)) ;the sign depending on whether s and t have the same or opposite sign.Thus, sinh(k�) cos(�) = � sinh(kjtj):Substituting the expressions for cosh(k�) and sinh(k�) cos(�) in theequation for cosh(k�), removing absolute value operators, applyingcosh�1 and dividing by k on both sides of the equation yields the desiredformula. Q0QP 0P �(x; y) P QP 0 Q0�(x; y)�((x; s); (y; t))s and t have same sign s and t have opposite signj s j j s jj t j j t j�((x; s); (y; t))Figure 2Suppose that PQQ0P 0 is a quadrilateral in M2(K) such that PQis perpendicular to PP 0 and QQ0. Call PQ the base, PP 0 and QQ0the sides, and P 0Q0 the top of this quadrilateral. We observe that thepreceding remarks give us a formula for the length of the top of PQQ0P 0in terms of the lengths of its base and sides. Speci�cally, if we set� = �K(P;Q); s = �K(P; P 0); t = �K(O;Q0), and � = �K(P 0; Q0), thenwe have shown that� = (1=k) cosh�1 � cosh(ks) cosh(kt) cosh(k�)� sinh(ks) sinh(kt)�:



compact contractible n-manifolds 15We must establish that � is a metric onX�R, which makes it a CAT(K)geodesic space. For this purpose it is convenient to introduce \coordi-nates" on M3(K). To this end let M0 be a 2-dimensional submanifoldof M3(K) that is isometric to M2(K). For each x 2 M0, let �x de-note the geodesic line in M3(K) through x orthogonal to M0. Thenf�x : x 2 M0g �bers M3(K). (This is easily visualized in the Poincar�eball model O3 of M3(K) by thinking of M0 as the intersection of theXY -plane with O3. Then the geodesics f�x : x 2 M0g are simply theintersection of O3 with circles that are centered in the XY -plane andorthogonal to the XY -plane and to @O3.) Call one of the two compo-nents ofM3(K)�M0 positive and the other negative. For each x 2M0,let t 7! Ctx : R ! �x be the unique isometry such that C0x = x andfor t > 0; Ctx lies in the positive component of M3(K) � M0. Now(x; t) 7! Ctx : M0 � R! M3(K) is a bijection which \assigns coordi-nates" to the points of M3(K).One further bit of notation: if S � M0, set V (S) = [x2S�x. Hence,if � is a geodesic line in M0, then V (�) is an isometric copy of M2(K).(Again this is easy to see in O3 with M0 identi�ed with the intersectionof the XY -plane and O3. � can be assumed to be the intersection of theX-axis and O3. This identi�es V (�) with the intersection of the XZ-plane and O3 which is clearly isometric to M2(K).) Furthermore, if �is a geodesic arc joining two points x and y of �, then V (�) is a convexsubset of V (�) and, hence, of M3(K). Indeed, V (�) is the intersectionof two closed half-spaces of V (�) determined by �x and �y . Here, whenwe say that a set is \convex", we mean that whenever it contains twopoints, it contains the geodesic arc joining them.We now make an observation which will be used several times be-low. Suppose (x; s); (y; t) 2 X�Rand x0; y0 2M0 such that �K(x0; y0) =�(x; y); x00 = CSx0 and y00 = Cty0 . Then x0y0y00x00 is a reference quadri-lateral for (x; s); (y; t) and, therefore, �((x; s); (y; t)) = �K(x00; y00). Tojustify this observation, note that if � is the geodesic line in M0 thatpasses through x0 and y0, then the quadrilateral x0y0y00x00 lies in V (�).Also note that �K(x0; y0) = �(x; y); �K(x0; x00) = jrj; �K(y0; y00) = jsj,and x00 and y00 lie on the same side of � in V (�) if and only if they lieon the same side of M0 in M3(K) if and only if r and s have the samesign.We now verify that � is a metric on X�R. Only the triangle inequal-ity is not obvious. Let (x; r); (y; s) and (z; t) 2 X�R. Let T0 denote thegeodesic triangle with vertices x; y and z in X , and let T 00 denote a com-parison triangle with vertices x0; y0 and z0 in M0. Set x00 = Crx0 ; y00 = Csy0



