## **Topological Elements of Geodesic Spaces**

**Definition.** Let  $(X,\rho)$  be a metric space. The *length* of a path  $\gamma:[a,b] \to X$  is

$$L(\gamma) \ = \ L_\rho(\gamma) \ = \ \sup \left\{ \ \sum_{i \ = \ 1}^n \ \rho(\gamma(t_{i-1}), \gamma(t_i)) \ : \ n \ge 1 \ \text{and} \ a = t_0 \le t_1 \le \cdots \le t_n = b \ \right\}.$$

The path  $\gamma$  is *rectifiable* if  $L(\gamma) < \infty$ .  $(X,\rho)$  is *rectifiable* if every pair of points of X is joined by a rectifiable path in X.  $(X,\rho)$  is *locally rectifiable* if for every  $\varepsilon > 0$ , every point of X has a neighborhood in which any two points are joined by a path in X of length  $< \varepsilon$ .

**Exercise 1.** Let  $(X,\rho)$  is a metric space. Prove that if  $\gamma:[a,b] \to X$  is a path in X and

$$a=t_0 \leq t_1 \leq \cdots \leq t_n = b, \text{ then } L(\gamma) = \sum_{i=1}^n L(\gamma I[t_{i-1},t_i]).$$

**Exercise 2.** Prove that a connected locally rectifiable metric space is rectifiable.

**Lemma 1.** Let  $(X,\rho)$  be a rectifiable metric space. Define  $\sigma: X\times X \to [0,\infty)$  by

$$\sigma(x,y) \ = \ inf \ \{ \ L_{\rho}(\gamma) : \gamma \ is \ a \ path \ in \ X \ joining \ x \ to \ y \ \}.$$

Then:

- a) σ is a metric on X;
- **b)**  $L_{\sigma} = L_{\rho}$  and, hence,  $\sigma(x,y) = \inf \{ L_{\sigma}(\gamma) : \gamma \text{ is a path in } X \text{ joining } x \text{ to } y \};$
- c) if  $\rho$  is a complete metric, then so is  $\sigma$ ; and
- **d)**  $\sigma$  is equivalent to  $\rho$  if and only if  $(X,\rho)$  is locally rectifiable.

Exercise 3. Prove a).

**Proof of b).** First note that for any path  $\gamma$  in X joining x to y,  $\rho(x,y) \leq L_{\rho}(\gamma)$ . Hence,  $\rho \leq \sigma$ . Hence,  $L_{\rho}(\gamma) \leq L_{\sigma}(\gamma)$  for any path  $\gamma$  in X. Now if  $\gamma : [a,b] \to X$  is a path and  $a = t_0 \leq t_1 \leq \cdots \leq t_n = b$ , then

$$\sum_{i \, = \, 1}^n \, \, \sigma(\gamma(t_{i-1}), \gamma(t_i)) \, \, \leq \, \, \sum_{i \, = \, 1}^n \, \, L_{\rho}(\gamma I[t_{i-1}, t_i\}) \, \, = \, \, L_{\rho}(\gamma).$$

Taking the supremum over all partitions  $a = t_0 \le t_1 \le \cdots \le t_n = b$ , we see that  $L_{\sigma}(\gamma) \le L_{\rho}(\gamma)$ .

**Proof of c).** Let  $\{x_n\}$  be a Cauchy sequence in  $(X,\sigma)$ . Since  $\rho \leq \sigma$ , then  $\{x_n\}$  is Cauchy in  $(X,\rho)$ . So  $\{x_n\}$  converges to a point z in  $(X,\rho)$ . Since  $\{x_n\}$  is Cauchy in  $(X,\sigma)$ , then  $\{x_n\}$  has a subsequence  $\{y_k\}$  such that  $\sigma(y_{k+1},y_k) < 2^{-k}$ . Hence, for each  $k \geq 1$ , there is a path  $\gamma_k$  in X joining  $y_{k+1}$  to  $y_k$  such that  $L_\rho(\gamma_k) < 2^{-k}$ . Since we can linearly reparametrize  $\gamma_k$  without changing its length, we can assume that the domain of  $\gamma_k$  is  $[2^{-(k+1)},2^{-k}]$  with  $\gamma_k(2^{-(k+1)}) = y_{k+1}$  and  $\gamma_k(2^{-k}) = y_k$ . Now a path  $\gamma:[0,1] \to (X,\rho)$  is defined by  $\gamma(0) = z$  and  $\gamma[[2^{-(k+1)},2^{-k}] = \gamma_k$ .  $\gamma$  is continuous at 0 because  $\{y_k\}$  converges to z in  $(X,\rho)$ ,  $\gamma_k$  joins  $y_{k+1}$  to  $y_k$ , and  $\rho$ -diam(im( $\gamma_k$ ))  $\leq L_\rho(\gamma_k) < 2^{-k}$ . Now  $\sigma(z,y_k) \leq z$ 

$$\begin{split} L_{\rho}(\gamma|[0,2^{-k}]) &= \sum_{i=k}^{\infty} L_{\rho}(\gamma_k) < \sum_{i=k}^{\infty} 2^{-k} = 2^{-k+1}. \text{ (Verify that } L_{\rho}(\gamma|[0,2^{-k}]) = \sum_{i=k}^{\infty} L_{\rho}(\gamma_k).) \\ \text{Hence, } \{y_k\} \text{ converges to z in } (X,\sigma). \text{ Since } \{y_k\} \text{ is a subsequence of } \{x_n\} \text{ and } \{x_n\} \text{ is Cauchy in } (X,\sigma), \text{ it follows that } \{x_n\} \text{ converges to z in } (X,\sigma). \ \Box \end{split}$$

Exercise 4. Prove d).

**Definition.** Let  $(X,\rho)$  be a rectifiable metric space.  $\rho$  is a *path metric* and  $(X,\rho)$  is a *path metric space* if  $\rho(x,y) = \inf \{ L(\gamma) : \gamma \text{ is a path in } X \text{ joining } x \text{ to } y \}$  for all  $x,y \in X$ .

**Corollary 2.** A connected (complete) metric space has an equivalent (complete) path metric if and only if it is locally rectifiable.

