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Abstract. A classical result in manifold theory states that every closed 3-

manifold bounds a compact 4-manifold. In 1985 C. Rourke discovered a

strikingly short and elementary proof of the orientable case of this theorem

(Í23 = 0). In this note we show that Rourke's approach can be extended to

include nonorientable 3-manifolds.

1. Introduction

In [4] Rourke gives a brief clever proof of the classical result of Rokhlin [3]

that every closed orientable 3-manifold bounds a compact orientable 4-manifold

(i.e., Í23 = 0). The nonorientable version of Rohklin's theorem, originally

proven by Thom [5], guarantees that every closed nonorientable 3-manifold

bounds a compact nonorientable 4-manifold (^3 = 0). In this note, we show

that Rourke's approach extends to give a short proof of this latter theorem.

In [4] Q3 = 0 is deduced as a corollary of a stronger theorem (proven ear-

lier in [6, 1]) that every closed orientable 3-manifold can be reduced to S3 by

a finite number of elementary Dehn surgeries. Here elementary means that a

meridian of the attached solid torus is identified with a curve in the bound-

ary of the removed solid torus that is homotopic to the core of the removed

solid torus. Then Q3 = 0 follows from the observation that any two closed

orientable 3-manifolds that differ by an elementary Dehn surgery cobound a
compact orientable 4-manifold.

We similarly deduce yfî = 0 from a stronger theorem (first proven in [2])

about the reducibility by surgery of every nonorientable 3-manifold to a simple
model. In the nonorientable situation the simple model that replaces S3 is the

nonorientable 2-sphere bundle over Sl , which we denote T. Our basic theorem
is

Theorem 1. Every closed nonorientable 3-manifold can be reduced to T by a

finite number of elementary Dehn surgeries.
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Since T bounds the nonorientable B3 bundle over S1 , and since any two

closed 3-manifolds (orientable or not) that differ by an elementary Dehn surgery

cobound a compact 4-manifold, we have

Corollary.   i/v\ = 0) Every closed 3-manifold bounds a compact 4-manifold.

In this paper we extend Rourke's techniques to give an elementary proof of

Theorem 1.

2. Terminology

As in [4] we will use an induction argument based on a complexity assigned

to Heegaard diagrams.
Suppose M = Hx u H2 is a Heegaard splitting of a nonorientable 3-manifold

M. Then Hx and 772 are nonorientable handlebodies meeting along a nonori-

entable surface S. If the 77, 's are of genus n then S has Euler characteristic

2 - 2n , and we will call S a nonorientable surface of genus n . A set of «

disjoint two-sided (i.e., having an annular regular neighborhood) simple closed

curves on 5 whose complement is a punctured disk is called a complete system

of curves on S. (Every nonorientable surface of genus n has a complete system

of curves.) It is easy to see that if X and Y are complete systems of curves

on S with the property that each element of X bounds a disk in 77i and

each element of Y bounds a disk in 772 , then M is completely determined by

S, X, and Y. We then call SÍX, Y) a Heegaard diagram for M. Moreover,

any Heegaard diagram, SÍX, Y), uniquely determines a 3-manifold, which we

will denote M(X, Y).
A two-sided curve x on a nonorientable surface S is called exceptional if

S - x is orientable, otherwise it is called ordinary. A complete system of curves

on 5 is called uniform if it contains only ordinary curves or if genus(S) =

1. Every nonorientable surface of genus n has a uniform complete system

of curves. (See Observation 1 below.) Note that a genus 1 complete system

necessarily contains a single exceptional curve. A Heegaard diagram SÍX, Y)

will be called uniform if both X and Y are uniform systems.

Remark. The assumption of two-sidedness for all curves used in a Heegaard

diagram is of utmost importance. While this property is automatic for a curve

on an orientable surface, the situation is much different for nonorientable sur-

faces. Much of the work in this paper is aimed at preserving two-sidedness

when choosing new curves (see, e.g., §4 Lemma 2).

Remark. Although complete systems with one exceptional curve always exist

and may seem more natural, the proof given here depends for its simplicity

on the consistent use of uniform systems comprised solely of ordinary curves

(except of course in the genus 1 case).

3. Observations

Here we list several basic facts about nonorientable handlebodies and their

boundaries.

Observation 1. Every nonorientable handlebody 77 of genus n is homeomorphic

to a 3-ball with n   I-handles, all attached in a nonorientable fashion.

Proof. Clearly 77 has at least one nonorientable handle hx . Sliding each of the

orientable handles over hx gives us the desired realization of 77.   D
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Observation 2. If Hx U 772 is a Heegaard splitting of a nonorientable manifold

M then there is an associated uniform Heegaard diagram for this splitting.