16 fredric d. ancel & craig r. guilbaultand z00 = Ctz0 . Now, as we observed above, x0y0y00x00 is a referencequadrilateral for (x; r); (y; s); x0z0z00x00 is a reference quadrilateral for(x; r); (z; t), and z0y0y00z00 is a reference quadrilateral for (z; t); (x; r).Hence, �((x; r); (y; s)) = �K(x00; y00); �((y; s); (z; t)) = �K(y00; z00) and�((x; r); (z; t)) = �K(x00; z00). Now it is clear that since the metric �Ksatis�es the triangle inequality, then so does � .We must also verify that � induces the product topology onX �R. it is clear from the formula for � that if the sequence f(xi; si)gconverges to the point (y; t) in X �R with the product topology, then�((xi; si); (y; t))! 0 as i ! 1. We must prove the converse. For thatpurpose we exploit the identitycosh(a� b) = cosh(a) cosh(b)� sinh(a) sinh(b)to rewrite the formula for � as�((x; s); (y; t)) = (1=k) cosh�1 � cosh(ks) cosh(kt)(cosh(k�(x; y))� 1)+ cosh(k(s� t))�Also recall that cosh(0) = 1 and cosh(t) > 0 if t 6= 0. It follows that if�((xi; si); (y; t))! 0 as i!1 thencosh(ksi) cosh(kt)(cosh(k�(xi; y))� 1) + cosh(k(si � t))! 1:Hence, (cosh(k�(xi; y))� 1)! 0 and cosh(k(si � t))! 1. This impliesthat fxig converges to y in X and fsig converges to t in R. So f(xi; si)gconverges to (y; t) in X �R with the product topology.By an argument very similar to the one just presented, it can beproved that if f(xi; si)g is a Cauchy sequence in (X �R; T�), then fxigand fsjg are Cauchy sequences in (X; �) and R, respectively. It followsthat if a is a complete metric on X , then � is a complete metric onX �R.Next we argue that (X � R; �) is a geodesic space. Let (x; s) and(y; t) 2 X �R. Choose x0; y0 2 M0 so that �K(x0; y0) = �(x; y). Let �denote the geodesic arc in X joining x to y, let �0 denote the geodesicarc inM0 joining x0 to y0, and let f : �! �0 denote the unique isometrysuch that f(x) = x0 and f(y) = y0. We de�ne an isometry g : � �R!V (�0) by g(z; u) = Cuf(z). Clearly g is a bijection. To prove that g is anisometry, let (z; u); (w; v) 2 ��R. Set z0 = f(z); w0 = f(w); z00 = g(z; u)and w00 = g(w; v). Then, as observed above, z0w0w00z00 is a referencequadrilateral for (z; u); (w; v). Hence, �((z; u); (w; v)) = �K(z00; w00) =



compact contractible n-manifolds 17�K(g(z; u); g(w; v)), proving g is an isometry. Since V (�0) is a convexsubset of M3(K), the geodesic arc  in M3(K) joining g(x; s) to g(y; t)lies in V (�0). Since g is an isometry, g�1 �  is a geodesic arc in X �Rjoining (x; s) to (y; t):To prove that (X � R; �) satis�es CAT(K), we will �rst establishthat the geodesic joining two points of X � R is unique. To this endlet (x; r) and (y; s) 2 X � R and let � denote the geodesic arc in Xjoining x to y. According to the previous paragraph, � � R is iso-metric to a convex subset of M3(K). Since two points in a convexsubset of M3(K) are joined by a unique geodesic within the convex set,we conclude that there is exactly one geodesic in � � R joining (x; r)to (y; s). We must eliminate the possibility of a second geodesic inX �R which joins (x; r) to (y; s) but which does not lie in � �R. Forthat purpose, consider a point (z; t) 2 (X � �)�R. We will prove that�((x; r); (z; t))+�((z; t); (y; s))> �((x; r); (y; s)). It will then follow thatno geodesic joining (x; r) to (y; s) can pass through (z; t). Let T0 denotethe geodesic triangle with vertices x; y and z in X , and let T 00 denotea comparison triangle with vertices x0; y0 and z0 in M0. Then � is theedge of T0 joining x to y. Let �0 denote the edge of T 00 joining x0 toy0. Since X is CAT(K), it is metrically convex (by Proposition 29 of[20]), so that points in X are joined by unique geodesics. Since z 62�, itfollows that no geodesic joining x to y in X passes through z. Hence,�(x; z) + �(z; y) > �(x; y). Therefore,�K(x0; z0) + �K(z0; y0) > �K(x0; y0):Consequently, z0 62�0. Now set x00 = Crx0 ; y00 = Csy0 and z00 = Ctz0 .Then, as we observed above, x0y0y00x00 is a reference quadrilateral for(x; r); (y; s); x0z0z00x00 is a reference quadrilateral for (x; r); (z; t), andz0y0y00z00 is a reference quadrilateral for (z; t); (x; r). Hence,�((x; r); (y; s)) = �K(x00; y00); �((y; s); (z; t)) = �K(y00; z00);and �((x; r); (z; t)) = �K(x00; z00). Let �00 denote the geodesic arc inM3(K) which joins x00 to y00. Since V (�0) is a convex subset of M3(K)and x00; y00 2 V (�0), we have �00 � V (�0). Since z00 2 �z0 and z0 62�0, itfollows that z00 62V (�0), so that z00 62�00. Since points inM3(K) are joinedby unique geodesics, �K(x00; z00) + �K(z00; Y y) > �K(x00; z00). Therefore,�((x; r); (z; t))+ �((z; t); (y; s))> �((x; r); (y; s)), and we conclude that(z; t) does not lie on any geodesic in X �R which joins (x; r) to (y; s).Consequently, any geodesic in X�Rwhich joins (x; r) to (y; s) must liein � �R and is, therefore, unique.



