Topological Elements of Geodesic Spaces

Definition. Let (X,p) be a metric space. The fength of apathy :[a,b] — X is

n
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The path vy is rectifiableif L(y) < ». (X,p) is rectifiable if every pair of points of X is joined
by a rectifiable path in X. (X.p) is locally rectifiable if for every £ > 0, every point of X has
a neighborhood in which any two points are joined by a path in X of length < .

Exercise 1. Let (X,p) is a metric space. Prove thatif vy :[a,b] — X is a pathin X and

n
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Exercise 2. Prove that a connected locally rectifiable metric space is rectifiable.

Lemma 1. Let (X p) be arectifiable metric space. Define o : XxX — [0,%) by

o(xy) = inf{Ly{y) :yisapathin X joining xto y }.

Then:

a) o is a metric on X;

b} Lo =Ly and, hence, a(x,y) = inf {Ls(y) 1 yis a pathin X joining xto y };
¢) if pis a complete metric, then so is o; and

d} ois equivalent to p if and only if (X,p) is locally rectifiable.

Exercise 3. Prove a).

Proof of b). First note that for any path y in X joining x to y, p(x,y) < L(y). Hence, p

< o Hence, Ly(y) = Ls(y) for any path y in X. Nowify:{ab]— Xisapathanda=1 <
14 £ =ty = b, then

it
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Taking the supremum over all partitions a =tg <ty <-- <tp =b, we see that Ls(y) <L ().
]

Proof of ¢}. Let {xn} be a Cauchy sequence in (X,s). Since p <, then {x,} is
Cauchy in (X,p). So {xn} converges to a point z in (X,p). Since {xn} is Cauchy in {X,s),
then {xn} has a subsequence {yk} such that o(yk+1,yx) < 2K. Hence, for each k > 1,
there is a path yi in X joining Yi+1 10 yi such that Ly(yk) < 2k, Since we can linearly
reparametrize yk without changing its length, we can assume that the domain of yk is
[2-0c+1),2-K] with y(2-0+1) = yieeq and wf2) =yk. Now a pathy : [0,1] — (X,p) is
defined by y(0) = z and y|[2-k+1} 2-K] = yk. vy is continuous at 0 because {y«} converges
to zin (X, p), Yic joINS Yi+1 0 ¥k, and p-diam(im(yk)) < L(vi) < 2K, Now o(z,yi) <

Lvl[0,2°) = E Lfwng < Z 2K = 2441 (Verify that Ly(v][0,2°K]) = E Lolvid.)
i=k i=k i=k
Hence, {yk} converges to z in (X, o). Since {yi} is a subsequence of {xn} and {xn} is

Cauchy in (X,0), it follows that {xp} converges to z in (X, o). I

Exercise 4. Prove d).

Definition. Let (X,p) be a rectifiable metric space. p is a path metric and (X,p) is a
path metric space f p(xy) = inf{L{y):visapathin Xjoiningxtoy} forallx,y € X

Corollary 2. A connected (complete} metric space has an equivalent (complete)
path metric if and only if it is locally rectifiable.

Definition. Let X be a topological space, and let (Y,p) be a metric space. Amapf:
X — Y is p-bounded if p-diam(f(X)) < . Let Cp(X,Y) denote the set of all p-bounded
maps from Xto Y. We always endow Cp(X,Y) with the supremum metric o, defined by
op(f,@) = sup { p(f(x),g(x)) : x € X}. Recall that if p is a complete metric, then so is o,

Theorem 3: An Ascoli-Arzela Theorem. Let X be a separable topological space

and let (Y, p) be a complete metric space. Then a subset F of Cy(X,Y) has compact
closure in Cy(X,Y) if F has the following two properties.

a) There is a dense countable subset D of X such that foreveryx € D, {f(x) :f € F}
has compact closure in Y.

b) For every € > 0, every point of X has a neighborhood U such that p-diam(f(U)) < ¢ for
eachfe F.



Remark. We abbreviate property a) by saying that the F-image of every point of the
dense countable set D has compact closure in Y. Property b) is usually abbreviated by
saying that F is equicontinuous.

