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SYMMETRY IN MOORISH AND OTHER ORNAMENTSt 
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and 
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Abs t r ac t - -An  investigation of the Moorish ornaments from the Alhambra (in Granada, Spain) shows 
that their symmetry groups belong to 13 different crystallographic (wallpaper) classes; this corrects 
several earlier enumerations and claims. The four classes of wallpaper groups missing in Alhambra (pg, 
p2, pgg, p3ml) have not been found in other Moorish ornaments, either. But the classification of 
repeating patterns by their symmetry groups is in many cases not really appropriate--account should be 
taken of the coloring of the patterns, of their interlace characteristics, etc. This leads to a variety of 
"symmetry groups", not all of which have been fully investigated. Moreover, the "global" approach 
to repeating ornaments is only of limited applicability, since it does not correspond to the way of thinking 
of the artisans involved, and does not cover all the possibilities of "local" order. The proper mathematical 
tools for the study of such structures which are only "locally orderly" remain to be developed. 

The idea of investigating the ornaments and decorations of various cultures by consideration of 
their symmetry groups appears to have originated with P61ya[22]. This mathematically motivated 
approach, which was in sharp contrast to the earlier descriptive methods, gained wider rec- 
ognition through the influential book of Speiser[27]. The earlier methods, which are exemplified 
by such works as those of Jones[18], Bourgoin[4], Day[6], Grasset[9], and many others, relied 
largely on the analysis of ornaments by considering the character of their motifs. By contrast, 
the mathematical approach depends on the symmetries of the design considered as a whole, 
and is to be found in the publications of Miiller[21], Shepard[251, Weyl[29], Garrido[8], 
Shubnikov & Koptsik[26], Washburn[28] and others. Among mathematically inclined inves- 
tigators the newer, quantitative way of looking at the physical evidence has become universally 
adopted; however, many practitioners of the decorative arts and their analysis for ethnographic, 
anthropological, archeological and other purposes still use almost exclusively the descriptive 
method. 

The present investigation arose from a desire to clarify and settle contradictory statements 
regarding the symmetry groups of the Moorish ornaments that are to be found in the Alhambra, 
in Granada (Spain). The background facts are the following. It is well known that there are 17 
classes of symmetry groups of planar ornaments which repeat in at least two nonparallel di- 
rections; these are known as the (classes of) wallpaper (or crystallographic plane) groups. In 
Fig. 1 are shown examples of pattems, with a very simple motif, of each of the 17 classes of 
wallpaper groups. In an early application of group-theoretic methods to the analysis of historic 
ornaments, Miiller[21 ] examined the patterns and tilings in the Alhambra and found that there 
are 11 different groups present. In contrast to her findings, Coxeter[5] states that 13 wallpaper 
groups are represented there,$ while the number 17 was claimed by others (see, for example, 
Belov[2], Fejes Trth[7, p. 43], Martin[20, p. 111]). So when an opportunity to visit the 
Alhambra was provided by a Guggenheim Fellowship, an on-the-spot investigation to settle 
these conflicting claims was undertaken. The results of this investigation, as well as comments 
and observations which arose in this connection, form the topics of the present paper. 

The bottom line is relatively easy to draw. After a reasonably thorough examination of 
the Alhambra, 13 different wallpaper groups were identified among the symmetry groups of 

tThe research reported in this paper has been supported by National Science Foundation grants MCS 8001570 
and MCS 8301971, and by a Fellowship from the John Simon Guggenheim Memorial Foundation. One version of this 
material was presented in an address to the Pacific Northwest Section meeting of the Mathematical Association of 
America in Moscow, Idaho, on June 18, 1983. 

:[:In correspondence during 1981 between Professors H. S. M. Coxeter, J. J. Burckhardt and one of the authors 
(B.G.), the source of the number 13 was traced to a misunderstanding of some statements in Mi~ller[21]. The same 
conclusion was reached independently by Professor D. W. Crowe. 
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Fig. 1. Patterns in which the common motif is a small "flag",  which can exemplify the 17 classes of wallpaper groups. 

the ornaments found there. Actually, MOiler seems to have missed only one group present in 
the Alhambra palace proper (namely the group pm, of which the example is given in Fig. 6 
below). The other group that she missed seems not to be represented in the palace, but only in 
the Museum of Alhambra, and it is not clear whether this museum was accessible to her. The 
four groups which have not been found in the Alhambra (pg, p2, pgg, p3ml) do not appear to 
be represented in other Moorish artifacts either (though naturally, a really systematic examination 
of the enormous volume of extant materials may turn up some or all of them). It is of interest 
to note that two of these four groups have been located in Toledo (Spain) in buildings approx- 
imately contemporaneous with some of those in the Alhambramone (p2, see Fig. 7) in a church, 
and the other (p3ml, see Fig. 8) in a synagogue. On the other hand, it seems that the groups 
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pg and pgg fail to be represented not only in Moorish decorations, but in Islamic ornaments in 
general. 