**Definition.** Let X be a topological space, and let  $(Y, \rho)$  be a metric space. A map  $f: X \to Y$  is  $\rho$ -bounded if  $\rho$ -diam $(f(X)) < \infty$ . Let  $C_{\rho}(X,Y)$  denote the set of all  $\rho$ -bounded maps from X to Y. We always endow  $C_{\rho}(X,Y)$  with the supremum metric  $\sigma_{\rho}$  defined by  $\sigma_{\rho}(f,g) = \sup \{ \rho(f(x),g(x)) : x \in X \}$ . Recall that if  $\rho$  is a complete metric, then so is  $\sigma_{\rho}$ .

**Theorem 3: An Ascoli-Arzela Theorem.** Let X be a separable topological space and let  $(Y, \rho)$  be a complete metric space. Then a subset F of  $C_{\rho}(X,Y)$  has compact closure in  $C_{\rho}(X,Y)$  if F has the following two properties.

- a) There is a dense countable subset D of X such that for every  $x \in D$ ,  $\{f(x) : f \in F\}$  has compact closure in Y.
- b) For every  $\epsilon > 0$ , every point of X has a neighborhood U such that  $\rho$ -diam(f(U)) <  $\epsilon$  for each f  $\epsilon$  F.

**Remark.** We abbreviate property a) by saying that the *F-image* of every point of the dense countable set D has compact closure in Y. Property b) is usually abbreviated by saying that F is *equicontinuous*.

**Proof.** Let  $D = \{x_n : n \ge 1\}$ . Let  $\{f_k\}$  be a sequence in F. We will prove that some subsequence of  $\{f_k\}$  converges to a point of  $C_p(X,Y)$ . We will exploit the fact that for each  $x \in D$ , each sequence in  $\{f(x) : f \in F\}$  has a converging subsequence which, in turn, has subsequences that converge at any prescribed rate. For  $n = 1, 2, 3, \cdots$ , we inductively construct sequences  $\{k_i^n\}_{i\ge 1}$  of positive integers such that for  $n \ge 1$ ,

- a)  $\{k_i^{n+1}\}_{i\geq 1}$  is a subsequence of  $\{k_i^n\}_{i\geq 1}$ , and
- $\text{b)} \hspace{0.2cm} \text{$\rho$-diam ($$} \left( \left\{ f_{K_i^n}(x_n) \right\}_{i \geq 1} \right) < {}^1/_n \text{, and $\rho$-diam ($$} \left\{ f_{K_i^n}(x_n) \right\}_{i \geq i} \right) < {}^1/_i \text{ for } i \geq 1.$

Set  $m_n = k_n^n$  and  $n \ge 1$ . Then for  $i \ge n \ge 1$ ,  $\{m_j\}_{j \ge i}$  is a subsequence of  $\{k_j^n\}_{j \ge i}$ . It follows that for  $n \ge 1$  and  $i \ge 1$ ,  $\rho$ -diam ( $\{f_{m_j}(x_n)\}_{i \ge i}$ ) < 1/i.

We assert that for any  $x \in X$  and  $i \ge 1$ ,  $\rho$ -diam ( $\{f_{m_j}(x)\}_{j\ge i}$ )  $\le 3/i$ . Let  $x \in X$  and  $i \ge 1$ . x has a neighborhood U such that  $\rho$ -diam(f(U)) < 1/i for each  $f \in F$ . There is an  $n \ge 1$  such that  $x_n \in U$ . Then for j,  $k \ge i$ ,

$$\begin{array}{l} \rho \; (\; f_{m_j}(x), \; f_{m_k}(x) \;) \; \leq \; \rho \; (\; f_{m_j}(x), \; f_{m_j}(x_n) \;) \; + \; \rho \; (\; f_{m_j}(x_n), \; f_{m_k}(x_n) \;) \; + \; \rho \; (\; f_{m_k}(x_n), \; f_{m_k}(x) \;) \\ < \; \rho \text{-diam}(f_{m_j}(U)) \; + \; \rho \text{-diam} \; (\; \left\{ f_{m_r}(x_n) \right\}_{r \geq i} \;) \; + \; \rho \text{-diam}(f_{m_k}(U)) \; < \; ^3/_i. \end{array}$$

This proves the assertion. It follows that  $\sigma_\rho(f_{m_j},f_{m_k}) \leq 3/i$  for  $j,k \geq i$ . Hence,  $\{f_{m_i}\}_{i\geq 1}$  is a Cauchy sequence in  $(C_\rho(X,Y),\sigma_\rho)$ . Therefore,  $\{f_{m_i}\}_{i\geq 1}$  converges in  $C_\rho(X,Y)$ . This proves cl(F) is compact.  $\square$ 

**Theorem 4.** If  $(X, \rho)$  is a locally compact complete path metric space, then for every  $x \in X$  and every r > 0,  $B(x,r) = \{ y \in X : \rho(x,y) \le r \}$  is compact.

**Remark.** The completeness of the metric  $\rho$  is necessary here. For observe that  $\mathbb{H}^2 - \{(0,0)\}$  with the Euclidean metric inherited from  $\mathbb{H}^2$  is a locally compact path metric space in which B((1,0),2) is non-compact.

**Lemma 5.** Let  $(X, \rho)$  be a path metric space. If  $x, y \in X$  and  $\rho(x,y) < r + s$  where r > 0 and s > 0, then there is a  $z \in X$  such that  $\rho(x,z) < r$  and  $\rho(z,y) < s$ .

**Proof of Lemma 5.** Let  $0 < \epsilon < \min \left\{ r, s, \frac{r+s-\rho(x,y)}{2} \right\}$ . There is a path  $\gamma : [a,b] \to X$  joining x to y such that  $L(\gamma) < \rho(x,y) + \epsilon$ . The choice of  $\epsilon$  insures that  $\rho(x,y) - s + \epsilon < \min \left\{ \rho(x,y), r-\epsilon \right\}$  and  $0 < \min \left\{ \rho(x,y), r-\epsilon \right\} \le \rho(x,y)$ . Since  $\rho(x,\gamma(a)) = 0$  and  $\rho(x,\gamma(b)) = \rho(x,y)$ , then there is a  $t \in [a,b]$  such that  $\rho(x,\gamma(t)) = \min \left\{ \rho(x,y), r-\epsilon \right\}$ . Set  $z = \gamma(t)$ . Then  $\rho(x,y) - s + \epsilon < \rho(x,z) < r$ . So  $\rho(x,y) - s + \epsilon + \rho(z,y) < \rho(x,z) + \rho(z,y) \le L(\gamma) < \rho(x,y) + \epsilon$ . Hence,  $\rho(z,y) < s$ .  $\square$ 

**Proof of Theorem 4.** Let  $x \in X$ . Since X is locally compact, there is an s > 0 such that B(x,s) is compact. Hence, B(x,r) is compact whenever  $0 < r \le s$ . Assume B(x,r) is non-compact for some r > 0, and set  $t = \inf \{ r > 0 : B(x,r) \text{ is non-compact } \}$ . Then  $s \le t$ .