Proof. LetD={x,:n>1}. Let {fx} be a sequence in F. We will prove that some
subsequence of {fi} converges to a point of C(X,Y). We will exploit the fact that for

each x € D, each sequence in {f(x) : f € F} has a converging subsequence which, in
turn, has subsequences that converge at any prescribed rate. Forn=1,2, 3, -, we

inductively construct sequences {k{'}i»1 of positive integers such that for n> 1,
a) {K""}ix1 is a subsequence of {k"is1, and
b} p-diam ( {fkp(xn)},i21 } <1/, and p-diam ({fkjn(x")i}jzi) < Tfifori>1.

Setmp=kllandnz1. Thenforizn2>1, {mi}j-i is a subsequence of {kﬁpi‘ it follows

thatforn>1 andi2 1, p-diam ( {fmi(xn)' ) <14

.
JJZi
We assert that for any x € X andi> 1, p-diam ( {fmi(x)}pi }<3fi. Letx e Xandi> 1.
X has a neighborhood U such that p-diam{f(U)) < 1/ifor eachf € F. Thereisannz 1
such that xy € U. Then forj, k > 1,
p (3, fn () ) < p (fny(X), fni(xn) ) + 0 (fmy(Xn). fmye(Xn) ) + o (Finyexn), Ty () )
< p-diam(fm(U)) + p-diam ( {fm(xn)Yr2i ) + p-diam(fm, (V) < 3.
This proves the assertion. It follows that o o(fm, fmy) < 3fifor j, k> 1. Hence, {fm, }521 is a

Cauchy sequence in (Cy(X.Y), op). Therefore, {fm}.., converges in Cy(X.Y). This
proves cl(F) is compact. O

Theorem 4. If (X,p) is a locally compact complete path metric space, then for every
x€ Xandeveryr>0, B(x,r)={y € X:p(xy) <r}is compact.

Remark. The completeness of the metric p is necessary here. For observe that

2 — {(0,0)} with the Euclidean metric inherited from B2 is a locally compact path metric
space in which B((1,0),2) is non-compact.

Lemma 5. Let (X,p) be a path metric space. ifx,y € Xand p(x,y) <r+swherer>
0 and s > 0, then there is a z € X such that p(x,2) <r and p(z)y) <s.



r+s-—pxy) |
2 f
X joining x to y such that L(y) < p{x,y) + €. The choice of ¢ insures that p(x,y)—s+¢ <

min { p(x,y), r—c}and 0 <min { p(x,y), r—¢ } < p(xy). Since p(xy{a)) =0 and px.y(b))
= p{X,y), then there is at € [a,b] such that p(x,y(t}) = min { p(x,y), r —€ }. Set z = y(1).
Then o{x,y)—~s+ e < p{X,2) <r. S0 p(x,y) —s + £+p(z,y) < p(x,2) + p{z,y) £

L(v) <p(x,y) + €. Hence, p(z,y) <s, O

Proof of Lemma 5. LetO<e<min{r,s, . Thereisapathy :[ab] —

Proof of Theorem 4. Let x € X. Since X is locally compact, there is an s > 0 such
that B(x,s) is compact. Hence, B(x,r) is compact whenever 0 <r < s. Assume B(x,1) is
non-compact for same r > 0, and set t =inf {r > 0 : B(x,r) is non-compact }. Thens<t.

First we will prove that B(x,t) is compact. Let {yn} be a sequence in B(x,t}. Since
B(x,t) is a closed subset of X, it suffices to find a subseguence of {yn} that converges in
X. We will achieve this through an application of Theorem 3.

For each n> 1 and each k > 1, since p(x,yn) <t < {t— /) + 2/, then Lemma 5
provides a point zK € X such that p(x,z) <t — A and p(z%,yn) < 2k

Let W denote the subspace {0} U {1/ : k> 1} of R. For eachn > 1, define the
function f, : W — X by fr(0) =y, and fa(1) = zﬁ fork21. SetF={f,:n>1}. Eachfy

is continuous because {fn(Vidhe1 = {Zike1 converges to fn(0) = yn. Each fy is
p-bounded because fn (W) < B(x,1). Hence, F < C5(W.X).