The attempt to determine which of the wallpaper groups are present in the Alhambra turned 
out to be rather interesting regardless of the numerical answer obtained, since the obvious (and 
even the correct) answer is not necessarily the best or the most appropriate. The material forces 
one to consider mathematical questions which would probably not have arisen otherwise. 

Among the first serious difficulties that one encounters is to decide what is it that one is 
counting; for many of the ornaments there are several different yet reasonable ways in which 
they can be considered symmetric, and these lead to different values for the numbers of groups 
found. Some examples will clarify this. 

(i) To begin with, there is the symmetry group in the most immediate sense: we look at 
the ornament, exactly as it is (except that we imagine it to be continued indefinitely in all 
directions and we ignore minor variations that are due to practical considerations). We then ask 
what isometries (rigid motions) map the ornament precisely onto itself, under preservation of 
all its properties. For example, in the tilings from the Alhambra shown in Fig. 2, the symmetries 
include reflections in the vertical and in the horizontal lines through the centers of the colored 
(brown or green) tiles, but not reflections in lines through the centers of the black tiles because 
such reflections would map brown tiles onto green ones, and so fail to be symmetries; this 
symmetry group is pmm. 

(ii) Next, there is the symmetry group of the underlying uncolored ornament--the coloring 
of the tiles is disregarded, and the isometries that map the resulting uncolored ornament onto 
itself are considered. In the example shown in Fig. 2--where the underlying tiling consists of 
the horizontal and vertical "dogbones"--this leads to many symmetries additional to those in 
(i); among them are reflections in vertical and in horizontal lines through the centers of all the 
tiles, 90 ° rotations about the meeting points of quadruplets of tiles, etc. (these form the group 
p4g). 

As additional examples we consider the tilings shown in Figs. 3 and 4. In the first the 
coloring destroys most of the symmetries and the symmetry group is p 1; however, the underlying 
uncolored tiling has many rotational symmetries and its symmetry group is p3. Figure 4 shows 
an analogous situation, except that here the modifications to the underlying tiling consist not 
in coloring the tiles, but in adding inscriptions or other designs to some of them. The tiling 
with inscriptions has symmetry group pl; ignoring the inscriptions we find that the underlying 
tiling has symmetry group p6m. 

(iii) Then there are the color-symmetry groups: instead of ignoring the colors in multicolor 
ornaments, or of considering the colors as unrelated to each other, we consider color symmetries, 
that is, isometries which map the underlying ornament onto itself coupled with consistent 
permutations of colors, so that the combination maps the colored pattern onto itself. 

For example, the tiling with asymmetric trefoils shown in Fig. 5 admits as rotational 
symmetries only 120 ° turns about the centers of the trefoils and the points where six trefoils 
meet. The underlying tiling admits 60 ° turns about the latter points; these can be made into 
color symmetries by agreeing to accompany each 60 ° rotation by an interchange of colors. In 
the tiling shown in Fig. 6 some--but not all--symmetries of the underlying uncolored tiling 
can be made into color symmetries by suitable choices of permutations of the colors. By contrast, 
every symmetry of the uncolored tiling underlying the three-colored tiling shown in Fig. 7 can 
be made into a color symmetry by coupling it with a suitable permutation of colors. (Colored 
patterns with this property are called "perfectly colored"; see Griinbaum & Shephard[ 12,14] 
or Senechal[24] for details of the known results.) In the four-color tiling in the center of Fig. 
8 blue, gray and black tiles are equivalent under color symmetries of the tiling, but the white 
tiles are not equivalent to them. 

(iv) Many ornaments in Moorish art (as in the art of many other cultures) are interlace 
patterns (for example, Figs. 9 and 10 can be interpreted as showing interlaced polygons). 
Then one can consider either the group of symmetries [as in (i) above] or that of the "underlying" 
pattern formed by the "overlapping polygons," in which we disregard the fact that certain 
portions of the polygons (which may be reasonably assumed to exist) are "hidden" by parts 
of other polygons. For purposes of discussion, we consider the simpler interlace pattern of 
squares shown in Fig. 1 l(a), and its underlying pattern shown in Fig. l l(b). Due to the way 
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Fig. 2. A colored tiling from the Alhambra. Its symmetry group is pmm, and the symmetry group of the 
underlying tiling is p4g. 