18 fredric d. ancel & craig r. guilbaultWe now prove that (X � R; �) satis�es CAT(K). Let (x; r); (y; s)and (z; t) 2 X � R, and let T be the geodesic triangle with vertices(x; r); (y; s) and (z; t) in X � R. Let T0 be the geodesic triangle withvertices x; y and z inX , and let T 00 be a comparison triangle with verticesx0; y0 and z0 inM0. As before, set x00 = Crx0 ; y00 = Csy0 and z00 = Ctz0 . Thenx0y0y00x00 is a reference quadrilateral for (x; r); (y; s); x0z0z00x00 is a refer-ence quadrilateral for (x; r); (z; t), and z0y0y00z00 is a reference quadrilat-eral for (z; t); (x; r); and �((x; r); (y; s)) = �K(x00; y00); �((y; s); (z; t)) =�K(y00; z00) and �((x; r); (z; t)) = �K(x00; z00). Let T 0 denote the geodesictriangle in M3(K) with vertices x00; y00 and z00. The three points x00; y00and z00 lie in a 2-dimensional submanifold of M3(K) which is isomet-ric to M2(K), and this submanifold also contains the geodesic triangleT 0. So T 0 is a comparison triangle for T . Let (w; u) be a point on theedge � of T opposite (x; r), and let w00 be the corresponding point onthe edge �0 of T 0 opposite x00. (See Figure 3.) We must prove that�((x; r); (w;u))< �K(x00; w00). Let �0 be the edge of T0 opposite x, andlet �00 denote the edge of T 00 opposite x0. We previously showed thatthere is an isometry g : �0 � R! V (�00) such that v 7! g(v; 0) is anisometry from �0 to �00; g(y; 0) = y0; g(z; 0) = z0, and g(p; v) = Cvg(p;0)for (p; v) 2 �0 �R. Set w0 = g(w; 0); then w0 is the point on �00 whichcorresponds to the point w on �0. Since X satis�es CAT(K) and T 00is a comparison triangle for T0, �(x; w) � �K(x0; w0). Since V (�00) is aconvex subset of M3(K) that contains g(y; s) = y00 and g(z; t) = z00, wehave �0 � V (�00). Hence, g�1(�0) is a geodesic in X�R joining (y; s) to(z; t). Since such geodesics are unique, g�1(�0) = �. So g(�) = �0, whichimplies that g(w; u) = w00. Thus, w00 = Cuw0, and therefore w00 2 �w0 .Let � denote the geodesic line in M0 passing through x0 and w0. Sincex00 2 �x0 , x0w0w00x00 is a quadrilateral in V (�) such that x0w0 is per-pendicular to x0x00 and w0w00. Also �K(x0; x00) = �K(C0x0 ; Crx0) = r and�K(w0; w00) = �K(C0w0 ; Cuw0) = u. Using our formula for the length of the\top" of such a quadrilateral, we have�K(x00; w00) = (1=k) cosh�1 � cosh(kr) cosh(ku) cosh(k�K(x0; w0))� sinh(kr) sinh(ku)�:On the other hand, our formula for the metric � gives:�((x; r); (w; u)) = (1=k) cosh�1 � cosh(kr) cosh(ku) cosh(k�(x; w))� sinh(kr) sinh(ku)�:As �(x; w) � �K(x0; w0) and the hyperbolic cosine function is strictly



compact contractible n-manifolds 19increasing on [0;1), we conclude that �((x; r); (w; u)) � �K(x00; w00).Thus, (X �R; �) satis�es CAT(K).(y; s)(x; r)(x; 0) InX �R
x00 y00 w00 z00x0 y0 z0w0InM3(K)(z; t)(z; 0)(w; u)(w; 0)Figure 3It is clear from the formula for r that the functionsx 7! (x; 0) : (X; �)! (X �R; �)and t 7! (x; t) : R! X�R (for �xed x 2 X) are isometric embeddings.Moreover, since the domains of these isometric embeddings are geodesicspaces, and since the geodesic joining a pair of points in (X �R; �) isunique, the images of these isometric embeddings are strongly geodesicsubspaces of X �R.Suppose Y is a strongly geodesic subspace of X . Let (x; s) and(y; t) 2 Y �R. Then x and y are joined by a unique geodesic �0 in Y .Our earlier argument showed that there is a unique geodesic � in X�Rjoining (x; s) to (y; t) and � � �0 �R. Hence, � � Y � R. It followsthat Y �R is a strongly geodesic subspace of X �R.Finally, conclusion f) of this lemma is an immediate consequence ofthe formula for � . q.e.d.Lemma 5.5. Let K < 0, and suppose X is an open cone and a isa K cosine law metric on X such that (X; �) satis�es CAT(K). Thenthere is a metric �� on X �R with the following properties.a) (X �R; ��) is a geodesic space satisfying CAT(K).