We now verify that F satisfies the hypotheses of Theorem 3. { Yk :k>1}isa

countable dense subset of W. Foreach k2 1,theset {fn(1):n21}={zK:n>1}
has compact closure because it lies in the compactum B(x, t — 1/). Hence, the F-image

of each point of { 1/ : k> 1} has compact closure in X. Foranye>0and k21, {14} is
a neighborhood of 1/ in W such that p-diam(fp{1/d) = p-diam({zK}) =0 <cforalinz 1.
Fore >0, U=Wn[0,e/4) is a neighborhood of 0 in W such that p-diam(fh(U)) < eforalln
2 1. To see this, note that if k > 1 such that 1/ € U, then p(fn(0).fa(14) = plyn.zX) < 2/
<&/, Hence, if }, k > 1 such that 1/jand1/ € U, then pn(*).fn(M4)) S plfn(15) fn(0)) +

p(fa(0).fa (1)) < &. Hence, F is equicontinuous. We conclude that F satisfies the
hypotheses of Theorem 3.

Theorem 3 implies that F has compact closure in C,(W X). Hence, {fn} has a
subsequence {fy;} that converges in Cp(W,X) to amap g : W — X. Since p(yn;,9(0)) =

p(fni(0),9(0)) < op(fn;,9), then {yn} converges to g(0) in X. Thus, {yn} has a converging
subsequence. k follows that B(x,1) is compact.



Since X is locally compact and B(x,1) is compact, then B(x,t)is covered by finitely
many open sets with compact closure. Their union is an open set U with compact

closure which contains B(x,t). Since B(x,t) is compact, thers is a & > @ such that U
contains the d-neighborhood of every point of B(x,t). (Otherwise, there is a sequence
{yn} in B(x,t) and a sequence {z} in X=U such that p{yn,zn) = 0. Since B(x,t) is
compact, we can assume (after passing to a subsequence) that {yn} converges to a
pointy € B(x,t). Then {zn} convergestoy andy € U. It follows that {z,} eventually
enters U. »/) Let V denote the union of the d-neighborhoods of all the points of B(x.1).
Then B(x,t) <« V < U. So V has compact closure.

We now prove that B(x, t + 9/2) < V. {This is not necessarily true in an arbitrary

matric space because there may be a point within t + 9 of x which is not near any point
of B(x,1). (Find an example of such a space.) However, it is true in a path metric space.)

Lety € B{x, t+9%/5). Since p(xy) <t+d, Lemma 5 provides a point z € X such that
p(x,2) <tand p(z,y) < d. Thenclearly z € B(x,t) andy € V. Thus, B(x,t + %) c V.
Since cl(V) is compagt, s0 is B{x, t + 9/2). li follows that B{x,r) is compactfor0 <r<t+
% . This contradicts our initial choice of t as inf { r > 0 : B(x,r) is non-compact }. We
conclude that B(x,r} is compactforallr>0. O

Definition. Let (X,p) be a metric space. A pathy:[ab] - Xis a geodesic if

p(v(s).y(t)) =|s—tiforalis, t € [a,b]. p is a geodesic metric and (X,p) is a geodesic
metric space if every pair of points in X is joined by a geodesic.

Exercise 5. a) Let (X,p) be a metric space. Prove thatif y:[ab] — Xisa

geodesic, then L(y|[s,1]) = p(v(s),y(1)) = [s—t| forall s, t € [a,b].
b) Prove that every geodesic metric is a path metric.

Theorem 6. Every locally compact complete path metric space is a geodesic
metric space.

Remark. Again the completeness of the metric is necessary here. Indeed,
2 — {(0,0)} is a locally compact path metric space which is not a geodesic space,
because there is no geodesic in R2 - {(0,0)} joining (-1,0) to (1,0).

Definition. et (X,p) be a metric space. Apathy :{c,d] - Xisa
reparametrization of a path B : [a,b] — Xif there is non-decreasing ontc map ¢ : [¢,d] —

[a,b] such that y =f°d. ("¢ is non-decreasing” means that ¢(s) < ¢(t) wheneverc <s <t
<d)



Exercise 7. Let (X,p) be a metric space. Provethatifapath g :[c,d] - Xisa
reparametrization of a path y: [a,b] — X, then L(B) = L{y).

