
2-Dimensional Axiomatic Geometry Revisited 
 

Abstract:  We sketch a pedagogically motivated development of 2-dimensional 
axiomatic geometry that uses isometries and proves not just consistency of the theory 
but categoricity as well.   
 
Let X be a metric space of diameter D > 0.  A line in X is a subset that is isometric to 
either the real line or a circle of circumference 2D (if D is finite).  A segment is a 
compact connected subset of a line of diameter < D.  A subset is convex if it contains a 
segment whenever it contains the segment's endpoints.   
 
X is a 2-dimensional geometry if it satisfies the following 3 axioms: 
 
INCIDENCE: Two points (of distance < D) lie on a (unique) line. 
 
SEPARATION: The complement of every line is the union of two disjoint nonempty 
convex sets called the sides of the line, and any segment with its endpoints on different 
sides of the line intersects the line. 
 
REFLECTION:  For every line, there is an isometry that fixes the points of the line and 
interchanges the two sides of the line. 
 
We sketch a proof that every 2-dimensional geometry is isometric to either a 2-sphere of 
positive radius, the Euclidean plane, or a hyperbolic plane of negative curvature.  In 
spirit the proof comes from Bolyai and Lobachevsky.  The author has rediscovered 
some parts on his own and other parts in old texts. 
 
 
Motivations: 
• Approach geometry as a study of metric spaces a la Gromov. 
• Include isometries in the axioms so that congruence has a simple universal definition 

and the Side-Angle-Side Principle is a theorem. 
• Study spherical, Euclidean and hyperbolic geometry simultaneously. 
• Prove categoricity (not just the independence of the Parallel Postulate which is the 

usual goal of undergraduate axiomatic geometry courses). 
 
Let X be a metric space of diameter D ≤ ∞.   
 
Notation.  For P, Q ∈ X, let PQ denote the distance between P and Q. 
 
Definition.  A subset L of X is a line if L has a parametrization f : R → L.  
f : R → L is a parametrization if it is a surjective function that satisfies 
• f(s)f(t) = | s – t | when | s – t | ≤ D, and 
• f(t + 2D) = f(t). 
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Definition.  If s < t < s + D, then f([s,t]) is a segment with endpoints f(s) and f(t). 
 
Definition.  A subset U of X is convex if a segment lies in U whenever its endpoints lie 
in U. 
 
Definition.  A metric space X of diameter D ≤ ∞ is a 2-dimensional geometry if it 
satisfies the following three axioms. 
 
The Incidence Axiom:  Any two points P, Q ∈ X lie on a line in X, and the line is unique 
if 0 < PQ < D. 
 
The Separation Axiom:  For every line L ⊂ X, X – L = U ∪ V where U and V are non-
empty disjoint convex sets, and every segment with one endpoint in U and the other in 
V intersects L.  (U and V are called opposite sides of L.) 
 
The Reflection Axiom:  For every line L with opposite sides U and V, there is an 
isometry r : X → X such that r|L = idL, r(U) = V and r(V) = U.  (r is called a reflection in 
L.) 
 
 
 
Special Features of the D < ∞ Case. 
 
Definition.  Points P and Q ∈ X are antipodal if PQ = D. 
 
Definition.  For a point P ∈ X and a line L ⊂ X, if PQ = D/2 for each Q ∈ L, then P is 
called a pole of L and L is called an equator of P. 
 
Consequences of the Incidence and Separation Axioms (D < ∞): 

• Every point has a unique antipode, and the antipodal map is an isometry. 

• Any two distinct lines meet in a pair of antipodal points. 

• Every line has at most two poles which are antipodal and lie on opposite sides of the  
 line. 

• Every point has at most one equator. 
 
Consequences of the Incidence, Separation and Reflection Axioms (D < ∞). 

• Every line has two poles and every point has an equator. 
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Basic Theorems in the General Case (D ≤ ∞). 
 
Collinearity Criterion:  Let P, Q and R ∈ X be points.  P, Q and R are collinear if and 
only if either 
• one of the three numbers PQ, QR, PR equals the sum of the other two, or 
• PQ + QR +PR = 2D. 
 
Notation.  For each line L ⊂ X, let UL = X – { poles of L }.  (UL = X if D = ∞.) 
 
Projection Theorem:  Let L ⊂ X be a line.  Then there is a function πL : UL → L that 
satisfies the following two conditions. 
• For each P ∈ UL, PπL(P) < PQ for every Q ∈ L – πL(P). 
• If r : X → X is a reflection in the line L, then for each P ∈ UL, πL(P) lies on the 

segment 

€ 

Pr(P)  joining P to r(P). 
 
Theorem.  The reflection in a line is unique. 
 
Notation.  If L ⊂ X is a line, let rL denote the unique reflection in L. 
 
Definition.  If L, M ⊂ X are lines such that L ≠ M and rL(M) = M, then we say L is 
perpendicular to M and write L ⊥ M. 
 
Theorem.  If L, M ⊂ X are lines and L ⊥ M, then M ⊥ L. 
 
Theorem.  If L, M and N ⊂ X are lines such that L ⊥ M, L ⊥ N and M ≠ N, then  
M ∩ N  = either ∅ (if D = ∞) or the set of poles of L (if D < ∞). 
 
Theorem.  πL : UL → L is continuous. 
 
Theorem.  πL|(UL – L) : (UL – L) → L is surjective. 
 
Corollary.  Let L ⊂ X be a line.  Then for every point P ∈ L, there is a line through P that 
is perpendicular to L. 
 