First we will prove that B(x,t) is compact. Let  $\{y_n\}$  be a sequence in B(x,t). Since B(x,t) is a closed subset of X, it suffices to find a subsequence of  $\{y_n\}$  that converges in X. We will achieve this through an application of Theorem 3.

For each  $n \ge 1$  and each  $k \ge 1$ , since  $\rho(x,y_n) \le t < (t-1/k) + 2/k$ , then Lemma 5 provides a point  $z_n^k \in X$  such that  $\rho(x,z_n^k) < t-1/k$  and  $\rho(z_n^k,y_n) < 2/k$ .

Let W denote the subspace  $\{0\} \cup \{1/k : k \ge 1\}$  of  $\mathbb{R}$ . For each  $n \ge 1$ , define the function  $f_n : W \to X$  by  $f_n(0) = y_n$  and  $f_n(1/k) = z_n^k$  for  $k \ge 1$ . Set  $F = \{f_n : n \ge 1\}$ . Each  $f_n$  is continuous because  $\{f_n(1/k)\}_{k \ge 1} = \{z_n^k\}_{k \ge 1}$  converges to  $f_n(0) = y_n$ . Each  $f_n$  is  $\rho$ -bounded because  $f_n(W) \subseteq B(x,t)$ . Hence,  $F \subseteq C_\rho(W,X)$ .

We now verify that F satisfies the hypotheses of Theorem 3.  $\{\ ^1/_k: k \geq 1\ \}$  is a countable dense subset of W. For each  $k \geq 1$ , the set  $\{f_n(^1/_k): n \geq 1\} = \{\ z_n^k: n \geq 1\}$  has compact closure because it lies in the compactum  $B(x, t-^1/_k)$ . Hence, the F-image of each point of  $\{\ ^1/_k: k \geq 1\}$  has compact closure in X. For any  $\epsilon > 0$  and  $k \geq 1$ ,  $\{^1/_k\}$  is a neighborhood of  $\{\ ^1/_k: n \in 1\}$  has compact closure in X. For any  $\epsilon > 0$  and  $k \geq 1$ ,  $\{^1/_k\}$  is a neighborhood of  $\{\ ^1/_k: n \in 1\}$  has compact closure in X. For any  $\epsilon > 0$  and  $k \geq 1$ ,  $\{\ ^1/_k\}$  is a neighborhood of  $\{\ ^1/_k\}$  is  $\{\ ^1/_k\}$  is a neighborhood of 0 in W such that  $\{\ ^1/_k\}$  is  $\{\ ^1/_k\}$  or  $\{\ ^1/_k\}$  is a neighborhood of 0 in W such that  $\{\ ^1/_k\}$  is a neighborhood of 0 in W such that  $\{\ ^1/_k\}$  is  $\{\ ^1/_k\}$  or  $\{\ ^1/_k\}$  is a neighborhood of 0 in W such that  $\{\ ^1/_k\}$  is  $\{\ ^1/_k\}$  is a neighborhood of 0 in W such that  $\{\ ^1/_k\}$  is  $\{\ ^1/_k\}$  is a neighborhood of 0 in W such that  $\{\ ^1/_k\}$  is  $\{\ ^1/_k\}$  or  $\{\ ^1/_k\}$  is a neighborhood of 0 in W such that  $\{\ ^1/_k\}$  is  $\{\ ^1/_k\}$  is a neighborhood of 0 in W such that  $\{\ ^1/_k\}$  is  $\{\ ^1/_k\}$  is a neighborhood of 0 in W such that  $\{\ ^1/_k\}$  is  $\{\ ^1/_k\}$  is a neighborhood of 0 in W such that  $\{\ ^1/_k\}$  is  $\{\ ^1/_k\}$  is a neighborhood of 0 in W such that  $\{\ ^1/_k\}$  is  $\{\ ^1/_k\}$  is  $\{\ ^1/_k\}$  is a neighborhood of 0 in W such that  $\{\ ^1/_k\}$  is  $\{\ ^1/_k\}$  is a neighborhood of 0 in W such that  $\{\ ^1/_k\}$  is  $\{\ ^1/_k\}$  is  $\{\ ^1/_k\}$  is  $\{\ ^1/_k\}$  is a neighborhood of 0 in W such that  $\{\ ^1/_k\}$  is  $\{\ ^1/_k\}$  is  $\{\ ^1/_k\}$  is  $\{\ ^1/_k\}$  is a neighborhood of 0 in W such that  $\{\ ^1/_k\}$  is  $\{\ ^1/_k\}$  is  $\{\ ^1/_k\}$  is  $\{\ ^1/_k\}$  is  $\{\ ^1/_k\}$  is a neighborhood of 0 in W such that  $\{\ ^1/_k\}$  is  $\{\ ^1/_k\}$  in  $\{\ ^1/_k\}$  is  $\{\ ^1/_k\}$  is  $\{\ ^1/_k\}$  in  $\{\ ^1/_k\}$  is  $\{\ ^1/_k\}$  in  $\{\ ^1/_k\}$ 

Theorem 3 implies that F has compact closure in  $C_{\rho}(W,X)$ . Hence,  $\{f_n\}$  has a subsequence  $\{f_{n_i}\}$  that converges in  $C_{\rho}(W,X)$  to a map  $g:W\to X$ . Since  $\rho(y_{n_i},g(0))=\rho(f_{n_i}(0),g(0))\leq \sigma_{\rho}(f_{n_i},g)$ , then  $\{y_{n_i}\}$  converges to g(0) in X. Thus,  $\{y_n\}$  has a converging subsequence. It follows that B(x,t) is compact.