Definition. Let (X,p) be a metric space. A pathy :[ab] — Xis constant speed i
there is a non-negative real number {, called the speed of y, such that L{y|[s{]) =
{{t—s) wheneveras<sstsh.

Exercise 8. Let (X,p) be a metric space.
a) Prove that every constant speed path is rectifiable.

b) Provethatif y : [a,b] — Xis a constant speed path, then the speed of y equals

¢} Prove that every geodesic is a constant speed path of speed 1.

Lemma 7. Let (X,p) be a metric space and let [¢,d] be an interval in B. Then
every rectifiable path in X is the reparametrization of a constant speed path with domain
{c,dl.

Definition. Let (X,p) be a metric space. For each rectifiable curve y : [a,b] — X,
define the function Ay : [a,b] — [0,59) by A\(t) = L{v[[a,t]).

Lemma 8. Let (X,p) be a metric space. Ify : [a,b] — Xis a rectifiable curve, then
Ay :[a,b] — [0,%} is continuous.

Proof of Lemma 8. Lets > 0. Thereis apartitiona =tg <t1 < - <iy=bofiab]

n

such that z p{y(i-1),v()) > L{y) —&/3. Since refining this partition only increceases
i=1

the sum, we can further assume that p(y{i-1),v(t)) <&z for1 <i<n. Thenfor1 <j<n,

L(vlla,ti1]) + LOvilta 1D + LIl D) — 3 = L(y)~&3 <

-1 n
Y oty + pGlvd) + p®rtia) + L pltyd) <

i=1 =2



Lvi[ati]) + 283 + Lv|ltj+1 BD-

Hence, Lv|lti1.tj1]) <e. LetO<d<min{ti—tiq1:1<i<n} fa<s<t<bandls—t|<
0, then s, t € [ti,tjr1] for some j, 1 <j<n. Hence, |Ay(8) — Ay(t) = L{vl[at]) — L{yl{a,s]) =
L{v[[s,1]) < L{y|ltj1,8]) + L{viis.t]) + L{vlit.te1 ]} = L(y|[t1.t41]) <. This establishes the
continuity of Ay. O

Proof of Lemma 7. Lety :[ab] — Xbe a rectifiable path. Ay(a) =L(y[[a.a]) =0
and Ay(b) = L(vl[a,b]} = L(v). Since Ayt) = L(vlla,t]) = L(v|la.s]) + L{viis.t]) = L{v|[a,s]) =
Ay(s) for a < s<t< b, then Ay is non-decreasing. Hence, A, maps {a,b] onto [0,L{v)].

If a <s <t<band Ay(s) = A(t), then p(y(s),y(t)) < L{v|[s]) = Livi[a,tD) — Liyv][a.s]) =
Ay(t) — Ay(s) =0. Soy(s) = v(i). Hence, ift € [0,L(y)], then y(/\,,r1 (t)) is a single point.
Hence, a function §: {0,L(y)] — Xis defined by B(t) = v(Ay1(1)). Then clearly peAy =y.

We now prove that p is continuous. Let C be a closed subset C of X. Then
BHC) = (yoAy 1)1 (C) = Ay 1(C)). ¥1(C) is a closed and, hence, compact subset of
[a,b]. Therefore, Ay(y1(C)) =p-1(C) is a compact and, hence, closed subset of [0,L(y)].

So v is a reparametrization of §.

Let0<s<t<L(y). Thens= Ays’) andt = Ay(t’) wherea<s" <t <b. Hence,
MlIs",t'] is a non-decreasing map of [s",t'] onto [s,t] such that (B|[s.t) o(Ay|[s"t]) =
vils™.t']. So viis’.t'] is a reparametrization of pl[s,t]. Hence, L(B|[st) =L(vi[s".t']) =

Livila,t]) - Liv|[a,s"]) = Ay(t') — Ay(s") =t —s. If follows that B is a constant speed path of
speed 1.

Define the affine homeomorphism ¢ : [0,L{y}] — [c.d] by ¢(1) = (d I~

Ly
Ay :[ab] — [0,L(y)] and & : [0,L(y)] — [c,d] are non-decreasing onto maps, then so is
Ay i [ab] — [c,dl. Definethe path « :fc,d] - Xbya = fedr1. Then oedp= P and
ao(dpAy) = BeAy =v. Sov is a reparametrization of a. Letc<s<t<d. Sets = ¢l(s)
_{ L L(v) ) e s .

