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This paper gives a detailed introduction to the orbifold notation for two-dimensional (2-D) symme-
try groups. It discusses the correspondence between properties of orbifolds and symmetries in the
original surface. The problem of determining a groupin situ is addressed. Elementary proofs of the
classification of the Euclidean and spherical 2-D symmetry groups are presented.
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PRELIMINARIES

Introduction

The finite subgroups of the three-dimensional (3-D)
orthogonal group have been enumerated by several
authors, using several different methods (see [3]). The
17 plane crystallographic groups have also been enumer-
ated by Polya and Niggli, who used a distinct method anal-
ogous to that used 30 years earlier for the harder problem
of enumerating the 219 space groups.

The aim of this paper is to describe a uniform method
that enumerates all these groups and also the analogous
ones in the hyperbolic plane, notable examples of which
are the symmetry groups of Escher’s four “Circle Limit”
pictures. However, in this paper, we concentrate on the
spherical and Euclidean cases.

The method is due to Macbeath [4] who studied
groups of Möbius transformations and it has been elevated
by Thurston to a general method for studying the geome-
try of manifolds [1,6]. We shall use Thurston’s “orbifold”
language, but point out that our “orbifold symbol” is just
an elegant form of Macbeath’s “signature.”
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We make extensive use of this method [2] and give
short “fibrifold names” to all 3-D crystallographic space
groups.

The Orbifold Concept

What the above 2-D groups have in common is
that they act discretely on surfaces of constant curvature,
namely, the sphere for the orthogonal groups, the Eu-
clidean plane for the 17 crystallographic groups, and the
hyperbolic plane for the non-Euclidean crystallographic
groups. To cover all three cases we shall speak merely of
“the surface.”

Theorbifold of such a group is “the surface divided
by the group”: that is to say, the quotient topological space
whose points are the orbits under the group. (We can regard
“orbifold” as an abbreviation of “orbit-manifold.”) The
orbit of a pointp under a groupG is the set of all images
of p under elements ofG.

Ourorbifold symbol

◦ · · · ◦ ABC· · · ∗ab · · · c∗αβ · · · × · · · ×
indicates the features of the orbifold. Here the letters rep-
resent numbers: these numbers together with the symbols
◦, ∗, and× we call thecharactersof the orbifold symbol.

We can freely permute the numbersA, B,C that rep-
resent gyrations and also the parts∗ab· · · c, ∗αβ, . . . ,
that represent boundaries, and cyclically permute the num-
bersa, b, c that represent corners on any given boundary.
Finally, we can always reverse the cyclic orders for all
boundaries simultaneously and individually if an× char-
acter is present.
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We shall now explain the meanings of the different
parts of our symbol. Like all connected 2-D manifolds,
the orbifold can be obtained from a sphere by possibly
punching some holes so as to yield boundary curves (indi-
cated by∗) and maybe adjoining a number of handles (◦)
or crosscaps (×). However, an orbifold is slightly more
than a topological manifold, because it inherits a metric
from the original surface, which means, in particular, that
angles are defined on it.

Numbersa, b, . . . , c added after a star indicatecor-
ner points, that is, points on the corresponding bound-
ary curve at which the angles areπ/a, π/b, . . . , π/c. Fi-
nally, numbersA, B,C · · · not after any star represent
cone points, that is, nonboundary points at which the to-
tal angles are 2π/A, 2π/B, 2π/C · · ·. (We usually print
these numbers in a slightly larger font.)

The orbifold idea is the most powerful way to achieve
a conceptual understanding of these groups and, in partic-
ular, it trivializes their enumeration. However, it is also
important to be able to find the group of a particular pat-
tern in situ without needing to visualize its orbifold. We
do this by studying those structures in the original surface
that correspond to important features of the orbifold.

Our explanations will have the following form. We
start from a property of the orbifold, then describe its cor-
relate in the original surface, and provide a way to rec-
ognize and indicate this on a figure. In other words, the
actions we perform are determined by considering the orb-
ifold, but, for convenience, we actually perform them on
the original surface.