Since X is locally compact and B(x,t) is compact, then B(x,t) is covered by finitely many open sets with compact closure. Their union is an open set U with compact closure which contains B(x,t). Since B(x,t) is compact, there is a  $\delta > 0$  such that U contains the  $\delta$ -neighborhood of every point of B(x,t). (Otherwise, there is a sequence  $\{y_n\}$  in B(x,t) and a sequence  $\{z_n\}$  in X–U such that  $\rho(y_n,z_n) \to 0$ . Since B(x,t) is compact, we can assume (after passing to a subsequence) that  $\{y_n\}$  converges to a point  $y \in B(x,t)$ . Then  $\{z_n\}$  converges to y and  $y \in U$ . It follows that  $\{z_n\}$  eventually enters U.  $\mathscr{N}$  Let V denote the union of the  $\delta$ -neighborhoods of all the points of B(x,t). Then B(x,t)  $\subseteq$  V  $\subseteq$  U. So V has compact closure.

We now prove that  $B(x, t + \delta I_2) \subseteq V$ . (This is not necessarily true in an arbitrary metric space because there may be a point within  $t + \delta I_2$  of x which is not near any point of B(x,t). (Find an example of such a space.) However, it is true in a path metric space.) Let  $y \in B(x, t + \delta I_2)$ . Since  $\rho(x,y) < t + \delta$ , Lemma 5 provides a point  $z \in X$  such that  $\rho(x,z) < t$  and  $\rho(z,y) < \delta$ . Then clearly  $z \in B(x,t)$  and  $y \in V$ . Thus,  $B(x, t + \delta I_2) \subseteq V$ . Since cl(V) is compact, so is  $B(x, t + \delta I_2)$ . It follows that B(x,r) is compact for  $0 < r \le t + \delta I_2$ . This contradicts our initial choice of t as inf t > 0: B(x,r) is non-compact t > 0. C

**Definition.** Let  $(X,\rho)$  be a metric space. A path  $\gamma:[a,b]\to X$  is a *geodesic* if  $\rho(\gamma(s),\gamma(t))=|s-t|$  for all  $s,t\in[a,b]$ .  $\rho$  is a *geodesic metric* and  $(X,\rho)$  is a *geodesic metric space* if every pair of points in X is joined by a geodesic.

**Exercise 5. a)** Let  $(X,\rho)$  be a metric space. Prove that if  $\gamma:[a,b]\to X$  is a geodesic, then  $L(\gamma[s,t])=\rho(\gamma(s),\gamma(t))=|s-t|$  for all  $s,t\in[a,b]$ .

b) Prove that every geodesic metric is a path metric.

**Theorem 6.** Every locally compact complete path metric space is a geodesic metric space.

**Remark.** Again the completeness of the metric is necessary here. Indeed,  $\mathbb{R}^2 - \{(0,0)\}$  is a locally compact path metric space which is not a geodesic space, because there is no geodesic in  $\mathbb{R}^2 - \{(0,0)\}$  joining (-1,0) to (1,0).

**Definition.** Let  $(X,\rho)$  be a metric space. A path  $\gamma:[c,d]\to X$  is a *reparametrization* of a path  $\beta:[a,b]\to X$  if there is non-decreasing onto map  $\varphi:[c,d]\to [a,b]$  such that  $\gamma=\beta\circ\varphi$ . (" $\varphi$  is non-decreasing" means that  $\varphi(s)\leq \varphi(t)$  whenever  $c\leq s\leq t\leq d$ .)

**Exercise 7.** Let  $(X,\rho)$  be a metric space. Prove that if a path  $\beta:[c,d]\to X$  is a reparametrization of a path  $\gamma:[a,b]\to X$ , then  $L(\beta)=L(\gamma)$ .

**Definition.** Let  $(X,\rho)$  be a metric space. A path  $\gamma:[a,b]\to X$  is *constant speed* if there is a non-negative real number  $\zeta$ , called the *speed* of  $\gamma$ , such that  $L(\gamma|[s,t])=\zeta(t-s)$  whenever  $a\leq s\leq t\leq b$ .

**Exercise 8.** Let (X, p) be a metric space.

- a) Prove that every constant speed path is rectifiable.
- b) Prove that if  $\gamma : [a,b] \to X$  is a constant speed path, then the speed of  $\gamma$  equals

$$\frac{L(\gamma)}{b-a}$$

c) Prove that every geodesic is a constant speed path of speed 1.

**Lemma 7.** Let  $(X,\rho)$  be a metric space and let [c,d] be an interval in  $\mathbb{R}$ . Then every rectifiable path in X is the reparametrization of a constant speed path with domain [c,d].

**Definition.** Let  $(X,\rho)$  be a metric space. For each rectifiable curve  $\gamma:[a,b]\to X$ , define the function  $\Lambda_\gamma:[a,b]\to[0,\infty)$  by  $\Lambda_\gamma(t)=L(\gamma|[a,t])$ .

**Lemma 8.** Let  $(X,\rho)$  be a metric space. If  $\gamma:[a,b]\to X$  is a rectifiable curve, then  $\Lambda_\gamma:[a,b]\to[0,\infty)$  is continuous.