= (d - d—c (t—c). &i[s",t'] is a non-decreasing map of
[s".t'] onto [s,1] such that (a|[s,t])e(¢l[s",t']) = B|[s",.t']. So B|[s".t"] is a reparametrization of

)t+ ¢. Since

(s-c)andsett’ =¢1(t) =




of[s.tl. Hence, L{a][st)=L{Bls' t)=t"-8 = (deg_\%) {t—c)- (dt% {(s—-c¢)=

L(v)

K—_c) {t—s). Therefore, o is a constant speed path with domain {c,d]. O

Proof of Theorem 6. Let (X,p) be a locally compact complete path metric space.
Let x, vy € X. We must construct a geodesic joining xto vy.

Since p(xy) = inf {L(y) : yvis a path in X joining x to y }, then there is a sequence
{vi} of paths in X joining x to y such that L(yi) < p(x,y) + 1/ Since reparametrization
doesn't change path iength, then by Lemma 7 we can assume that each y; is a constant
speed path with domain [0,1]. Set G = {vi}. Then G < C4([0,1},X).

We will now apply Theorem 3to G. If i € [0,1], then p(xyi(D)) = p(WO), vi(t) <
L(vil[0,1]) < L(yj) < p(x,y) + 1 fori> 1. Hence, foreacht € [0,1],{w({D):i21}C
B(x,p(¢y) + 1). Since B(x,p(x,y) + 1) is compact by Theorem 4, then { yi{t) : i> 1} has
compact closure for each t € [0,1]. Thus, the G-image of every point of [0,1] has

compact closure in X. Next let € > 0 and suppose s € [0,1]. Setd = —- and

&
2(p(x.y) + 1)
set U = (s-3,5+3)N[0,1]. U is a neighborhood of sin [0,1]. Supposet,t” € U suchthatt
<t. Leti> 1. Exercise 8.b) implies that the speed of vjis L{y)). Hence, p(w(t), (i) £

Hyillt,t']D) = Lyt — t} <28(p(x,y) + 1) =€. Thus, p-diam(yj(U)) < e for every iz 1.
Hence, G is equicontinuous.

Theorem 3 now implies that G has compact closure in Cy([0,1],X). Hence, after
passing to a subsequence if necessary, we can assume that {yj} convergesto a path f§ :
[0,1] = Xin Cp([0,1],X). Hence, {yi(0)}i>1 = {x} converges to B(0) and {yi(1)}i>1 = {y}
convergesto f(1). So p(0) =xand (1) =v;i.e, Bjoinsxtoy.

Lemma 9. Let (X,p) be a metric space. fyj:[ab] = X iz1,andp :[ab] - X
are paths such that {yj} converges to p in C([a,b],X), then L(#) < lim inf L(v).

Proof of Lemma 9. Leta=1g <ty <. <t, =b be a partition of {a,b]. Suppose ¢
>0. Thenthereisak=>1suchthat o{fyj) <&/on forj2k. Thenforjzkand1<i<n,
p(Bti-1).B()) < p(Bi1).yilti-)) + plyilti-0).vit) + plvi®).B{EY) < 20p(By) + o{yti-1).vit))



n
< &+ p(yilti)vi(t). Hence, forjzk, Y p(B(ti-1).B8(t)) < € +L(y). This proves that
i=1

n
forevery e > 0, there isak > 1 suchthat }° p(B(ti-1),6(t) — e < inf{L(y):j>k}.
i=1

n
Consequently, ¥ p(B(t1).8(t)) < liminf L(y). It follows that L(B) < lim inf L(y). 11
i=1

Continuation of the Proof of Theorem 6. Lemma 9 implies that L{B ) <
im inf L{y;) £ p(x,y). On the other hand, p(x,y) = p{B(0},8(1)) < L(B). Thus, L(B) = p(x.y).