Proof. If genus(7/i ) = 1 there is nothing to prove. Otherwise, use Observation

1 to view both 77] and H2 as 3-balls with nonorientable handles attached.

Let X be the collection of cocore boundaries of Hx and Y be the cocore
boundaries of 772.   □

Observation 3. If SÍX, Y) is a Heegaard diagram for M, x £ X, y £ Y and

x intersects y transversally in a single point, then M has a Heegaard splitting

of genus n - I.

Proof. Let A be a regular neighborhood of a disk in Hx bounded by x . Then

[7/i\int(A)] u [H2 u A] is a genus n - 1 splitting of M.   D

Observation 4. A curve x on a nonorientable genus n surface S is two-sided

iff it intersects any given exceptional curve itransverse to it) an even number of

times.

Proof. Let y be an exceptional curve on S transverse to x, and let Sy be the

(orientable) manifold obtained by cutting S open along y . Form the orientable

double cover S of S by gluing together two copies of Sy in the proper fashion.

By construction, the two lifts of y, called them y and y', will together separate

S into two components each projecting homeomorphically onto S\y.

By the nature of orientable double covers, a simple closed curve in S lifts

to a loop in S iff that curve is two-sided. Let /:([0, 1], {0, 1}) -> (S, *)

be a parametrization of x with * £ y, and let / be a lift of /. Since each

component of S\(yUy') contains one preimage of *, it is clear that /(0) = /(l)

iff /(0, 1]) intersects y U y' an even number of times. Furthermore, each of

these intersections corresponds to a unique point of x f)y . Therefore x lifts

to a loop in S iff x intersects y an even number of times.   D

Observation 5. If x and y are disjoint exceptional curves in a nonorientable

genus n surface S then xUy separates S.

Proof. If S\ix U y) were connected then there would be a curve in S that

intersects x once and misses y . This would contradict Observation 4.   D

Observation 6. A curve x on a surface S that is a boundary component of a

codimension 0 submanifold of S is necessarily two-sided.

Proof. Note that x is bicollared.   D

4. Lemmas

In this section we do most of the work necessary to prove Theorem 1. Lem-
mas 1 and 2 are nearly the same as those used by Rourke in [4]. A good deal

of our effort is spent making Lemma 2 work on a nonorientable surface. The

rest of the lemmas are straightforward and deal with special situations we must

face due to nonorientability.

Lemma 1. Suppose SÍX, Y) is a Heegaard diagram and Z is a third complete

collection of curves on S. Let x(M, Z) denote the result of performing surgery

on M(X, Y) using the curves of Z (with framings given by parallel curves in S).

Then x(M, Z) is homeomorphic to the connected sum M(X, Z) # M(Y, Z).
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Figure 1a Figure 1b

Proof. Rourke's proof of this lemma applies equally well to nonorientable man-

ifolds (see [4, Lemma 1]).   D

Lemma 2. Suppose x and y are two nonseparating two-sided curves on a nonori-

entable genus n surface S and that x meets y transversally. Let \xdy\ denote

the number of intersection points.

(a) If \x ny| = 0 and both x and y are ordinary then there is a (necessarily

ordinary) nonseparating two-sided curve z on S that meets each of x and y

transversally in a single point.

(b) If \x r\y\ > 1 then there is a nonseparating two-sided curve z on S with

\xC\z\ < \xr\y\ and \y n z\ < \x ny|. Moreover, if x and y are ordinary then
z can be chosen to be ordinary.

Proof, (a) Cut S open along x and glue in disks Dx and D\. Call the resulting

surface 5^.
Subcase (¿Zi). y separates Sx. Then Dx and D[ lie on opposite sides of

y in Sx ; otherwise, y would separate 5". Choose an arc a in Sx between

corresponding points of dDx and dD\ meeting y transversally in a single

point. Let J be a disk neighborhood of fliUaU D\ intersecting y in a small

arc transverse to a. We then have one of the situations pictured in Figures

la and lb. The arrows in the figures indicate identifications that occur when

reconstructing S from Sx . In Figure Ia reidentification of dDx and dD[

turns a into a two-sided curve. Since this curve hits x (and y ) once, it can

neither separate S nor be exceptional (see Observation 4). This is the required

curve 2 . In the case of Figure 1 b, we must modify a in order to achieve two-

sidedness. Since x is ordinary, Sx is nonorientable, so one of the components

of Sx — y is nonorientable. Choose a one-sided curve t in Sx — y missing

J and "band sum" it to a as shown. After reidentification, this band sum

becomes the required curve z .