Proof of Lemma 8. Let  $\epsilon > 0$ . There is a partition  $a = t_0 < t_1 < \dots < t_n = b$  of [a,b] such that  $\sum_{i=1}^n \rho(\gamma(t_{i-1}), \gamma(t_i)) > L(\gamma) - \epsilon/3$ . Since refining this partition only increceases the sum, we can further assume that  $\rho(\gamma(t_{i-1}), \gamma(t_i)) < \epsilon/3$  for  $1 \le i \le n$ . Then for  $1 \le j < n$ ,

$$\begin{split} L(\gamma|[a,t_{j-1}]) + L(\gamma|[t_{j-1},t_{j+1}]) + L(\gamma|[t_{j+1},b]) - \varepsilon/_3 &= L(\gamma) - \varepsilon/_3 < \\ \sum_{j=1}^{j-1} \rho(\gamma(t_{i-1}),\gamma(t_i)) + \rho(\gamma(t_{j-1}),\gamma(t_j)) + \rho(\gamma(t_j),\gamma(t_{j+1})) + \sum_{i=j+2}^{n} \rho(\gamma(t_{i-1}),\gamma(t_i)) &\leq 0 \end{split}$$

$$L(\gamma|[a,t_{j-1}]) + 2\varepsilon I_3 + L(\gamma|[t_{j+1},b]).$$

Hence,  $L(\gamma|[t_{j-1},t_{j+1}]) < \epsilon$ . Let  $0 < \delta < \min\{ t_i - t_{j-1} : 1 \le i \le n \}$ . If  $a \le s \le t \le b$  and  $|s-t| < \delta$ , then  $s, t \in [t_{j-1},t_{j+1}]$  for some  $j, 1 \le j < n$ . Hence,  $|\Lambda_{\gamma}(s) - \Lambda_{\gamma}(t)| = L(\gamma|[a,t]) - L(\gamma|[a,s]) = L(\gamma|[s,t]) \le L(\gamma|[t_{j-1},s]) + L(\gamma|[s,t]) + L(\gamma|[t,t_{j+1}]) = L(\gamma|[t_{j-1},t_{j+1}]) < \epsilon$ . This establishes the continuity of  $\Lambda_{\gamma}$ .  $\square$ 

**Proof of Lemma 7.** Let  $\gamma:[a,b]\to X$  be a rectifiable path.  $\Lambda_{\gamma}(a)=L(\gamma|[a,a])=0$  and  $\Lambda_{\gamma}(b)=L(\gamma|[a,b])=L(\gamma)$ . Since  $\Lambda_{\gamma}(t)=L(\gamma|[a,t])=L(\gamma|[a,s])+L(\gamma|[s,t])\geq L(\gamma|[a,s])=\Lambda_{\gamma}(s)$  for  $a\leq s\leq t\leq b$ , then  $\Lambda_{\gamma}$  is non-decreasing. Hence,  $\Lambda_{\gamma}$  maps [a,b] onto  $[0,L(\gamma)]$ .

If  $a \le s \le t \le b$  and  $\Lambda_{\gamma}(s) = \Lambda_{\gamma}(t)$ , then  $\rho(\gamma(s), \gamma(t)) \le L(\gamma|[s,t]) = L(\gamma|[a,t]) - L(\gamma|[a,s]) = \Lambda_{\gamma}(t) - \Lambda_{\gamma}(s) = 0$ . So  $\gamma(s) = \gamma(t)$ . Hence, if  $t \in [0, L(\gamma)]$ , then  $\gamma(\Lambda_{\gamma}^{-1}(t))$  is a single point. Hence, a function  $\beta : [0, L(\gamma)] \to X$  is defined by  $\beta(t) = \gamma(\Lambda_{\gamma}^{-1}(t))$ . Then clearly  $\beta \circ \Lambda_{\gamma} = \gamma$ .

We now prove that  $\beta$  is continuous. Let C be a closed subset C of X. Then  $\beta^{-1}(C) = (\gamma \circ \Lambda_{\gamma}^{-1})^{-1}(C) = \Lambda_{\gamma}(\gamma^{-1}(C))$ .  $\gamma^{-1}(C)$  is a closed and, hence, compact subset of [a,b]. Therefore,  $\Lambda_{\gamma}(\gamma^{-1}(C)) = \beta^{-1}(C)$  is a compact and, hence, closed subset of [0,L( $\gamma$ )].

So  $\gamma$  is a reparametrization of  $\beta$ .

Let  $0 \le s \le t \le L(\gamma)$ . Then  $s = \Lambda_{\gamma}(s')$  and  $t = \Lambda_{\gamma}(t')$  where  $a \le s' \le t' \le b$ . Hence,  $\Lambda_{\gamma}[[s',t']]$  is a non-decreasing map of [s',t'] onto [s,t] such that  $(\beta[[s,t]]) \circ (\Lambda_{\gamma}[[s',t']]) = \gamma[[s',t']]$ . So  $\gamma[[s',t']]$  is a reparametrization of  $\beta[[s,t]]$ . Hence,  $L(\beta[[s,t]]) = L(\gamma[[s',t']]) = L(\gamma[[a,t']]) - L(\gamma[[a,s']]) = \Lambda_{\gamma}(t') - \Lambda_{\gamma}(s') = t - s$ . If follows that  $\beta$  is a constant speed path of speed 1.

Define the affine homeomorphism  $\phi:[0,L(\gamma)]\to [c,d]$  by  $\phi(t)=\left(\frac{d-c}{L(\gamma)}\right)t+c$ . Since  $\Lambda_\gamma:[a,b]\to [0,L(\gamma)]$  and  $\phi:[0,L(\gamma)]\to [c,d]$  are non-decreasing onto maps, then so is  $\Phi \Lambda_\gamma:[a,b]\to [c,d]$ . Define the path  $\alpha:[c,d]\to X$  by  $\alpha=\beta \circ \Phi^{-1}$ . Then  $\alpha \circ \varphi=\beta$  and  $\alpha \circ (\Phi \circ \Lambda_\gamma)=\beta \circ \Lambda_\gamma=\gamma$ . So  $\gamma$  is a reparametrization of  $\alpha$ . Let  $c\le s\le t\le d$ . Set  $s'=\Phi^{-1}(s)=\left(\frac{L(\gamma)}{d-c}\right)(s-c)$  and set  $t'=\Phi^{-1}(t)=\left(\frac{L(\gamma)}{d-c}\right)(t-c)$ .  $\Phi(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t')=\beta(s',t'$ 

$$\alpha|[s,t]. \text{ Hence, } L(\alpha|[s,t]) = L(\beta|[s',t']) = t' - s' = \left(\frac{L(\gamma)}{d-c}\right)(t-c) - \left(\frac{L(\gamma)}{d-c}\right)(s-c) = \left(\frac{L(\gamma)}{d-c}\right)(t-s). \text{ Therefore, } \alpha \text{ is a constant speed path with domain } [c,d]. \ \Box$$

**Proof of Theorem 6.** Let  $(X,\rho)$  be a locally compact complete path metric space. Let  $x, y \in X$ . We must construct a geodesic joining x to y.