ORBIFOLD BOUNDARIES
AND KALEIDOSCOPES

The symmetry group of a finite physical object nec-
essarily preserves some sphere, for example, one centered
at the object’s center of gravity. The symmetry group of
the table shown in Fig. 1 acts on the sphere drawn around
it. Most points of the sphere are in orbits of size 4, like
{x, x′, x′′, x′′′}; however, points that lie on either of the

Fig. 1. The symmetries of a table act on a sphere drawn around it.

Fig. 2. The orbifold associated with the symmetry group of a table.

planes of symmetry belong to orbits of size 2 (such as
{y, y′}) and, finally, there are two orbits of size 1, corre-
sponding to the zenith (z) and nadir (n).

The orbifold is found by collapsing each orbit to a
point—in this case, it is isomorphic to the quarter of a
sphere shown in Fig. 2 (like the peel from one quarter of
an orange.) We see that it has a boundary.

Orbifold Boundaries

The boundary of this orbifold is a curve with twocor-
ner pointsof angleπ/2, symbolized∗22. In general, we
write∗ab· · · c for a boundary curve that has corner points
with anglesπ/a, π/b, . . . , π/c in that order, around it,
but is otherwise smooth. Obviously, this is the same as
∗b · · · ca; only thecyclicorder matters.5

A boundary curve of an orbifold may have any num-
ber of corners from 0 upward. An object, such as the chair
in Fig. 3 that just has bilateral symmetry, has a hemispher-
ical orbifold as depicted in Fig. 4. Since this boundary has
no corners, we denote it by∗ (followed by no numbers).

On the other hand, the nine reflecting planes of a
cube (Fig. 5) cut the sphere into 48 triangular regions,
whose angles areπ/4, π/3, π/2. Thus, the orbifold here
has symbol∗432.

Recognizing Kaleidoscopes

It is important to recognize what corresponds to a
boundary and its corners on the original surface.

The boundary symbol∗ab· · · c is also called akalei-
doscope symbolbecause its preimage in the surface is a
set of mirror lines that meet in sets ofa, b, . . . , c at their
crossing points. (For example, the kaleidoscope∗22 of

5In the case that an orientable orifold has several boundary curves, the
corners on these should be listed in the cyclic orders induced from some
fixed orientation. Changing this orientation reverses the cyclic orders
for all boundary curves.
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Fig. 3. The symmetries of a chair.

Fig. 4. The orbifold associated with the symmetry group of a chair.

Fig. 5. The symmetry group of a cube consists of reflections in nine
different planes.

Fig. 6. The orbifold ∗432 associated with the symmetry group of
the cube.

Fig. 7. Kaleidoscope of type∗2222.

the table in Fig. 1 consists of two great circles that meet
at both the zenith and nadir.)

The kaleidoscope of the chair is just a great circle,
which has no point on two or more mirror lines and so has
symbol∗, while that of the cube (Fig. 5) has type∗432;
corresponding to the fact that its nine great circles meet in
sets of 4, 3, and 2 at various points (Fig. 6).

Marking Kaleidoscopes

For a kaleidoscope, we draw a heavy line marked∗
over just enough mirror segments to define the orbifold
boundary, then mark each corner on this with the number
of mirrors through it, possibly with a subscript to dis-
tinguish between different types of corner. For example,
Fig. 7 has a kaleidoscope of type∗2222; the four types of
corners are labeled 21, 22, 23, and 24.

The black-and-white brick wall of Fig. 8 looks very
different, but has the same group∗2222, where now 21 is
the center of a white brick, 22 is between two white bricks,
23 is the center of a black brick, and 24 is between two
black bricks.

CONE POINTS AND GYRATION POINTS

Cone Points

The typical point on the surface is fixed only by the
identity element. At such points, the orbifold looks locally
exactly like the original surface. This is not so for boundary
points of the orbifold, because the corresponding points on
the original surface are fixed by reflections. There is only
one other type of singular point that an orbifold can have:
the cone point, which comes about when a point on the
surface is fixed by a nontrivial rotation, but no reflection.
Theorder Aof the cone point is the largest order of any
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Fig. 8. A black-and-white brick wall and the orbifold associated with its symmetry
group.

such rotation—the angle around it will then be 2π/A. We
indicate a cone point in the orbifold symbol by writing
its orderA (in a large font) before any boundary symbol
∗ab· · · c.