Lemma 7 implies that p is the reparametrization of a constant speed path o:
[0.p0¥)] — X So a(0) =6(0) =xand af{p(x,y)) = B(1) =y. Thus, o joins xtoy. Also
L{a) = L(B) = p(x.y) by Exercise 7. Moreover, according to Exercise 8. b), the speed of

a is L{a/p (x,y) = L(BY p{x,y) = 1. The following Lemma establishes that o is a geodesic.
(|

Lemma 10. Let x and y be points of a metric space (X,p). Ify:[ab] — Xisa
constant speed path of speed 1 joining x to y and L{y) = p(x,y), then vy is a geodesic.

Proof. Since v is speed 1, then p(xy) =L{y) =b - a, and p(y(s).,y(D)) < L{y|[s,t]) =

t—sfora<s<t<b. Leta<s<t<b. Setx =vy(s)andy = y(t}. Then each of the
three terms in the sum

S = [(s—a) - plv@)v(s) | + [ (t—s) - p(v(s),¥(t) | + [ (D —1) - p{v(t),v(b)) ] =
[(s—a) - pxX) ] +[{t—8) - p(Y) | +[{(b-8 - ply"y) ]

is non-negative. So S 2> 0. On the other hand, § = (b — a) — [p(x,X) + p(X,¥) + ply',¥)]

=p(y) — [p0oX) + p(xy) + o(y".y)} <0 because p(xy) < p(x.x) + p(X"y") + o(y"y).
Thus, S = 0. Hence, each of the three terms in S equals 0. In particular,

(t—s) — p(y(s),v{1)) = 0. Hence, p(y(s),v(t)) =t —s. This proves y is a geodesic. O

Definition. Let (X,p) be a metric space. Ify : [a,b] — Xis a path, let the path y1:
[0,1] — X be the reparametrization of y defined by y'(t) = y{ {1 ~t)a + tb ), and call y! the
unit interval reparametrization of v.
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Observation. Let (X,p) be a metric space. Suppose y:[ab] = Xandp :[c,d] —
X are paths, € > 0, and op(y!,p1) < ein Cp([0,1],X). Then p(y((1-ha+tb), B{(1-a+tb) ) < e

for 0<t<1. Inother words, y! and B! being close in C([0,1],X) implies that y and p are
in some sense close paths.

Lemma 11. Let x and y be points of a metric space (X, p).
a) Ify :{a,b] — Xis a geodesic joining x to v, then y! is a constant speed path of speed
p{x.y) and p(y1(s)y 1(1) = p(x.y)(t —s) for 0 < s <t < 1.
b) If B :[0,1] - Xis a path joining x to y such that p(B(s),B()) = pOy)}t—s)for0<s <t
<1, then B is the unit interval reparametrization of a geodesic which joins x to y.
¢} Ify:[ab] — Xandp:[ec,d] - X are geodesics and y is a reparametrization of g, then
vl =pl.

Proof. a} First note that p{x,y) = p{{a),v(b)) = b — a because y is a geodesic.
Let0<s<t<1. Sets =(1—-s)a+sbandt =(1-fa+tb. Then yI(s)=v(s) andy1{})
=y({t"). Since y is a geodesic, then p(y1(s),y1()) = p(y(s)y(t)) =t =8 = (b —a){t—5) =
p(X,y)(t — 5). Furthermore, since u — (1 —u)a + ub is a non-decreasing map from [s,t]
onto {s",t'], then y'{[s,t] is a reparametrization of y|[s".t']. So by Exercise 5.a), L(y!|[s,1]}
=Liy|[s" t]) = o) v({t)) =t —s = (b—a){t—s) = p{x,y){t—s). Thus, y! is a constant
speed path of speed p{Xx,y).

b) Setp =p(xy). Definey :[0,p] = Xby y(t) = p(V/p). ThenforO<s<t<p,
p(y(s),¥(1)) = p(B (p)B(Yp)) = o(Yp —S/p) =t —s. Sovy is a geodesic. Since p(t) =
¥{(1-1)0 + tp), then B is the unit interval reparametrization of y.