Since  $\rho(x,y) = \inf \{ L(\gamma) : \gamma \text{ is a path in } X \text{ joining } x \text{ to } y \}$ , then there is a sequence  $\{\gamma_i\}$  of paths in X joining x to y such that  $L(\gamma_i) < \rho(x,y) + \frac{1}{i}$ . Since reparametrization doesn't change path length, then by Lemma 7 we can assume that each  $\gamma_i$  is a constant speed path with domain [0,1]. Set  $G = \{\gamma_i\}$ . Then  $G \subseteq C_{\rho}([0,1],X)$ .

We will now apply Theorem 3 to G. If  $t \in [0,1]$ , then  $\rho(x,\gamma_i(t)) = \rho(\gamma_i(0),\gamma_i(t)) \le L(\gamma_i|[0,t]) \le L(\gamma_i) < \rho(x,y) + 1$  for  $i \ge 1$ . Hence, for each  $t \in [0,1]$ ,  $\{\gamma_i(t): i \ge 1\} \subset B(x,\rho(x,y)+1)$ . Since  $B(x,\rho(x,y)+1)$  is compact by Theorem 4, then  $\{\gamma_i(t): i \ge 1\}$  has compact closure for each  $t \in [0,1]$ . Thus, the G-image of every point of [0,1] has compact closure in X. Next let  $\epsilon > 0$  and suppose  $s \in [0,1]$ . Set  $\delta = \frac{\epsilon}{2(\rho(x,y)+1)}$  and set  $U = (s-\delta,s+\delta)\cap[0,1]$ . U is a neighborhood of s in [0,1]. Suppose t,  $t' \in U$  such that  $t \le t'$ . Let  $i \ge 1$ . Exercise 8.b) implies that the speed of  $\gamma_i$  is  $L(\gamma_i)$ . Hence,  $\rho(\gamma_i(t),\gamma_i(t')) \le L(\gamma_i|[t,t']) = L(\gamma_i)(t'-t) < 2\delta(\rho(x,y)+1) = \epsilon$ . Thus,  $\rho$ -diam $(\gamma_i(U)) \le \epsilon$  for every  $i \ge 1$ . Hence, G is equicontinuous.

Theorem 3 now implies that G has compact closure in  $C_p([0,1],X)$ . Hence, after passing to a subsequence if necessary, we can assume that  $\{\gamma_i\}$  converges to a path  $\beta$ :  $[0,1] \to X$  in  $C_p([0,1],X)$ . Hence,  $\{\gamma_i(0)\}_{i\geq 1} = \{x\}$  converges to  $\beta(0)$  and  $\{\gamma_i(1)\}_{i\geq 1} = \{y\}$  converges to  $\beta(1)$ . So  $\beta(0) = x$  and  $\beta(1) = y$ ; i.e.,  $\beta$  joins x to y.

**Lemma 9.** Let  $(X,\rho)$  be a metric space. If  $\gamma_i:[a,b]\to X$ ,  $i\geq 1$ , and  $\beta:[a,b]\to X$  are paths such that  $\{\gamma_i\}$  converges to  $\beta$  in  $C_\rho([a,b],X)$ , then  $L(\beta)\leq \lim\inf L(\gamma_i)$ .

**Proof of Lemma 9.** Let  $a=t_0 < t_1 < \cdots < t_n = b$  be a partition of [a,b]. Suppose  $\epsilon > 0$ . Then there is a  $k \ge 1$  such that  $\sigma_\rho(\beta,\gamma_j) < \epsilon I_{2n}$  for  $j \ge k$ . Then for  $j \ge k$  and  $1 \le i \le n$ ,  $\rho(\beta(t_{i-1}),\beta(t_i)) \le \rho(\beta(t_{i-1}),\gamma_j(t_{i-1})) + \rho(\gamma_j(t_{i-1}),\gamma_j(t_i)) + \rho(\gamma_j(t_i),\beta(t_i)) \le 2\sigma_\rho(\beta,\gamma_j) + \rho(\gamma_j(t_{i-1}),\gamma_j(t_i))$ 

$$< \ ^\epsilon \! I_n \ + \ \rho(\gamma_j(t_{i-1}), \gamma_j(t_i)). \ \ \text{Hence, for } j \geq k, \ \ \sum_{i \ = \ 1}^n \ \rho(\beta(t_{i-1}), \beta(t_i)) \ < \ \epsilon \ + \ L(\gamma_j). \ \ \text{This proves that}$$

$$\text{for every } \epsilon \geq 0, \text{ there is a } k \geq 1 \text{ such that } \sum_{i=1}^n \; \rho(\beta(t_{i-1}),\beta(t_i)) \; - \; \epsilon \; \leq \; \inf \big\{ \; L(\gamma_j) : j \geq k \, \big\}.$$

$$Consequently, \ \sum_{i\,=\,1}^n \ \rho(\beta(t_{i\text{--}1}),\beta(t_i)) \ \leq \ \text{lim inf } L(\gamma_j). \ \text{It follows that } L(\beta) \leq \text{lim inf } L(\gamma_j). \ \square$$

Continuation of the Proof of Theorem 6. Lemma 9 implies that  $L(\beta) \le \lim_{x \to 0} \inf L(\gamma_i) \le \rho(x,y)$ . On the other hand,  $\rho(x,y) = \rho(\beta(0),\beta(1)) \le L(\beta)$ . Thus,  $L(\beta) = \rho(x,y)$ .

Lemma 7 implies that  $\beta$  is the reparametrization of a constant speed path  $\alpha$ :  $[0,\rho(x,y)] \to X$ . So  $\alpha(0) = \beta(0) = x$  and  $\alpha(\rho(x,y)) = \beta(1) = y$ . Thus,  $\alpha$  joins x to y. Also  $L(\alpha) = L(\beta) = \rho(x,y)$  by Exercise 7. Moreover, according to Exercise 8. b), the speed of  $\alpha$  is  $L(\alpha)/\rho(x,y) = L(\beta)/\rho(x,y) = 1$ . The following Lemma establishes that  $\alpha$  is a geodesic.  $\square$ 

**Lemma 10.** Let x and y be points of a metric space  $(X, \rho)$ . If  $\gamma : [a,b] \to X$  is a constant speed path of speed 1 joining x to y and  $L(\gamma) = \rho(x,y)$ , then  $\gamma$  is a geodesic.