Theorem.  Let P and Q ∈ X be points.  If P ≠ Q, then { R ∈ X : PR = QR } is a line in X 
that is perpendicular to any line that contains P and Q. 
 
The Three Reflections Theorem.  Every isometry of X is the composition of three or 
fewer reflections.   
 
Definition.  Subsets A and B of X are congruent if there is an isometry f : X → X such 
that f(A) = B. 
 



 4 

The Side-Angle-Side Theorem.  Triangles ΔPQR and ΔP´Q´R´ are congruent if the 
segments 

€ 

PQ and 

€ 

PR and the angle 

€ 

PQ ∪ 

€ 

PR are congruent to the segments 

€ 

P´Q´ 
and 

€ 

P´R´  and the angle 

€ 

P´Q´ ∪ 

€ 

P´R´, respectively. 
 
Theorem.  There is a unique angle measure function on X. 
 
Definition.  Two lines in X are parallel if they are disjoint. 
 
Definition. 

The Spherical Parallel Postulate.  For every point P ∈ X and every line L ⊂ X such  
that P ∉ L, then there is no line through P that is parallel to L. 

The Euclidean Parallel Postulate. For every point P ∈ X and every line L ⊂ X such  
that P ∉ L, then there a unique line through P that is parallel to L. 

The Hyperbolic Parallel Postulate. For every point P ∈ X and every line L ⊂ X such  
that P ∉ L, then there is more than one line through P that is parallel to L. 
 
Theorem.  One of the parallel postulates holds in X. 
 
Equivalence Theorem 1.  The following four statements are equivalent. 
• The Spherical Parallel Postulate holds. 
• The sum of the angle measures of every triangle is greater than π. 
• The sum of the angle measures of every convex quadrilateral is greater than 2π. 
• D < ∞. 
 
Equivalence Theorem 2.  The following three statements are equivalent. 
• The Euclidean Parallel Postulate holds. 
• The sum of the angle measures of every triangle is equal to π. 
• The sum of the angle measures of every convex quadrilateral is equal to 2π. 
Furthermore, each of these three statements implies D = ∞. 
 
Equivalence Theorem 2.  The following three statements are equivalent. 
• The Hyperbolic Parallel Postulate holds. 
• The sum of the angle measures of every triangle is less than π. 
• The sum of the angle measures of every convex quadrilateral is less than 2π. 
Furthermore, each of these three statements implies D = ∞. 
 
The Categoricity Theorem:  X is isometric to either a sphere of some positive radius, 
the Euclidean plane, or a hyperbolic plane of some negative curvature. 
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The proof of the Categoricity Theorem is motivated by the synthetic proof of the  
Bolyai-Lobachevsky Formula:  

tan

€ 

θ(x)
2

# 

$ 
% 

& 

' 
(   =  ex/k 

where θ(x) is the angle of parallelism. 
 
 
        asymptotic parallel 
                                                   x        θ(x) 
 
 
 
 
 
The Outline of the Proof of the Categoricity Theorem in the Hyperbolic Case. 
 
Goal:  Establish the (Hyperbolic) Law of Cosines.   
 
Step 1:  Consider the Lambert Quadrilateral 
 

                       x´ 
 
 
 

          y 
 
 
 

  x 
 
Define the function ϕ : [0,∞) → [0,∞) by  

ϕ(0) = 1  and  ϕ(y)  =  

€ 

lim
x→ 0

x´
x

# 

$ 
% 

& 

' 
(  for y > 0. 

 
It can then be proved “synthetically” (i.e., from the axioms) that: 
• ϕ is continuous, 
• ϕ is non-constant, 
• ϕ(0) = 1 ≤ ϕ(y) for all y > 0, and 
• ϕ(y + z) + ϕ(y – z)  =  2ϕ(y)ϕ(z). 

Then there is a constant k < 0 such that ϕ(y) = cosh

€ 

y
k
" 

# 
$ 
% 

& 
' .  (The previous formula implies 

this equation holds on a dense set.  Since ϕ is continuous it holds everywhere.)   
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Step 2.  Prove the (Hyperbolic) Pythagorean Theorem: 
 
 
              z                    
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Step 3.  Consider the right triangle 
 
 
              z                    
    y 
        θ 
  x 
 
Define the function C : [0, π/2] → [0,∞] by  

C(0) = 1  and  C(θ)  =  

€ 

lim
x→ 0

x
z
# 

$ 
% 
& 

' 
(  for θ > 0. 

 
Then using the (Hyperbolic) Pythagorean Theorem, the following formula can be  
proved: 

C(θ)  =  

€ 

tanh x
k
" 
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tanh z
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It can also be proved that: 
• C is continuous, 
• C(π/2) = 0, 
• C(θ + ψ) + C((θ – ψ)  =  2C(θ)C(ψ). 

Then C(θ) = cos θ.  (The previous formula implies this equation holds on a dense set.   
Since C is continuous it holds everywhere.)  

Hence, cos(θ)  =  

€ 

tanh x
k
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Step 4:  The (Hyperbolic) Pythagorean Theorem      

plus the formula     cos(θ)  =  
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tanh x
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together imply the  (Hyperbolic) Law of Cosines: 
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Step 5:  Define an “exponential map” from a model of the curvature k hyperbolic plane 
onto X.  Since the (Hyperbolic) Law of Cosines is valid in both the model of the 
curvature k hyperbolic plane and in X, then this exponential map is an isometry. 
 
(From talk at Tallahassee AMS meeting in March, 2004.)  