Fig. 3. Another colored tiling from the Alhambra. All symmetries of the underlying tiling (except some of the 
translational symmetries) are eliminated by the coloring; the colored tiling has symmetry group pl ,  while the 

underlying tiling has symmetry group p3. 

Fig. 4. A stucco wail decoration from the Alhambra. With the inscriptions and designs in the star-shaped 
regions, the only symmetries are translations and the symmetry group is pl. The underlying ornament, in which 

the inscriptions and designs are disregarded, has symmetry group p6m. 

Fig. 5. A two-color tiling from the Alcazar in Sevilla (Spain) in which the symmetry group is p3 and the 
underlying uncolored tiling has symmetry group p6. Every 60 ° rotational symmetry of the underlying tiling can 

be made into a color symmetry of the colored tiling by coupling it with an interchange of the two colors. 

Fig. 6. A multicolored tiling from the Alhambra; for purposes of the current discussion we disregard the fact 
that the tiling is in part wrapped about a cylindrical column. The colored tiling has symmetry group pm (the 
only symmetries other than translations are reflections in vertical lines bisecting the white tiles), and the underlying 
uncolored tiling has symmetry group p4g. Among color symmetries of the tiling are reflections in the horizontal 
lines that bisect the tiles, as well as appropriate vertical translations coupled with cyclic permutations of the 
colors brown, green and blue; the 90 ° rotational symmetries of the underlying tiling cannot be made into color 

symmetries. 

Fig. 7. A three-colored tiling on the floor of a church in Toledo (Spain) which has symmetry group p2--one 
of the wallpaper groups that seems not to have been used in Moorish ornaments. The underlying uncolored 

tiling has group p6m. 

Fig. 8. A wall decoration from a synagogue in Toledo (Spain) with symmetry group p3ml, which is another 
of the wallpaper groups apparently missing in Moorish ornaments. The underlying tiling is the same as in 

Fig. 7. 

Fig. 9. A polygonal interlace pattern from the Alcazaba in Malaga (Spain). The reflective symmetries of the 
underlying pattern are not symmetries of the interlace, but can be combined with layering interchanges to form 

layered symmetries. 

Fig. 10. A pattern of interlaced regular octagons from the Alhambra; variants of this ornament occur frequently 
in Islamic art from many different countries. The symmetry group is p4, but reflections coupled with layering 

interchange are symmetries of the layered pattern. 

Fig. 11. (a) A simple interlace formed by squares, which has no reflective symmetries (symmetry group is p4). 
(b) The underlying pattern of overlapping squares, which admits reflective symmetries. 

Fig. 12. A colored interlace pattern from the Alhambra, Variants of this pattern are frequently found in Islamic 
art from many countries. 
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Fig. 2. Fig. 3. 

Fig. 4. Fig. 5. 

Fig. 6. Fig. 7. 
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in which the squares are interlaced, the pattern in Fig. 1 l(a) clearly admits no reflections as 
symmetries (its symmetry group is p4), while the pattern in Fig. l l(b) has such symmetries 
(its symmetry group is p4m). However, just as with colored patterns, there is a third way of 
looking at this situation. A layered symmetry is an ordinary symmetry possibly combined with 
systematic interchanges of top and bottom layers at crossings, which maps the ornament onto 
itself. By using these the interlace pattern in Fig. 1 l(a) again acquires reflective symmetries-- 
layered symmetries in which reflections are coupled with layer interchange. Similar consider- 
ations apply to the interlace patterns shown in Figs. 9 and 10. 

(v) Finally, some ornaments are both colored and layered. For example, for the tiling from 
the Alhambra shown in Fig. 12, the complete set of symmetries arises only if we agree to 
consider isometries coupled with both color changes and interchanges of layers. 

The above remarks show that in order to analyse Moorish patterns fully we have to consider 
not only the wallpaper groups [which are needed for the symmetry groups as described in (i) 
and (ii) above] but also groups which involve colors, or interlacing, or both. Some (but not 
all) of these kinds of groups have been studied. For example, it has been known for more than 
50 years that, in analogy to the 17 classes of wallpaper groups, there are 46 classes of color- 
symmetry groups for two-colored patterns. (Here, as throughout the paper, we are discussing 
only the groups of ornaments periodic in at least two nonparallel directions; the "frieze groups" 
and finite groups can be treated similarly, but we do not consider these here.) During the last 
few years it has been shown that there are 23 classes of color groups for three colors, and that 
the corresponding numbers for four, five and six colors are 96, 14, and 90. (For the three-color 
result see GriJnbaum[ 10] and GriJnbaum & Shephard[13,14]; for the number of n-color groups 
for all n -< 60 see Wieting[30]; a general survey with many references is given in Schwarzen- 
berger[23].) Bearing these facts in mind it becomes obvious that not only are some 
(uncolored) symmetry groups missing in the Alhambra, but most of the color groups (even for 
only few colors), layered groups, and color-layered groups are also not represented. In fact, 
the more complicated of these groups have not even been enumerated so far! So the statement 
that "all symmetry groups were used by ancients", which is often repeated in connection with 
Moorish ornaments (as well as for those of the Egyptians) is no more than a myth! For further 
discussion and illustrations of this aspect see Griinbaum[ll]. 