**Proof.** Since  $\gamma$  is speed 1, then  $\rho(x,y) = L(\gamma) = b - a$ , and  $\rho(\gamma(s),\gamma(t)) \le L(\gamma|[s,t]) = t - s$  for  $a \le s \le t \le b$ . Let  $a \le s \le t \le b$ . Set  $x' = \gamma(s)$  and  $y' = \gamma(t)$ . Then each of the three terms in the sum

$$S = [(s-a) - \rho(\gamma(a), \gamma(s))] + [(t-s) - \rho(\gamma(s), \gamma(t))] + [(b-t) - \rho(\gamma(t), \gamma(b))] =$$

$$[(s-a) - \rho(x,x')] + [(t-s) - \rho(x',y')] + [(b-t) - \rho(y',y)]$$

is non-negative. So  $S \ge 0$ . On the other hand,  $S = (b-a) - [\rho(x,x') + \rho(x',y') + \rho(y',y)] = \rho(x,y) - [\rho(x,x') + \rho(x',y') + \rho(y',y)] \le 0$  because  $\rho(x,y) \le \rho(x,x') + \rho(x',y') + \rho(y',y)$ . Thus, S = 0. Hence, each of the three terms in S equals 0. In particular,  $(t-s) - \rho(\gamma(s),\gamma(t)) = 0$ . Hence,  $\rho(\gamma(s),\gamma(t)) = t-s$ . This proves  $\gamma$  is a geodesic.  $\square$ 

**Definition.** Let  $(X,\rho)$  be a metric space. If  $\gamma:[a,b]\to X$  is a path, let the path  $\gamma^1:[0,1]\to X$  be the reparametrization of  $\gamma$  defined by  $\gamma^1(t)=\gamma((1-t)a+tb)$ , and call  $\gamma^1$  the unit interval reparametrization of  $\gamma$ .

**Observation.** Let  $(X,\rho)$  be a metric space. Suppose  $\gamma:[a,b]\to X$  and  $\beta:[c,d]\to X$  are paths,  $\epsilon>0$ , and  $\sigma_\rho(\gamma^1,\beta^1)<\epsilon$  in  $C_\rho([0,1],X)$ . Then  $\rho(\gamma((1-t)a+tb),\beta((1-t)a+tb))<\epsilon$  for  $0\le t\le 1$ . In other words,  $\gamma^1$  and  $\beta^1$  being close in  $C_\rho([0,1],X)$  implies that  $\gamma$  and  $\beta$  are in some sense close paths.

**Lemma 11.** Let x and y be points of a metric space  $(X, \rho)$ .

- a) If  $\gamma : [a,b] \to X$  is a geodesic joining x to y, then  $\gamma^1$  is a constant speed path of speed  $\rho(x,y)$  and  $\rho(\gamma^1(s),\gamma^1(t)) = \rho(x,y)(t-s)$  for  $0 \le s \le t \le 1$ .
- **b)** If  $\beta : [0,1] \to X$  is a path joining x to y such that  $\rho(\beta(s),\beta(t)) = \rho(x,y)(t-s)$  for  $0 \le s \le t \le 1$ , then  $\beta$  is the unit interval reparametrization of a geodesic which joins x to y.
- c) If  $\gamma:[a,b]\to X$  and  $\beta:[c,d]\to X$  are geodesics and  $\gamma$  is a reparametrization of  $\beta$ , then  $\gamma^1=\beta^1$ .
- **Proof.** a) First note that  $\rho(x,y) = \rho(\gamma(a),\gamma(b)) = b-a$  because  $\gamma$  is a geodesic. Let  $0 \le s \le t \le 1$ . Set s' = (1-s)a + sb and t' = (1-t)a + tb. Then  $\gamma^1(s) = \gamma(s')$  and  $\gamma^1(t) = \gamma(t')$ . Since  $\gamma$  is a geodesic, then  $\rho(\gamma^1(s),\gamma^1(t)) = \rho(\gamma(s'),\gamma(t')) = t'-s' = (b-a)(t-s) = \rho(x,y)(t-s)$ . Furthermore, since  $u \to (1-u)a + ub$  is a non-decreasing map from [s,t] onto [s',t'], then  $\gamma^1[s,t]$  is a reparametrization of  $\gamma[s',t']$ . So by Exercise 5.a),  $L(\gamma^1[s,t]) = L(\gamma[s',t']) = \rho(\gamma(s'),\gamma(t')) = t'-s' = (b-a)(t-s) = \rho(x,y)(t-s)$ . Thus,  $\gamma^1$  is a constant speed path of speed  $\rho(x,y)$ .
- **b)** Set  $\rho = \rho(x,y)$ . Define  $\gamma : [0,\rho] \to X$  by  $\gamma(t) = \beta(t/\rho)$ . Then for  $0 \le s \le t \le \rho$ ,  $\rho(\gamma(s),\gamma(t)) = \rho(\beta(s/\rho),\beta(t/\rho)) = \rho(t/\rho s/\rho) = t s$ . So  $\gamma$  is a geodesic. Since  $\beta(t) = \gamma((1-t)0 + t\rho)$ , then  $\beta$  is the unit interval reparametrization of  $\gamma$ .
- c)  $\gamma = \beta \circ \varphi$  for some non-decreasing onto map  $\varphi : [a,b] \to [c,d]$ . For  $t \in [a,b]$ ,  $t-a = \rho(\gamma(a),\gamma(t)) = \rho(\beta(\varphi(a)),\beta(\varphi(t))) = \rho(\beta(c),\beta(\varphi(t))) = \varphi(t)-c$ . Hence,  $\varphi(t) = t-a+c$ . Thus,  $d = \varphi(b) = b-a+c$ . So d-c=b-a. Now for  $0 \le t \le 1$ ,  $\gamma^1(t) = \gamma((1-t)a+tb)) = \beta(\varphi((1-t)a+tb)) = \beta(\varphi((1-t)a+tb))$

**Remark.** Let x and y be points of a metric space  $(X, \rho)$ . It follows from Lemma 11.c) that if there is only one geodesic *up to reparametrization* joining x to y in X, then there is *exactly one* unit interval reparametrization of a geodesic that joins x to y in X.