20 fredric d. ancel & craig r. guilbaultb) If a is a complete metric on X, then �� is a complete metric onX �R.c) For each t 2 R; x 7! (x; t) : (X; �)! (X �R; ��) is an isometricembedding onto a strongly geodesic subspace.d) If v is the vertex of the open cone X, thent 7! (v; t) : R! (X �R; ��)is an isometric embedding onto a strongly geodesic subspace.Proof. We assign X�R the metric � constructed in Lemma 5.4. Wewill construct a homeomorphism h : X�R! X �Rwith the followingproperties:a) For each t 2 R; x 7! h(x; t) : (X; �)! (X �R; �) is an isometricembedding onto a strongly geodesic subspace of X �R.b) If v is the vertex of X , then t 7! h(v; t) : R! (X � R; �) is anisometric embedding onto a strongly geodesic subspace of X �R.Given h, it is clear that a metric �� on X � R which satis�es theconclusions of Lemma 5.5 is de�ned by the formula ��((x; s); (y; t)) =�(h(x; s); h(y; t)).First we give a geometric description of h. Then we will exhibitformulas for h and h�1 which make their continuity clear.Suppose X is the open cone on the space W : X = O(W ). For eachw 2 W , let Rw = fsw : s � 0g; i.e., Rw is the ray in X generated byw. Recall that the notation M2(K)+ = fAts : s � 0 and t 2 Rg= fBts :s � 0 and t 2 Rg was introducted in Section 3. For each w 2W, de�nebijections fw : Rw � R ! M2(K)+ and gw : Rw � R ! M2(K)+by fw(sw; t) = Ats and gw(sw; t) = Bts. Then de�ne the bijectionh : X �R! X �R by hjRw �R= f�1w � gw for each w 2W .Here is the idea behind the de�nition of h. Fix t 2 R. Our aim isto make x 7! (x; t) : (X; �)! (X �R; �) an isometric embedding. Fora �xed w 2 W , this goal entails that s 7! (sw; t) : [0;1) ! Rw � Rbe an isometric embedding. From the de�nition of the metric � inLemma 5.4 it is easily seen that fw : (Rw � R; �) ! (M2(K)+; �K) isan isometry. Unfortunately, s 7! fw(sw; t) = Ats : [0;1)! M2(K)+ isnot an isometric embedding. (Indeed, fw(Rw � ftg) is not a geodesicray in M2(K)+.) We conclude that s 7! (sw; t) : [0;1) ! Rw � R is



compact contractible n-manifolds 21not an isometric embedding. So our aim is initially frustrated. On theother hand, s 7! gw(sw; t) = Bts : [0;1) ! M2(K)+ is an isometricembedding, and gw(Rw�ftg) is a geodesic ray inM2(K)+. (See Figure4.) Thus, s 7! f�1w � gw(sw; t) : [0;1) ! Rw � R is an isometricembedding, and f�1w � gw(Rw � ftg) is a geodesic ray in Rw �R. Thissuggests the above de�nition of h.
0

� � gw(Rw � ftg)fw(Rw � ftg)view inthe Poincar�edisk modelM2(K)+ Figure 4To discover a formula for h, we note the de�nition of h implies thath(sw; t) = (s0w; t0) if and only if Bts = At0s0 . It then follows from thetransformation formulas (1) in Section 3 thath(sw; t) = �� 1k tanh�1� tanh(ks)cosh(kt) ��w; 1k sinh�1(sinh(kt) cosh(ks))�andh�1(s0w;t0) = �� 1k sinh�1(sinh(ks0) cosh(kt0))�w; 1k tanh�1 � tanh(kt0)cosh(ks0)�� :It is clear from these formulas that h and h�1 are continuous. Thus, his a homeomorphism.Let t 2 R. We will now prove that x 7! h(x; t) : X ! X � R isan isometric embedding. Let w1; w2 2 W and s1; s2 2 [0;1). We mustshow that �(h(s1w1; t); h(s2w2; t)) = �(s1w1; s2w2):We could do this by a computation involving the formulas of �; h and �and some hyperbolic trigonometric identities. Instead, we choose to givea geometric argument in which we construct a reference quadrilateralfor h(s1w1; t); h(s2w2; t) in which the \top" has length �(s1w1; s2w2).Recall that � is a K cosine law metric on X . Hence, there is ametric d on W such that if we set � = minfd(w1; w2); �g, then for any



22 fredric d. ancel & craig r. guilbaults01; s02 2 [0;1),�(s01w1; s02w2)= (1=k) cosh�1 �cosh(ks01) cosh(ks02)� sinh(ks01) sinh(ks02) cos(�)� :Let M0 be a 2-dimensional submanifold of M3(K) that is isometricto M2(K). Choose a point Z of M0, and let ! be the geodesic linein M3(K) passing through Z orthogonal to M0. Choose a point B 2! such that �K(Z;B) = jtj. Let �1 and �2 be geodesic rays in M0emanating from Z so that the angle between them has measure �. Forthe moment, let i = 1 or 2. Let Hi denote the union of all the geodesiclines in M3(K) that pass through points of �i and are orthogonal toM0. Then Hi is isometric to M2(K)+; @Hi = ! and there is a uniqueisometry ei : M2(K)+ ! Hi such that ei(O) = Z and ei(Bt) = B.(Here we are again using the notation established in Section 3.) Thusei(� \ M2(K)+) = �i. There is a unique geodesic ray in Hi whichemanates from B and is orthogonal to !; let Pi denote the point onthis ray such that �K(B; Pi) = si. (Then, Pi is the point in Hi suchthat �K(B; Pi) = si and the geodesic joining B to Pi is orthogonal to!.) Because of the way Hi is de�ned, it contains a unique geodesicline that passes through Pi and is orthogonal to M0; let Ai denotethe point where this line passes through M0. Since Hi \ M0 = �i,Ai 2 �i. (Thus, Ai is the point on �i such that the geodesic joining Aito Pi is orthogonal to M0.) Set s0i = �K(Z;Ai) and t0i = ��K(Ai; Pi)so that t and t0i have the same sign. (See Figure 5.) It follows thatei � gwi(siwi; y) = ei(Btsi) = Pi = ei(At0is0i) = ei � fwi(s0iwi; t0i). Hence,h(siwi; t) = (s0iwi; t0i).
s2’

t1’

t2’