Subcase (¿z2). y does not separate Sx . In this case, cut Sx open along y

and glue in disks D2 and D'2 creating a surface Sxy . Let J be a disk in Sxy

containing each of Dx, D[, D2, and D'2. Choose disjoint arcs a and ß in J

with a running from dDx to dD2 and ß running between the corresponding

points on dD[ and dD'2. Figures 2a-d illustrate the possible identifications for

recreating S from Sxy . In both Figures 2a and 2b the curve on S arising from
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a U ß under the described identifications is two-sided and intersects each of x

and y once. This is the curve z that our lemma promises. In the case of Figure

2c, a\J ß produces a one-sided curve. To find an appropriate modification of

a Uß, we let K denote 7\(int7)1 U intD[) with dDx and dD\ identified.
Then K is an orientable submanifold of Sy . Sy is nonorientable because y

is ordinary; hence Sy - K is nonorientable. Since Sy - K = Sxy - J, there is

a one-sided curve t in Sxy - J. Replace a with the band sum of a and t .

This new arc together with ß gives the desired curve z upon reidentification.

The situation in Figure 2d is handled similarly.
(b) Let Nx be an annular neighborhood of x chosen sufficiently small that

y n Nx consists of a finite set of arcs {aa} , one for each point A in xny . Let
<9o and dx denote the two boundary components of Nx . Assign an orientation

to the curve y . A point A £ x n y is called a +1 intersection if a a runs from

¿3o to dx and a -1 intersection if ÀA runs from dx to do, where orientation
on the a 's is induced by that on y. Now choose points A, B e x n y that are

consecutive on y, and let a be an arc of y between them containing no other

Figure 2a Figure 2b

r t

Figure 2c Figure 2d
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points of x n y. Let L be a regular neighborhood of xUa consisting of Nx

and a small "strip" about a connected to A* at each end.

Subcase ibx). A and B have opposite sign. Then Figures 3a and 3b illus-

trate the possible situations. In case L is nonorientable (see Figure 3A), let z

be the indicated component of dL. Note that \z n x\ = 0 and \z n y\ is two
less than |xf~iy|. By Observation 6, z is two-sided. Furthermore, since z and

x cobound a submanifold of S and x does not separate S, then z cannot

separate S. Moreover, since L itself is nonorientable, z is ordinary.

In the case of Figure 3b (i.e., L orientable), we have two candidates for z .

Let zx and z2 denote the boundary components of L parallel to a U ßx and

a U ß2, respectively; where ßx and ß2 are the subarcs of x with endpoints

A and B. Each z¡ intersects both x and y in less than |xny| points, and

by Observation 6 both zx and z2 are two-sided. Now we focus onaUjîi

anda U ß2, keeping mind that these are just parallel copies of zx and z2. At

least one of the a U /?, 's does not separate. This can be seen by considering a

curve y, transverse to both x and y, meeting x at a single point. (Recall x

does not separate.) Then, one of the a U /?, 's hits y an odd number of times,

and the other hits y an even number of times. The a U /?, that hits y an

odd number of times cannot separate S. Therefore, the corresponding z, does

not separate S. If "ordinary-ness" is not required, simply choose z to be this

z,. If x and y are ordinary and z is required to be ordinary, we must be

more selective. Applying Observation 4 to the curve y shows that the a U /?, 's

cannot both be exceptional. Since we are free to use either z, provided it is

nonseparating and ordinary, we need only rule out the possibility that aU^i

is exceptional and a U ß2 separates (or vice versa). Presuming for the moment

that this occurs, let C be the component of S- iaUß2) that does not intersect

ßx . Since C lies in the complement of a U ßx, C is orientable. Similarly,

S - ißx U C) is orientable. Therefore S - x, which is the union of C and

S - ißx U C) along a, must be orientable. This contradicts the assumption that

x is ordinary. Thus we are assured that one of the aU/3, 's is both nonseparating

Figure 3A Figure 3B
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Figure 4b

and ordinary. The corresponding z, is our choice for z.

Subcase (¿>2). A and B have the same sign. If L is orientable then Figure

4a illustrates the curve z we will choose. It is easy to see that z is two-sided

and |zny| < |xny|. Furthermore, |znx| = 1, implying that |znx| < |jcny|
and z is nonseparating and ordinary (use Observation 4 for the latter). Finally,

in case L is nonorientable, we reverse the roles of curves x and y, assigning

± 1 's to the points of x n y according to the way that an oriented x crosses

an annular neighborhood of y . Then A and B will have opposite signs. (See

Figure 4b). Hence, there are points of x ny, consecutive on x, with opposite

sign. So we find ourselves back in Subcase (¿>i) with the roles of x and y

reversed.   D

Lemma 3. If Si{x}, {y}) is a genus 1 Heegaard diagram for a nonorientable

manifold M and x n y = 0, then M « T.