Theorem 12. Let  $(X,\rho)$  be a metric space. Suppose U is a subset of X×X such that for every  $(x,y) \in U$ , there is only one geodesic up to reparametrization joining x to y in X. For each  $(x,y) \in U$ , let  $\gamma_{x,y}$  denote the unique unit interval reparametrization of a geodesic which joins x to y in X. Then the function  $(x,y) \to \gamma_{x,y} : U \to C_{\rho}([0,1],X)$  is continuous.

**Proof.** Let  $\{(x_i,y_i)\}_{i\geq 1}$  be a sequence in U which converges to the point  $(x_0,y_0)\in U$ . Set  $\gamma_i=\gamma_{x_i,y_i}$  for  $i\geq 0$ . We must prove  $\{\gamma_i\}_{i\geq 1}$  converges to  $\gamma_0$ . Set  $G=\{(\gamma_i:i\geq 1)\}$ . Then  $G\subseteq C_p([0,1],X)$ . We will apply Theorem 3 to G.

Since  $\{x_i\}_{i\geq 0}$  and  $\{y_i\}_{i\geq 0}$  are converging sequences together with their limits, they are bounded sets. So there is a B>0 such that  $\rho$ -diam( $\{x_i\}_{i\geq 0}$ )  $\leq B$  and  $\rho$ -diam( $\{y_i\}_{i\geq 0}$ )  $\leq B$ . Lemma 11.a) implies that for  $i\geq 0$  and  $0\leq s\leq t\leq 1$ ,  $\rho(\gamma_i(s),\gamma_i(t))=\rho(x_i,y_i)(t-s)$ . Hence, for  $t\in [0,1]$  and  $i\geq 1$ ,  $\rho(x_0,y_i(t))\leq \rho(x_0,x_i)+\rho(x_i,y_i(t))=\rho(x_0,x_i)+\rho(\gamma_i(0),\gamma_i(t))=\rho(x_0,x_i)+\rho(x_i,y_i)t\leq \rho(x_0,x_i)+\rho(x_i,y_i)\leq \rho(x_0,x_i)+\rho(x_i,x_0)+\rho(x_0,y_0)+\rho(y_0,y_i)\leq \rho(x_0,y_0)+3B$ . It follows that  $\gamma_i([0,1])\subset B(x_0,\rho(x_0,y_0)+3B)$  for  $i\geq 1$ . Since  $B(x_0,\rho(x_0,y_0)+3B)$  is compact by Theorem 4, we conclude that  $\{\gamma_i(t):i\geq 1\}$  has compact closure in X for each  $t\in [0,1]$ . In other words, the G-image of every point of [0,1] has compact closure in X.

Now let  $\epsilon > 0$  and suppose  $s \in [0,1]$ . Set  $\delta = \frac{\epsilon}{2 \ (\ \rho(x_0,y_0) + 2B)}$  and set  $U = (s-\delta,s+\delta)\cap [0,1]$ . U is a neighborhood of s in [0,1]. Suppose t,  $t' \in U$  such that  $t \le t'$ . Let  $i \ge 1$ . Then  $\rho(\gamma_i(t),\gamma_i(t')) = \rho(x_i,y_i)(t-t') \le 2\delta(\rho(x_i,x_0) + \rho(x_0,y_0) + \rho(y_0,y_i)) \le 2\delta(\rho(x_0,y_0) + 2B) = \epsilon$ . Thus,  $\rho$ -diam $(\gamma_i(U)) \le \epsilon$  for every  $i \ge 1$ . Hence, G is equicontinuous.

Theorem 3 now implies that G has compact closure in  $C_{\rho}([0,1],X)$ . Hence, a subsequence  $\{\gamma_{n_i}\}$  of  $\{\gamma_i\}$  converges to a path  $\beta:[0,1]\to X$  in  $C_{\rho}([0,1],X)$ . Therefore,  $\{\gamma_{n_i}(0)\}=\{x_{n_i}\}$  converges to  $\beta(0)$ , and  $\{\gamma_{n_i}(1)\}=\{y_{n_i}\}$  converges to  $\beta(1)$ . Thus,  $\beta(0)=x_0$  and  $\beta(1)=y_0$ . So  $\beta$  joins  $x_0$  to  $y_0$ .

Let  $0 \le s \le t \le 1$ . Then  $\{\gamma_{n_i}(s)\}$  converges to  $\beta(s)$ , and  $\{\gamma_{n_i}(t)\}$  converges to  $\beta(t)$ . Since the metric  $\rho: X \times X \to [0,\infty)$  is continuous, we conclude that  $\rho(\beta(s),\beta(t)) = \lim_{i \to \infty} \rho(\gamma_{n_i}(s),\gamma_{n_i}(t)) = \lim_{i \to \infty} \rho(x_{n_i},y_{n_i})(t-s) = \rho(x_0,y_0)(t-s)$ . It follows from Lemma 11.b) that  $\beta$  is the unit interval parametrization of a geodesic joining  $x_0$  to  $y_0$ . By hypothesis,

this forces  $\beta=\gamma_0.$  We conclude that the subsequence  $\{\gamma_{n_i}\}$  converges to  $\gamma_0$  in  $C_p([0,1],X).$ 

Suppose that the full sequence  $\{\gamma_i\}$  doesn't converge to  $\gamma_0$  in  $C_\rho([0,1],X)$ . Then there is a  $\delta \geq 0$  and a subsequence  $\{\gamma_{s_i}\}$  of  $\{\gamma_i\}$  such that  $\sigma_\rho(\gamma_{s_i},\gamma_0) \geq \delta$  for  $i \geq 1$ . But since  $\{(x_{s_i},y_{s_i})\}_{i\geq 1}$  converges to  $(x_0,y_0)$  in U, then the preceding argument proves that some subsequence of  $\{\gamma_{s_i}\}$  converges to  $\gamma_0$  in  $C_\rho([0,1],X)$ . We have reached a contradiction. We are forced to conclude that  $\{\gamma_i\}$  converges to  $\gamma_0$ .  $\square$