! � x1 x2A1 A2P1 P2s2s1s01ZtB Figure 5



compact contractible n-manifolds 23Let � be the geodesic line in M0 passing through A1 and A2, andlet V be the union of all the geodesic lines in M3(K) that pass throughpoints of � and are orthogonal to M0. Then V is isometric to M2(K)and contains the quadrilateral A1A2P2P1. We now show that A1A2P2P1is a reference quadrilateral for h(s1w1; t); h(s2w2; t). The geodesics A1P1and A2P2 are perpendicular to M0 and thus to A1A2. Since the angleat Z in the triangle ZA1A2 has measure 0, the hyperbolic cosine lawimplies that�K(A1; A2)= (1=k) cosh�1(cosh(ks01) cosh(ks02)� sinh(ks01) sinh(ks02) cos(�)):Thus, �K(A1A2) = �(s01w1; s02w2). Also, �K(Ai; Pi) = jt0ij for i = 1; 2.Furthermore, P1 and P2 are on the same side of M0 as the point B andare, therefore, on the same side of A1A2 in V ; and t01 and t02 have thesame sign as t. We conclude that A1A2P2P1 is a reference quadrilateralfor (s01w1; t01); (s02w2; t02) and, hence, for h(s1w1; t); h(s2w2; t). Thus, byde�nition, �(h(s1w1; t); h(s2w2; t)) = �K(P1; P2).We now compute �K(P1; P2). LetM1 be the union of all the geodesiclines in M3(K) that pass through the point B and are orthogonal to!. Then M1 is isometric to M2(K) and contains the triangle BP1P2.We assert that the angle at B in the triangle BP1P2 has measure 0. Tosee this, consider the point B0 on ! half way between Z and B, and letM 0 denote the 2-dimensional submanifold that is isometric to M2(K),passes through B0 and is orthogonal to !. Reection ofM3(K) throughM 0 is an isometry that carries M0 onto M1, carries ! onto itself and�xes each of the geodesic rays Hi \M 0. Hence, this reection carrieseach Hi onto itself. Thus, it carries �i = Hi \M0 onto Hi \M1. Since,Hi \M1, is the geodesic ray emanating from B through Pi, it followsthat the angle at B in triangle BP1P2 is congruent to the angle between�1 and �2, proving our assertion. Applying the hyperbolic cosine lawin the triangle BP1P2 now yields�K(P1; P2)= (1=k) cosh�1 � cosh(ks1) cosh(ks2)� sinh(ks1) sinh(ks2) cos(�)�:Thus, �K(P1; P2) = �(s1w1; s2w2), and we conclude that�(h(s1w1; t); h(s2w2; t)) = �(s1w1; s2w2):So x 7! h(x; t) : X ! X �R is an isometric embedding.



24 fredric d. ancel & craig r. guilbaultSince X is a geodesic space and x 7! h(x; t) : X ! X � R is anisometric embedding, h(X�ftg) is a geodesic space. Since the geodesicjoining two points of X � R is unique, it follows that h(X � ftg) is astrongly geodesic subspace of X �R.Let v be the vertex of X = O(W ). Let w 2 W . Then v = 0w.For t 2 R, since fw(0w; t) = At0 = Bt0 = gw(0w; t), h(v; t) = f�1w �gw(0w; t) = (0w; t) = (v; t), Therefore, Lemma 5.4.d implies that t 7!h(v; t) : R ! (X � R; �) is an isometric embedding onto a stronglygeodesic subspace. q.e.d.At this point, we report that the referee suggested a clever alterna-tive approach to the results of this section in which Lemmas 5.2 and5.5 are derived from Lemma 5.4 under the additional hypothesis thatW is a compact polyhedron. We have not chosen the referee's approachin order to leave open the possibility of removing the \PL" hypothesis,from our Main Theorem. As we remarked earlier, if the appropriatetopological manifold version of Lemma 5.1 is ever proved, then the re-mainder of our argument would prove the Main Theorem without the\PL" hypothesis. This feature of our argument would be lost if wewere to follow the course suggested by the referee. However, becausethe referee's argument is quite e�cient and does lead to a proof of theMain Theorem as it presently stands, we outline it briey.Using Lemma 5.4, the referee proves analogues of Lemmas 5.2 and5.5 which we shall call Lemmas 5.2' and 5.5'. We leave it to the readerto verify that Lemmas 5.2' and 5.5' can replace Lemmas 5.2 and 5.5 inthe proof of the Main Theorem given in Section 7.Lemma 5.2'. If � is a �nite simplicial complex and K < 0, thenthere is a complete CAT(K) structure on Oj�j in which O(j�j) is astrongly geodesic subspace for each subcomplex � of �.Proof. This construction is based on the observation that for eachsimplex a � 2 �, there is a homeomorphism h� identifying the pair(O(�);O(@�)) with the pair (O(@�)�[0;1);O(@�)�f0g). This identi�-cation reveals that we can use Lemma 5.4 to extend a complete CAT(K)metric on O(�) to a complete CAT(K) metric on O(�). Now we proceedby induction on the number of simplices in �. Let � be a top dimen-sional simpiex of �. We can assume that there is a complete CAT(K)structure on O(j�� f(�gj) in which O(j�j) is a strongly geodesic sub-space for each subcomplex � of � � f�g. In particular, O(@�) is astrongly geodesic subspace. We extend the complete CAT(K) struc-ture on O(@�) to a complete CAT(K) structure on O(�). Since O(j�j)