Proof. By definition of Heegaard diagram, M is the union of two nonorientable
genus 1 handlebodies (i.e., nonorientable disk bundles over Sl), identified by

some homeomorphism of their boundaries. This homeomorphism is deter-

mined, up to isotopy, by x and y . Since S — x and S-y are punctured disks

and y cannot bound a disk in 5", y must wind once around the puncture in

S - x . It is then clear that x and y are isotopic in S. Thus, the homeomor-

phism of S determined by x and y is isotopic to the identity. In particular,

M is just the double of a nonorientable disk bundle over Sl . This is T.   D

Lemma 4. If z is an ordinary nonseparating two-sided curve on a nonorientable

surface S of genus n > 1 then there is a uniform complete system of curves Z,

on S, containing z.

Proof. Let Sz denote the nonorientable surface of genus n - 1 obtained by

cutting S open along z and sewing in disks D and D'. Let 7 be a disk

in Sz containing D and D'. If n = 2 then Sz is a Klein bottle and two

cases must be considered depending on how 3D and 3D' get identified when

Figure 4a
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Figure 5a Figure 5b

S is recreated from Sz. These two cases are illustrated in Figures 5a and 5b.
The correct choice of a second curve z' needed to form a complete uniform

system on S is also illustrated in these two figures. If n > 2, choose a uniform

complete system of curves Z' for Sz with no elements of Z' intersecting J .

Since genus^z) > 1, each element of Z' is ordinary in Sz. Now regarding

Z' as a subset of S, we see that each element of Z' is ordinary in S. So

Z = Z' U z is a uniform complete system for S.   □

Lemma 5.  T # T can be reduced to T with one elementary Dehn surgery.

Proof. Let 77 denote a 3-ball with two nonorientable handles attached. It is

easy to see that Double(77) « T#T. Let 77' denote a 3-ball with one orientable

and one nonorientable handle attached. It is also easy to see that Double(7/') ta

T#(51 x S2). Since 77 « 77' (see Observation 1), Double(77) « Double(77') ;
therefore T#T « T#(5' x S2). An elementary surgery along an S[ fiber

changes S1 x S2 to S3 and thus converts T#iSl x S2) to T#S3 « T.    D

5. Proof of Theorem 1

To a uniform Heegaard diagram SÍX, Y), where S is nonorientable, assign

a complexity WiX, T) = («, k) where n = genus(.S) and k = min{|xny|:x e

X, y £ Y}. Note that since S is nonorientable, n > 1. Our proof will be

by induction on the complexity of these uniform Heegaard diagrams under the

lexicographic ordering.
If WiX, Y) = (1,0), Lemma 3 shows that MÍX, Y) is homeomorphic

to T. Next, consider the situation where («, k) > (1,0) and assume the

conclusion of Theorem 1 holds for any 3-manifold described by a uniform

Heegaard diagram of lower complexity.

Case 1. k = 1. By Observation 3, MÍX, Y) has a Heegaard splitting of genus

n - 1. Observation 2 guarantees an associated uniform Heegaard diagram that

necessarily has lower complexity.

Case 2. k = 0 (and n > 1 ). Choose a pair of curves x £ X and y £ Y that

do not intersect. By Lemma 2(a) there is a nonseparating ordinary two-sided

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



EXTENSION OF ROURKE'S PROOF 291

curve z on S that intersects each of x and y transversally in a single point.

By Lemma 4 there is a uniform complete system Z on 5 containing z .

Perform surgery on the elements of Z as prescribed in Lemma 1, thus ob-

taining a manifold £(Af, Z) « MÍX, Z) # M(Y, Z). Observation 3, followed
by Observation 2 and the inductive hypothesis, shows that each of MÍX, Z)

and MÍY, Z) can be reduced to T by a finite number of surgeries. Hence, M

can be reduced to T # T by finitely many surgeries. An application of Lemma
5 completes the argument.

Case 3. k > 1. Again choose curves x £ X and y £ Y such that \xf\y\ = k .
Then apply Lemmas 2(b) and 4 to obtain a uniform complete system Z on S

that contains a curve z with the property that |xnz| and |yfiz| are less than

k . Apply Lemmas 1 and 5 as in Case 2.   D
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