What corresponds to this on the original surface?

Gyration Points

Figure 9 is obtained from Fig. 8 by making all the
bricks have the same color. Now there is a rotation of
order 2 around the center of the square outlined by the
mirrors. A nontrivial rotation like this around a point that
doesnot lie on a mirror line, we call agyration and the
corresponding point agyration point. The fact that the
center does not lie on a mirror is important, since it makes
the corresponding point of the orbifold a cone point rather
than a corner point.

The orbifold for Fig. 8 was a square whose four cor-
ners corresponded to 21, 22, 23, and 24. However, in Fig. 9
the new gyration interchanges 21 with 23 and 22 with 24.
Correspondingly, the orbifold of Fig. 9 is obtained from the
intermediate figure by identifying opposite points. With a
paper model, this can actually be done by tearing a path
from the boundary to the center and then coiling the paper
to double thickness.

Since this orbifold has one order 2 cone point and
a boundary with two order 2 corner points, its orbifold
symbol is 2∗22.

Fig. 9. A brick wall. The corresponding orbifold shown on the right is obtained from the
intermediate figure by identifying opposite points.

Marking Gyration Points

Theorder of a gyration point is the largest order of
any rotation that fixes it. As in Fig. 10, we indicate a
representative of each type of gyration point by a heavy
spot marked with its order (usually in a larger font than that
used for corner points). Once again we can use subscripts
to distinguish between different types of gyration points
with the same order.

THE GLOBAL TOPOLOGY OF AN ORBIFOLD

We have now described everything about the orb-
ifold that can be discovered by analyzing the locality of a
single point. What remains is its 2-D topology. Any 2-D
manifold (perhaps with boundary) may be obtained from
a sphere (possibly perforated) by adding either handles or
crosscaps. We discuss two examples.

The orbifold of Fig. 11a is a torus. We have out-
lined a fundamental region by joining the centers of four
equivalent parallelograms. The torus is obtained from
this in the usual way by identifying opposite sides (see
Fig. 11b). Topologically, a torus can be obtained from a
sphere by adjoining a handle (◦), so the orbifold symbol
for Fig. 11c is◦.

For Fig. 12 the orbifold is a M¨obius strip, obtained by
rolling up (with a twist) the strip outlined by two vertical
lines. Topologically, a M¨obius strip can be obtained from
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Fig. 10. The markings on the brick wall indicate the connection between
the symmetries of the wall and the corresponding orbifold.

a disk or sphere with one hole (∗), by adjoining a crosscap
(×), so the orbifold symbol for Fig. 12 is∗×.

Recognizing and Marking the Global Topology

A crosscap makes the orbifold nonorientable. Thus,
the presence of at least one crosscap can be detected on the
original surface by finding a path from a place in the motif
to a mirror image copy of itself that does not pass through
a mirror line. Since this kind of “mirrorless” reflection of
motif is rather paradoxical, we shall call it amiracle cross
(for “mirrorless crossing”), or just amiracle.

We indicate each miracle in our figures by a dot-
ted line marked with a cross (see Fig. 13a). Note that
Fig. 12 contains both ordinary reflections and mirrorless
ones, corresponding to its orbifold symbol∗×.

A handle in the orbifold corresponds to another kind
of repetition of motif. It forces the existence of two inde-
pendent, homologically nontrivial paths on the orbifold,
as in Fig. 11c. These correspond to two paths from a part
of the motif to two nonreflected images of itself. These
repetitions of motif have the property that they cannot be

Fig. 11. This periodic tiling (a) gives rise to the orbifold◦ (b), which is
topologically a torus (c).