Yet another statement that gained wide acceptance through frequent repetition concerns 
the wealth of decorations present in the Alhambra--or in Islamic art in general, or in the art 
of ancient Egyptians, or Cretans, etc. Many authors state or imply that the variety of designs 
found in each of these cultures is overwhelming and boundless. But detailed study shows that 
no such assertions can be taken seriously. While the Morrish ornaments clearly exhibit a large 
number of designs, what is really surprising is how few of the many possibilities were utilized. 
Some examples should serve to illustrate how the number of possible designs of each kind 
mentioned above is astronomically large, even within bounds set by practical considerations, 
and that in consequence it was impossible to actually use even a moderate part of their number. 
One source of the tremendous abundance of possibilities lies in changing parameters which do 
not affect any of the symmetries of the pattern under consideration. For example, the nine 
interlace patterns shown in Fig. 13 are all the "same" in that they have the same layered 
symmetry group as the pattern in Fig. 1 l(a)--but their aesthetic and decorative effects are very 
distinct. 

In many analyses of Moorish patterns it is mentioned with considerable awe that even just 
with regular octagons, or with regular dodecagons, their artisans knew how to create three or 
four distinct interesting patterns. Without wishing to detract from the skill involved, it is a fact 
that just expanding regular polygons centered at fixed positions leads to a theoretically infinite 
and practically very large number of designs that appear to be quite different (see the examples 
in Figs. 14 and 15). Actually, with almost any motif huge numbers of decorative patterns can 
be created, even if one insists that every copy of the motif plays the same role (that is, the 
symmetry group of the pattern acts transitively on the copies of the motif). In most cases there 
is still no complete enumeration of the possibilities, but it is known that in a reasonably detailed 
classification of patterns formed by nonoverlapping congruent circular disks there are 131 classes; 
for patterns formed by nonoverlapping congruent line segments there are more than 200 classes, 
and so on. In each case many of the patterns depend on several parameters which can be 
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Fig. 13. A variety of interlace patterns formed by square motifs which differ only in relative distances and widths, 
and do not differ in their symmetry groups or their layered symmetry groups. 

continuously varied. For results and references on this and related topics see Griinbaum and 
Shephard[13-17]. In view of these facts, it is clearly inappropriate to anticipate that any 
significant part of these patterns has been used in practice. 

But even where it could be reasonably expected that inventiveness would produce appre- 
ciable variability, the actual material in existence presents near-monotony. An example, men- 
tioned above, is that most of the color symmetry groups possible with even a few colors have 
never been used. An illustration of unused possibilities appears in Fig. 16, which shows three 
colorings which we devised for a relatively simple interlace with square motifs. We must also 
note the remarkable paucity evident in the layerings used in interlace patterns. Among thousands 
of interlace patterns from historical artifacts that we have seen, only two have crossings which 
depart from the simplest one-over-one-under variety--and even for these it is not clear whether 
they were really meant to exhibit a different crossing sequence or whether they arose through 
a mistake of the artisan or the recorder. (One of the two is a variant from Turkey of the ornament 
shown in Fig. 10; it was recorded by Aslanapa[1], and has also been reproduced in Griinbaum 
& Shephard[16]. In this variant the crossing pattern is not regular, and the symmetry group 
does not act transitively on the octagons.) An illustration in [16] shows a dozen variants of the 
crossings (from among the hundreds possible, even if equivalence of the motifs under the 
symmetry group is required) of the pattern of interlaced octagons shown in Fig. 10. No systematic 
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Fig. 14. A number of patterns formed by overlapping regular octagons; again the differences arise from different 
relative sizes, and not from changes in symmetry properties. 

investigation of  the possibilities seems to have been carried out so far. The lack of  variety in 
crossing sequences is even more surprising in view of the fact that many different ones arise 
very naturally in the weaving of fabrics. 