compact contractible n-manifolds 25is the union of the two complete CAT(K) metric spaces O(j� � f�gj)and O(�)) along the strongly geodesic subspace O(@�), O(j�j) has acomplete CAT(K) structure ([5, Corollary 5, p.192]). The same unionprinciple implies that O(j�j) is a strongly geodesic subspace for eachsubcomplex � of �. We make an additional observation which will helpin the proof of Lemma 5.5': for each � 2 �, assuming that we have�xed the homeomorphism h� : O(�)! O(@�)� [0;1) then the metricon O(�) is completely determined by the metric on O(@�) via Lemma5.4.f. q.e.d.Lemma 5.5'. If � is a �nite simplicial complex and K < 0, thenthere is a complete CAT(K)structure on O(j�j)�R such that for eachsubcomplex � of �, O(j�j)�R is a strongly geodesic subspace, and foreach t 2 R;O(j�j)� ftg is a strongly geodesic subspace isometric toO(j�j). (For each subcomplex � of �, O(�) is assumed to carry themetric constructed in Lemma 5.2')Proof. This construction is based on the observation that for eachsimplex � 2 �, a homeomorphism H� identifying the pair(O(�)�R;O(@�)�R) with the pair((O(@�)�R)� [0;1); (O(@�)�R)� f0g)is determined by the condition that for each t 2 R;H� maps O(�)�ftgonto (O(@�)�ftg)� [0;1) in exactly the way that h� maps O(�) ontoO(@�)� [0;1). In other words, if x 2 O(�); y 2 O(@�) and s 2 [0;1)such that h�(x) = (y; s), then H�(x; t) = ((y; t); s). The identi�cationH� allows us to use Lemma 5.4 to extend a complete CAT(K) metricon O(@�)�R to a complete CAT(K) metric on O(�) �R. Moreover,for t 2 R, if O(@�)� ftg is a strongly geodesic subspace of O(@�)�Risometric to O(@�), then according to Lemma 5.4.e and f, O(@�)� ftgis a strongly geodesic subspace of O(�)�R isometric to O(�).Again we induct on the number of simplices in �. We let � be atop dimensional simplex of �. We can assume that there is a completeCAT(K) structure on O(j�� f�gj)�R such that for each subcomplex� of �� f�g;O(j�j)�R is a strongly geodesic subspace, and for eacht 2 R;O(j�j)� ftg is a strongly geodesic subspace isometric to O(j�j).Thus, O(@�) � R is a strongly geodesic subspace, and we can extendthe complete CAT(K) structure on O(@�)�R to a complete CAT(K)structure on O(�) � R. Now, as in the proof of the previous lemma,the union of the complete CAT(K) structures on O(j� � f�gj) � Rand O(�) � R is a complete CAT(K) structure on O(j�j) � R, and



26 fredric d. ancel & craig r. guilbaultO(j�j) � R is a strongly geodesic subspace for each subcomplex � of�. Next consider a subcomplex � of � containing � and �x t 2 R.Then O(j� � f�gj)� ftg and O(@�) � ftg are strongly geodesic sub-spaces isometric toO(j��f�gj) and O(@�), respectively. It follows thatO(�) � ftg is a strongly geodesic subspace isometric to O(�). Finally,since O(j�j) � ftg is the union of O(j� � f�gj)� ftg and O(�) � ftgalong the O(@�)�ftg, it follows that O(j�j)�ftg is a strongly geodesicsubspace isometric to O(j�j). q.e.d.We end this section by considering the K = 0 case of these lemmasand the Main Theorem. If K � K 0, then M2(K) satis�es CAT(K 0)([3, Corollary 5.1, p.21]). It follows that ifK � K 0, then any space whichsatis�es CAT(K) also satis�es CAT(K 0). Hence, our Main Theoremimplies the K = 0 version of itself. However, one can also prove theK = 0 version of the Main Theorem by deriving it from K = 0 versionsof the lemmas in this section. As it happens, the K = 0 versions of theselemmas are, in general, easier to prove than their K < 0 counterparts.This is particularly the case for Lemmas 5.4 and 5.5. Thus, the proofof the K = 0 version of the Main Theorem is simpler than the K < 0case. Because some readers might be primarily interested in the proofof the K = 0 case, we now briey describe the K = 0 versions of thelemmas of this section. We leave to the reader the task of assemblingthem into a derivation of the K = 0 version of the Main Theorem. Thisderivation is essentially the same as the K < 0 derivation described inSection 7.Lemma 5.1 need not be changed.To formulate the K = 0 version of Lemma 5.2, we must �rst de-�ne the 0 cosine law metric on an open cone. Let (W; d) be a met-ric space and, as before, de�ne the metric � on W by the formula�(w;w0) = minfd(w;w0); �g. De�ne the 0 cosine law metric on O(W )to be the function �0 : O(W )�O(W )! [0;1) de�ned by the formula�0(r1w1; r2w2) = �r21 + r22 � 2r1r2 cos(�(w1; w2))�1=2. (This formula isclearly motivated by the cosine law in Mn(0) = Rn. In fact, Rn is iso-metric to (O(Sn�1); �0).) The K = 0 version of Lemma 5.2 simply saysthat �0 is a metric on O(W ) which is complete if d is complete, and that(O(W ); �0) is a geodesic space satisfying CAT(0) if and only if (W; d)is a 1-domain. The reference is the same as for the K < 0 version ofLemma 5.2: [3, p.17].Replace \K < 0" by \K = 0" to obtain the statement of the K = 0version of Corollary 5.3. The proof is the same as before.