Fig. 12. This periodic system of vases (a) gives rise to the orbifold
∗× (b), which is topologically a M¨obius strip (c).

explained by mirrors, gyrations, or miracles. We call this
a wonderful wandering, or just awonder, and indicate it
in our illustrations by drawing the corresponding pair of
dotted paths accompanied by a ring (a “wonder-ring”!), as
in Fig. 13b.

We have shown that we can detect the presence of
miracles and wonders by examination of the original sur-
face. It is rather hard to count them and for this we rec-
ommend the reader construct the orbifold.

Fortunately, only one of the spherical and Euclidean
groups has more than one wonder or miracle, illustrated
in Fig. 14a. The orbifold is a Klein bottle obtained by
identifying the sides of the indicated rectangle (Fig. 14b).
Topologically, a Klein bottle can be obtained from a sphere
by adding two crosscaps, so, indeed, there must be two
miracles here (Fig. 14c), corresponding to the orbifold
symbol××.

Fig. 13. (a) A “miracle” accounts for the nonvertical repetition in Fig. 12,
whereas (b) a “wonder” accounts for the repetitions of motif in Fig. 11.
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Fig. 14. A tiling (a) with the orbifold (b) and two different “miracles” (c) that generate the
group××.

THE ORBIFOLD SYMBOL

We indicate the type of an orbifold by juxtaposing
the symbols for the handles, cone points, boundaries (with
corners), and crosscaps from which it is made. Thurston
shows that this symbol determines the orbifold as a con-
stant curvature surface up to isotopy (i.e., continuous vari-
ation). We shall not prove this, in general, here, since the
Euclidean and spherical cases are so simple that not much
proof is required.

For example the orbifold of∗pqr is a triangle with
anglesπ/p, π/q, andπ/r , and it is easy to see that this is
unique up to scale, in a space that is Euclidean, spherical or
hyperbolic accordingly, as the sum of these angles equals
π , or is greater or smaller thanπ .

Again, that of∗2222 is a quadrilateral with four right
angles, which must be a rectangle in the Euclidean plane,
so the group∗2222 is generated by the reflections in the
sides of the rectangle. Since any one rectangle can be
continuously deformed into any other, any two groups of
type∗2222 are isotopic.

The orbifold of a group of type∗ab is a two-sided
figure with anglesπ/a andπ/b. In a constant-curvature
space, the only possibility is the lune bounded by two great
circles on the sphere, in which both the angles are equal.
Thus,∗abcan only exist whena = b.

THE DEFECT FORMULA

How can we find the orderg of a groupG from its
orbifold symbolQ? The answer, when finite, is given by
the remarkabledefect formula:

2

g
= 2−

∑
defect(s)= ch(Q)

summed over all the characters of the orbifold symbol,
where these defects are tabulated in Table I.

Let us explain how this comes about. The right-hand
side of the defect formula is theorbifold Euler character-
istic ch (Q) of the orbifoldQ. It can be obtained from the
usual formula

ch(Q) = v − e+ f

wherev, e, and f are the numbers of vertices, edges, and
faces of a map drawn onQ, provided these are suitably
chosen. Because these numbers are often fractional, ch(Q)
is also called thefractional Euler characteristicof Q.

In our figures, we will enlarge the vertices and edges
of maps of surfaces and orbifolds into discs and strips so
that we can see how they break up. Thus, Fig. 16 shows
the map formed by the vertices, edges, and faces of the
brick of Fig. 15.

On the sphere it hasV = 8 vertices,E = 12 edges,
and F = 6 faces, agreeing with the fact that the Euler
characteristic of the sphere is 2= 8− 12+ 6. However,
the orbifold Q here is just one eighth of the sphere
(Fig. 17) and for it the corresponding numbers arev = 1,
e= 3/2, f = 3/4, and so the orbifold Euler character-
istic ch(Q) = 1− 3/2+ 3/4= 1/4= 2/8. Applying the
defect formula to the orbifold symbol∗222 gives the
same value 2− (1+ 1/4+ 1/4+ 1/4)= 1/4= 2/8. We

Table I. Defects Associated with Different Characters of
an Orbifolda

Char Defect Char Defect

◦ 2 ∗ or× 1
2 1/2 2 1/4
3 2/3 3 1/3
4 3/4 4 3/8
5 4/5 5 2/5
6 5/6 6 5/12
N (N − 1)/N N (N − 1)/2N
∞ 1 ∞ 1/2

aThe larger font numbers on the left are those not following
any∗.
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Fig. 15. The symmetries of a brick.