¢} v = pBo¢ for some non-decreasing onto map ¢ : [a,b] — [¢,d]. Fort € [a,b],
t—a = p(v(@), v({®) = p(B(d(a)}, B = p(B(c), B(d(1)) = d(t) — c. Hence, ¢y =t—-a+c.
Thus, d=¢(b)=b~a+c. Sod—-c=b-a. NowforO0<t<1, yi)=v((1-Ha+tb)=
B (1-a+tb) ) =p(({(1-Ya+th)—a+c)=p(tb-a) +c)=p(t(d<c) +c)=
B( (1~t)c +td ) =p1{1). Hence, y! = p1. O

Remark. Let x and y be points of a metric space (X, p). It follows from Lemma
11.c) that if there is only one geodesic up fo reparametrization joining x to y in X, then
there is exactly one unit interval reparametrization of a geodesic that joins xto y in X.
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Theorem 12. Let (X,p) be a metric space. Suppose U is a subset of XxX such
that for every (x,y) € U, there is only one geodesic up to reparametrization joining xto y
in X. Foreach (x,y) € U, let Yxy denote the unique unit interval reparametrization of a

geodesic which joins x to y in X. Then the function (xy) — Yxy - U — Cy([0,1].X) is
continuous.

Proof. Let { (X;,y)) }iz1 be a sequence in U which converges to the point (xg,yo) €
U. Setyj= Yy.y; fOr 2 0. We must prove {yiti>1 convergestoyg. SetG={vy:i21}

Then G < Cy([0,1],X). We will apply Theorem 3 to G.

Since {x}i>0 and {yi}i-o0 are converging sequences together with their limits, they
are bounded sets. So there is a B > 0 such that p-diam({Xj}i>q0) < B and p-diam{{yi}i=g) <
B. Lemma 11.a) impliesthatfori20and 0 <s <t <1, p{vi(s).yi()) = pXiy)({ — 9).
Hence, fort € [0,1] and iz 1, pXoyit) < pxox) + piXivi(1)) = pXo.X) + Kvi(0), vi{D) =
poxi) + pXiydt < p(xo.x) + pleiyi) < p(xo.xi) + p(Xixo) + p(xo,yo) + plyo.yi) <
p(xg,yo) + 3B. It follows that vi([0,1]) < B(xo,p(xp.Yo) + 3B) fori> 1. Since
B(xq,p{x0.yo) + 3B) is compact by Theorem 4, we conclude that { yi{t) :i2 1 } has

compact closure in X for eacht € [0,1]. In other words, the G-image of every point of
[0,1] has compact closure in X.

Now let ¢ > 0 and suppose s € [0,1]. Setd = and set U =

£
2{ p(xg.yo) +2B)
(s-2,5+0)N[0,1]. Uis a neighborhood of 5in [0,1]. Supposet, i’ € Usuchthatt <t

Letiz1. Then pvi(t),vi(t")) = pliyid(t—1) < 2&pixo) + pxo.yo) + plyo.yi)) <
25(p(xg,y0) + 2B) = e. Thus, p-diam(yi(U)) < sforeveryiz 1. Hence, Gis
equicontinuous.

Theorem 3 now implies that G has compact closure in C,([0,1],X). Hence, a
subsequence {yni} of {vi} converges to a path p : [0,1] = X in Cp([0,1},X). Therefore,

frn, (00} = {Xn;} converges to $(0), and {v, (1)} = {yn;} converges to f(1). Thus, B(0) =xg
and (1) =yp. So f joins xg to ygp.

Let0<s<t<1. Then {yni(s)} converges to (s), and {yni(t)} converges to B(t).
Since the metric p : XxX — [0,%) is continuous, we conclude that p(B{s),B8()) =
lim p(vni(s),yni(t)) = iIim pMnyYn{t-8) = plxo,yo)(t-s). It follows from Lemma 11.b)
f—oo —4 OO

that p is the unit interval parametrization of a geodesic joining xg 10 yg. By hypothesis,
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this forces 8§ =yg. We conclude that the subsequence {ym} converges to yg in

Suppose that the full sequence {yj} doesn't converge to yg in Cp([0,1],X). Then
there is a > 0 and a subsequence {Ys;} of {vi} such that crp(vSi,vo) >d fori> 1. But since
{(xs;.ys;)}iz1 converges to (x.,yo) in U, then the preceding argument proves that some
subsequence of {ysi} converges to yg in Cp([0,1],X). We have reached a contradiction.

We are forced to conclude that {y;} converges to yg. 1