compact contractible n-manifolds 27In theK = 0 case, Lemmas 5.4 and 5.5 collapse into one proposition.The reason is that as K approaches 0 from below, the two essentiallydi�erent ways of putting rectangular coordinates on M2(K) converge.As a result, the K = 0 analogue of Lemma 5.4 puts a CAT(0) metricon X �R in which the levels X � ftg are strongly geodesic subspacesisometric to X . Speci�cally, the K = 0 version of Lemma 5.4 says thatif (X; �) is a metric space satisfying CAT(0), then a metric � on X �Ris de�ned by the formula �((x; s); (y; t)) = �(�(x; y))2+ (s� t)2�1=2 andhas the following properties:a) If � is a complete metric on X , then � is a complete metric onX �R.b) (X �R; �) is a geodesic space satisfying CAT(0).c) For each t 2 R; x 7! (x; t) : X ! X�R is an isometric embeddingonto a strongly geodesic subspace.d) For each x 2 X; t 7! (x; t) : R! X�R is an isometric embeddingonto a strongly geodesic subspace.e) If Y is a strongly geodesic subspace of X , the Y �R is a stronglygeodesic subspace of X �R.Property b) can be proved by adapting (and simplifying) appropriateparts of the proof of Lemma 5.4 to the K = 0 situation. The proofs ofproperties a) and c) through e) are immediate.6. Arc spinesLet Cn be a compact contractible PL n-manifold (n � 5). In[4] it is shown that there is a map f : @Cn ! [0; 1] such that themapping cylinder of f;Cyl(f), is homeomorphic to Cn. For later con-venience, we give Cyl(f) the following non-standard parametrization.Cyl(f) = ((@Cn � [0;1][ [0; 1])= � where for each x 2 @Cn;� identi-�es (x; 0) with f(x) 2 [0; 1]. The speci�c form of the mapping cylinderstructure imposed on Cn will be a key ingredient in the proof of theMain Theorem. In order to see this structure, we briey review themain points of [4].First one obtains a PL embedded copy �n�2 � [0; 1] in @Cn, where�n�2 is a PL homology (n� 2)-sphere such that the inclusion �n�2 �[0; 1] ! @Cn induces a �1-epimorphism. Lemma 1 of [4] describes theconstruction of a topologically embedded �n�2� [0; 1] in @Cn. However,when n > 5, the construction in [4] is clearly piecewise linear; and inthe case n = 5, [4] appeals to [10] from which it is clear that if @Cn



28 fredric d. ancel & craig r. guilbaultis PL (as it is here), then the construction of �n�2 � [0; 1] can also bedone in the PL category.By pulling in the ends of �n�2 � [0; 1] slightly, we may assume thatboth �n�2 � f0g and �n�2 � f1g are bicollared. Then @Cn� (�n�2 � (0; 1)) is the union of two disjoint PL manifolds Q0 and Q1which are homology (n � 1)-cells with PL homeomorphic boundaries�n�2 � f0g and �n�2 � f1g, respectively. The map f : @Cn ! [0; 1]sends Q0 to 0, Q1 to 1, and �n�2 � ftg to t for each t 2 (0; 1). (SeeFigure 6.) acn Q1Q0 0 t 1f�n�2 � [0; 1]
Figure 6Now if C(Q0); C(Q1) and C(�n�2) denote the cones (Q0�[0;1])=(Q0�f0g), (Q1 � [0;1])=(Q1� f0g) and (�n�2 � [0;1]=(�n�2 � f0g), thenwe may view Cyl(f) as the adjunction spaceC(Q0) [!0 C(�n�2)� [0; 1] [!1 C(Q1);where for i = 0 or 1, !i is a PL homeomorphism from C(@Qi) (a subsetof C(Qi)) onto C(�n�2)� fig which sends cone lines to cone lines. (SeeFigure 7.) C(Q0) C(Q1)C(�n�2)� [0; 1] !1!0 Figure 7Since we may view an open cone as a subset of the correspondingcone, we may restrict !i to a homeomorphism e!i, from O(@Qi) onto