Fig. 16. The map formed by the vertices, edges, and faces of a brick.

Fig. 17. The orbifold for the symmetry group of a brick is one eighth of
the sphere.

Fig. 18. Introducing a hole (whose boundary has no corner) decreases
the Euler characteristic by 1.

prefer to write the Euler characteristics in the form 2/g,
since then the denominator is the group order.

The maps on an orbifold are images of those maps
on the sphere that are invariant under the groupG. Then,
obviously, the counts of vertices, edges, and faces of such
orbifold maps are

v = V

g
, e= E

g
, and f = F

g

and so the orbifold Euler characteristic will be:

ch(Q) = v − e+ f = V − E + F

g
= 2

g

whereV, E, andF are the corresponding counts on the
sphere. Obviously, we can evaluate ch(Q) asv − e+ f
for anymap on the orbifold.

We shall use this principle to show how the charac-
teristic changes as we modify the orbifold. As usual, it
implies that adding a handle or crosscap reduces the Euler
characteristic by 2 or 1, respectively.

Introducing a hole∗ (whose boundary has no corner)
decreases ch (Q) by 1. To see this, take the hole to be a face
of the map (Fig. 18). This face and the adjacentn vertices
andn edges contributen− n+ 1 tov − e+ f before the
modification, butn/2− n/2+ 0 after, a decrease of 1.

Again, changing an interior pointP from an ordinary
point to an A-fold cone point decreases ch(Q) by 1−
1/A = (A− 1)/A, because we can supposeP is a vertex
of the map, when its contributions tov before and after
the change are 1 and 1/A.

Similarly, changing an ordinary boundary pointP
(contributing 1/2 to v) to ana-fold corner point (contri-
buting 1/2a) reduces the characteristic by 1/2− 1/2a =
(a− 1)/2a.

We have now proved that for the orbifoldQ of a finite
group of orderg, we do indeed have

ch(Q) = 2

g
= 2−

∑
defect(s)

These are the orbifolds of positive characteristic.
Those of characteristic 0 are precisely the Euclidean

groups, since, for them, the orbifold is a quotient of a
torus, which has ordinary Euler characteristic 0. Those of
negative characteristic correspond to groups acting in the
hyperbolic plane. This follows from the universal interpre-
tation of the orbifold Euler characteristic as the integrated
Gaussian curvature over the orbifold, divided by 2π .

ENUMERATING THE GROUPS

In enumerating theQ for which ch(Q) has a given
sign, it suffices in the first instance to list only those that
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consist of one or more∗ followed only by digits since
the following “demotions” preserve the sign of ch(Q). In
the first demotion,AB· · ·C must be the entire orbifold
symbol, and the characteristic is halved. The other three
preserve the characteristic and may be performed locally.

←demote−∗AB· · ·C AB· · ·C−promote→
←demote−

(final) ∗ ×−promote→
←demote−∗∗ ◦−promote→
←demote−∗AA A∗−promote→

The Euclidean Plane Crystallographic Groups

After these demotions, a case with just one∗ has the
form: ∗ab· · · c, for which

ch(Q) = 2− 1− a− 1

2a
− b− 1

2b
− · · · − c− 1

2c

For a Euclidean group, this must be 0, and so we must
solve:

a− 1

a
= b− 1

b
+ · · · + c− 1

c
= 2

The solutions are: (6, 3, 2), (4, 4, 2), (3, 3, 3), and (2, 2, 2,
2). If two characters∗ are present, there can be no further
character, since they already have total defect 2. This leads
to the five cases on the left in Table II: they promote to
give the cases that follow them.