It should also be noted that in a certain sense all the preceding may be misdirecting us. 
We--mathematicians and some other scientists--may find it convenient and useful to interpret 
regularity of  a pattern in terms of  its group of  symmetry (or color symmetry, etc.). In this way 
we can apply the results of  algebra and other mathematical disciplines to the study of  such 
patterns. However, it could be argued that this is not the concept of  regularity that artisans 
(Moorish or any other) had in mind as they were creating their art. In fact, until a century or 
so ago, even to mathematicians regularity of  mathematical objects had a completely different 
meaning. The difference between the two approaches is to a large degree the contrast of  the 
global and local points of  view. Mathematicians used to define regularity of  objects such as 
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Fig. 15. A selection of patterns formed by regular dodecagons, which differ only in their sizes. 

the Platonic polyhedra by requirements of  congruent faces, equal angles, and other local prop- 
erties; now it is customary to define regularity by the transitivity of  the symmetry group on the 
set of flags. In the same way, it seems likely that the artisans meant to create ornaments in 
which each part is related to its immediate neighbors in some specific way (and not by attempting 
to obtain global symmetries of  the infinitely extended design). We illustrate this remark with 
the simple tiling of squares and rectangles shown in Fig. 17. Every square tile touches two 
other square tiles and two rectangular t i les - -one  on its end and one on its side. Every rectangular 
tile touches four square tiles (two at its ends and two at its sides) and two rectangular tiles. 
From designs such as that shown in Fig. 2 it seems likely that a Moorish artist would consider 
this to be a perfectly legitimate pattern, yet it may be extended in such a way that its symmetry 
group contains only translations parallel to one direction! Of  course " loca l "  uniformity fre- 
quently leads to "g loba l "  symmetry,  but it may well be that the former was the main objective 
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(a) Ib) 

Fig. 16. (a)-(c) A four-coloring and two five-colorings of an interlace pattern of squares. 
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(c) Fig. 17. A tiling by square and rectangular tiles; it is 
Fig. 16. "locally" regular but is not regular in the "global" 

sense. 

Fig. 18. A tiling from the Alcazar in Sevilla (Spain), in which the colors of the hexagons 
are apportioned in ratio 6:2: 1. 
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while the latter was an accidental consequence. The interested reader may find more on this 
topic in [l 1]; the concept of  "local regularity" or "orderliness" appears to be well worth 
investigating as a generalization of the approach to symmetry via groups. The latter may be 
needlessly restrictive and inappropriate in many contexts. 

One last remark concerning colored patterns appears to be called for here. As mentioned 
earlier, very few of  the groups of color symmetries are represented among Moorish and other 
ornaments. One reason for this situation seems to be that in many of  the historical (and con- 
temporary) multicolor decorations the various colors are not meant to play the same role. The 
different colors are apportioned to the copies of the motifs in unequal numbers; very frequently 
the proportions are 2: l :  l ,  4:21 l :  1, 6 :2 :  l, 6 : 3 : 1  : l : 1 or some similar ratios. For example, 
in Fig. 2 we have four white tiles for every two black ones and for each brown and green tile. 
In Fig. 6 the ratios are 6 :3 :  l : l : l ,  while among the hexagons in Figl 18 six black ones go 
with two blue and one brown. The mathematical theory of  such colorings still awaits devel- 
opment. 

We can summarize our conclusions as follows. 

I. Only 13 of the 17 wallpaper groups occur as symmetry groups of ornaments in the 
Alhambra. The other four groups seem not to have been used by Moorish artists, or their use 
was very infrequent. In this context it is worth recalling that according to Makovicky & 
Makovicky[19], 6 of  the 17 groups account for about 98% of the designs in the rich collection 
of Bourgoin[3]. But the importance of determining the number of groups used is greatly reduced 
when we appreciate that the mode of thinking in terms of  symmetry groups was totally alien 
to the artisans (and mathematicians) of antiquity and the Middle Ages. 

2. Despite the richness of the ornaments created by Moorish craftsmen, the designs actually 
used represent only an infinitesimally small fraction of those that are possible, even if allowance 
is made for the practical difficulties of  realizing certain designs in ancient times. This applies 
to plain designs as well as to colored or interlaced ones. 

3. The study of interlace patterns from a mathematical point of view is still in a most 
rudimentary stage, and needs considerable development before it can be applied to the description 
and classification of historical artifacts. 

4. The various kinds of symmetry groups are useful in the description of  many of the 
artifacts, but more general approaches (based on "adjacency relations" or other " loca l "  criteria) 
are necessary for a better understanding of the ornaments and artwork, and of the ways their 
creators thought about them. 

5. The approach to multicolor ornaments via color symmetries appears to be inadequate 
in many respects and inappropriate to describe practical examples. It seems that new mathe- 
matical tools for the understanding and classification of such patterns will have to be developed. 
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