compact contractible n-manifolds 29O(�n�2)� fig for i = 0 or 1. Then int(Cn) may be realized asO(Q0) [e!0 O(�n�2)� [0; 1])[e!1 O(Q1):7. Proof of the Main TheoremWe now prove our main theorem in the following slightly strongerform.Theorem 7.1. Let Cn be a compact contractible n-manifold, n �5, and let K < 0. Then int(Cn) supports a metric � under which(int(Cn); �) is a complete geodesic space satisfying CAT(K). Conse-quently, int(Cn) supports a hyperbolic metric.Proof. We decompose @Cn into �n�2�[0; 1]; Q0 and Q1 as describedin the preceding section. Since @Q0 and @Q1 are PL homeomorphic,we may choose triangulations of Q0 and Q1 under which @Q0 and @Q1are isomorphic subcomplexes. Let � : @Q0 ! @Q1 be a simplicial iso-morphism. Then the adjuction space Q0 [� Q1 is a simplicial complex(homeomorphic to @Cn) in which Q0; Q1 and @Q0 = @Q1 are subcom-plexes. Lemma 5.1 provides Q0 [� Q1 with a metric d under whichQ0 [� Q1, and each of its subcomplexes is a 1-domain. Then Lemma5.2 provides O(Q0 [� Q1) with a complete metric under which it is ageodesic space satisfying CAT(K). Moreover, according to Corollary5.3, the subcones O(Q0);O(Q1) and O(@Q0) = O(@Q1) are stronglygeodesic subspaces of O(Q0 [� Q1) satisfying CAT(K).We use the PL homeomorphism between �n�2 and @Q0 to put ametric on �n�2 that makes it a 1-domain isometric to @Q0 and @Q1.Then Lemma 5.2 provides a complete metric for O(�n�2) which makesit a geodesic space satisfying CAT(K) that is isometric to O(@Q0)and O(@Q1). We apply Lemma 5.5 to obtain a complete metric onO(�n�2) � R which makes it a geodesic space satisfying CAT(K) inwhich O(�n�2)�ftg is a strongly geodesic subspace isometric toO(�n�2)for each t 2 R. It follows that O(�n�2)� [0; 1] is a geodesic space satis-fying CAT(K) in which O(�n�2)�f0g and O(�n�2)�f1g are stronglygeodesic subspaces isometric to O(�n�2).The preceding section decomposes int(Cn) into the piecesO(Q0);O(�n�2) � [0; 1] and O(Q1) where O(@Q0) � O(Q0) is iden-ti�ed with O(�n�2) � f0g � O(�n�2) � [0; 1] and O(@Q1) � O(Q1)is identi�ed with O(�n�2) � f1g � O(�n�2) � [0; 1]. Each piece is a



30 fredric d. ancel & craig r. guilbaultgeodesic space satisfying CAT(K). Moreover, O(@Q0);O(�n�2)� f0g,O(�n�2) � f1g and O(@Q1) are isometric and are strongly geodesicsubspaces of O(Q0);O(�n�2)� [0; 1] and O(Q1), respectively. It followsfrom Corollary 5 on p.192 of [5] that the metrics on these pieces can beassembled into a metric on int(Cn) which makes it a complete geodesicspace satisfying CAT(K). q.e.d.Observation. The hyperbolic metric we have constructed on int(Cn)has the following curious feature: there is a geodesic arc in int(Cn)which is wild. (An arc � in the interior of an n-manifold is tame if� has a neighborhood U such that the pair (U; �) is homeomorphic to(Rn; [0; 1]� f(0; 0; � � � ; 0)g). � is wild if it is not tame.) The wild arcoriginates from the identi�cation in [4] of Cn with the mapping cylinderCyl(f) of a map f : @Cn ! [0; 1]. In this construction, the interval [0; 1]which is the target of f and which embeds naturally in Cyl(f) is wild.(This is explained in the proof of Theorem 2 of [4]. There it is notedthat even in the case that Cn is an n-ball, it is possible to choose f sothat its target is wild in Cyl(f).) Thus, there is a naturally occurringwild arc in int(Cn). It remains to argue that this wild arc is a geodesicunder the metric imposed on int(Cn).Under the identi�cation of Cyl(f) withC(Q0)[!0 C(�n�2)� [0; 1][!1 C(Q1)explained in Section 6, it is apparent that the interval [0; 1] which is thetarget of f gets identi�ed with fvg � [0; 1] where v is the vertex of thecone O(�n�2). Thus, fvg � [0; 1] is a wild arc inint(C(Q0) [!0 C(�n�2)� [0; 1][!1 C(Q1))= O(Q0)[e!0 O(�n�2)� [0; 1][e!1 O(Q1):Now note that v is also the vertex of the open cone O(�n�2). Therefore,according to Lemma 5.5.d, t 7! (v; t) : R! O(�n�2)�R is an isometricembedding. Hence, fvg � [0; 1] is a geodesic arc in O(�n�2)� [0; 1].Finally, we remark that since our construction applies to the n-ball,there is a hyperbolic metric on Rn containing a wild geodesic arc.8. Dimensions < 5For n = 1 and 2;Rn is the only contractible open n-manifold. Workof D. Rolfsen [18] implies that any simply connected 3-manifold sup-
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