This must surely be the simplest and most conceptual
enumeration of these 17 groups. However, it should be
supplemented by a proof that for each of the candidate
symbols there is just one group up to isotopy. This is easily
proved for each particular case, for instance, it is clear that
any group of type∗2222 must be generated by reflections
in the four sides of a rectangle; since this rectangle can be
continuously transformed into any other, all such groups
are isotopic. Similarly, a group of type4∗2 is generated
by reflections in sides of a square, together with the order

Table II. The 17 Plane Crystallographic Groups

∗632 632
∗442 4∗2 442
∗333 3∗3 333
∗2222 2∗22 22∗ 2222
∗∗ ∗ × ×× ◦

4 gyration about the center of that square: again, all such
groups are isotopic.

A general proof, which applies also to the hyperbolic
case, can be found in the literature; we omit further details.

The Spherical Groups

We find these by enumerating the candidate symbols
Q for which ch(Q) is positive, starting with those of form
∗ab· · · c, which correspond to the solutions of

a− 1

a
+ b− 1

a
+ · · · + c− 1

c
< 2

namely: (5, 3, 2), (4, 3, 2), (3, 3, 2), (2, 2,n), and (m, n),
where we allowm or n to be 1.

However, we shall see in a moment that the last case
only corresponds to a group whenm= n. This gives rise to
the cases on the left in Table III: once again the remaining
cases on any given line are obtained by promotion.

The Bad Orbifolds

Once again the argument should be supplemented
by a discussion of the existence and uniqueness of the
corresponding groups. Most cases easily follow from the
fact that there exists a spherical triangle (unique up to
isometry) with angles of the formπ/a, π/b, andπ/c, just
if the sum of these angles exceedsπ .

For an arbitrary orbifold symbol, in general, the ex-
istence and uniqueness up to isotopy is proved by dissect-
ing the orbifold into triangles. However, in the case∗mn
(m, n ≥ 1) the relevant polygon is a two-sided one (see
Fig. 19) with anglesπ/m andπ/n. Obviously, this can
only be the spherical lune bounded by two great circles,
for which the two angles must be equal, so thatm= n.
The same must hold formn, since any such group could
necessarily be extended to∗mn by adjoining a reflection
through the two corresponding gyration points.

The symbols∗mnandmn(m 6= n), together with the
particular cases∗m andm (m> 1) that arise by putting
n = 1, are the only ones that do not correspond to groups.

Table III. The Spherical Groupsa

∗532 532
∗432 432
∗332 3∗2 332
∗22n 2∗n 22n
∗nn n∗ n× nn

aThere are seven particular groups and seven
infinite series controlled by a parameter
n≥ 1. (Whenn = 1, it is customarily omit-
ted from the symbol.)
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Fig. 19. For the symbol∗mn, the orbifold is a spherical lune bounded
by two great circles, so thatm= n.

The Seven Frieze Groups

So far we have tacitly assumed that the numbers in
our orbifold symbols are finite, which corresponds to the
compactness of the orbifold. The frieze groups correspond
to cases when this condition is violated: they correspond
to the orbifold symbolsQ that contain the character∞
and have ch(Q) = 0. The enumeration is easy (Table IV);
it turns out that these groups are obtained by puttingn =
∞ in Table III.

Groups in the Hyperbolic Plane

Escher’s Circle Limit pictures are really in the hy-
perbolic plane. For example, the angels and devils of his
Circle Limit IV ([5] p. 296) form a picture with symmetry
group 4∗3, if we ignore the fact that every fourth figure
is facing away from us (and the artist’s monogram) (see
Fig. 20).

Although such groups are not our main concern here,
we should point out that one of the great strengths of the
orbifold method is that makes them just as easy to handle
as the Euclidean and spherical cases—they correspond
precisely to the orbifold symbolsQ, for which ch (Q) < 0,
the orbifold being compact just if∞ is not mentioned.

The orbifold notation helps to understand the many
relationships between these groups. For example, passing
to a subgroup of indexi multiplies the characteristic byi .

The subtler properties of Escher’s pictures often hint
at such relationships. For example, if we do take account
of the fact that some of the angels and devils are facing
away from us in Circle Limit IV, the group of that picture
drops to∗3333, of index 4 in 4∗3. This agrees with the

Table IV. The Seven Frieze Groups

∗22∞ 2∗∞ 22∞
∗∞∞ ∞∗ ∞× ∞∞

Fig. 20. Inspired by Escher’s Circle Limit IV, this tilings has symmetry
group 4∗3.

orbifold Euler characteristics:

for 4∗3: 2− 3

4
− 1− 1

3
= − 1

12

for ∗3333: 2− 1− 1

3
− 1

3
− 1

3
− 1

3
= −1

3

GENERATORS AND RELATIONS FOR
TWO-DIMENSIONAL GROUPS

It is a well-known principle that if a simply-
connected manifold is divided by a groupG to obtain
another manifold, then the fundamental group of the quo-
tient manifold is isomorphic toG. What happens is that
a path from the base point to itself in the quotient mani-
fold lifts to a path in the original manifold that might not
return to the base point, in which case it corresponds to a
nontrivial element ofG.

This principle applies also when the quotient space is
a more general orbifold, except that some care is required
for the definitions. The important point is that a path that
bounces off a mirror boundary in the orbifold should be
lifted to a path that goes through the corresponding mirror
in the original surface.

Figure 21 shows the paths in the orbifold whose lifts
are the generators for the corresponding group. We chose

Fig. 21. Paths in the orbifold that lift to generators of the corresponding
group.
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a base point in the upper half plane and for each of the
features

◦ · · · A · · · ∗abc· · · ×
we have one Greek generator corresponding to a path that
circumnavigates that feature in the positive direction, and
maybe some Latin generators.

For a◦ symbol, represented in the figure by a bridge,
the two Latin generatorsX,Y are homology generators
for the handle so formed. They satisfy the relations:

X−1Y−1XY= [X,Y] = α
For a gyration symbolA, there is no Latin genera-

tor, but the corresponding Greek generatorγ satisfies the
relation

γ A = 1

For a mirror boundary withn corners, there aren+ 1
Latin generatorsP, Q, . . . , Scorresponding to paths that

Table AI. The Abstract Structure of Spherical Groupsa

aUnseparated groups on the same line are isomorphic. The group structures are cyclic (C), dihedral
(D) and polyhedral (P), or the direct products (2× C, 2× D, 2× P) of these with a group of
order 2. The structures of the polyhedral groups 332, 432, and 532 are the alternating and
symmetric groupsA4, S4, andS5.

bounce off the boundary and are separated by the corners.
These correspond to reflections in the group that satisfy
the relations.

1 = P2 = (PQ)a = Q2 = (QR)b = R2 = (RS)c

= S2andλ−1Pλ = S

Finally, for a crosscap×, represented in our figure
by a cross inside a circle whose opposite points are to
be identified, the Latin generatorZ corresponds to a path
“through” the crosscap and satisfies the relation:

Z2 = ω
A complete presentation for the group is obtained

by combining the generators and relations that we have
described for each feature, and adjoining theglobal
relation:

α · · · γ · · · λ · · ·ω = 1

which asserts that the product of all Greek generators is 1.
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We propose the following notation for this set of gen-
erators and relations:

◦XY · · · Aγ · · ·λ∗P aQbRcS · · · ×Z

APPENDIX: ISOMORPHISMS BETWEEN
THE SPHERICAL GROUPS

Occasionally, two of the infinite series contain the
same group. For example, whena = 1 andb = 2 we have:

22a = bb, ∗22a = ∗bb, 2∗a = b∗ and

∗aa = a∗
But also, two different spherical groups can be iso-

morphic as abstract groups. For example, since all groups
of order two are abstractly isomorphic, we have× ∼=
22∼= ∗.

All these matters are displayed in Table AI. The
groups of any given order occupy one line and groups
are abstractly isomorphic just if they are not separated by
a dividing line.
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