A WEW PROCEF THAT ﬁfgﬁ ]
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in [8], C. Rourke gives a brief clever proof of the classical result of
V.A. Rokhlin [4] that every closed orientable 3-manifeld bounds a compact
orientable 4-manifold (d.e., ng 0}. The non-orvientable version of Rohklin's
theorem, originally proven by R. Thom [&], guarantees that everv closed
d-manifold (possibly non-orientable) hounds a compact 4-manifold (jv"gx J). Inm
this presentation, we indicate how Rourke's approach can be extended to give
a short proof of this latter theorem.

In (5], an 0 is deduced as a corollary of a stronger theorem {proven
earler in [7] and [2]) that every closed orientable 3-manifold can be
reduced to §° by a finite number of elementary Dehn surgeries. Here
"elementary” means that a meridian of the attached solid torus is identified
with a curve in the boundary of the removed solid torus that is homotopic to
the core of the removed solid torus. Then Q3 =z § follows from the cbservaticn
that any two closed orientable 3-manifclds which differ by an elementary Dehn
surgery cobound a compact orientable 4-manifold.

Similarly we can dedﬁce that Ngx 0 from a stronger theorem (first proven
in [3]) about the reducibﬂity by surgery of every non-arientable 3-manifold
to a simple model. In the non-orientable situation the simple model which
replaces S° is the non-orientable 2-sphere bundle over S', which we dencte T.

Our basic thecorem is:

THEOREM Every closed non-orientable 3-manifold can be reduced to T by a

finite number of elementary Dehn surgeries.

Since T bounds the non-orientable B> bundle over s*, and since any two

closed 3-manifolds {(orientable or not) which differ by an elementary Dehn
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surgery cobound a compact 4-manifold, we have:

{COROLLARY. ( .?9’”3: 0} Every closed 3-manifold bounds a compact

4~manifold.

We describe how to extend Rourke's technigues to give an elemeniary
proot of the above Theorem . 4s in [5], we will use an induction argument
based on a complexity assigned to Heegaard diagrams.

Supposa M = Hg U H2 is a Beegaard splitting of a non-orientable
Z-manifold M. Then H1 and H;z are non-orientable handlebodiss wmeeling along a
non-orientable surface 3. If the Hi°s are of genus n, then § has Euley
characteristic 2-2n, and we will call § a non-orientable surface of genus n.

& set of n disjoint 2-sided {i.e., having an annular regular neighborhood)
simple closed curves on § whose complement is a punctured disk is called a
complete system of curves ocn S. (Every non-orientabkle surface of genus n has
a complete system of curves.) It is easy to see that if ¥ and ¥ are compleie
systems of curves on § with the property that each element of ¥ bounds a disk
in H1 and each element of ¥ bounds a disk in Hz‘” then M i=s completely
determined by 8§, X and Y. We then call 3{X,Y) a Hesgard diagram for M.
Moreover, any Heegaard diagram, S{(X,Y), uniguely determines a 3-manifold
which we will dencte M(X,Y).

L 2-sided cur\ie X ont a non-orientale surface S is called exceptional if
5 - x i3 orientable, otherwise it is called ordinary. & complete system of
curves on § is called uniform if it contains only ordinary curves, or if
genus{3) = 1. It is easy to see that every non-orientable surface of genus n
has a uniform complete system of curves. Note that a genus 1 complete system
necessarily contains a single exceptional curve., A Heegaard diagram S(X,Y)

will be called a uniform if both X and Y are uniform systems.
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REMAREK. The assumption of "2-sidedness” for all curves used in a

Heegaard diagram is of utmost importance. While this property is automatic
for & curve on an orientable surface, the situation is much different for
non-orientable surfaces. On the other hand, our preference for ordinary
curves evolved during our work on this problem. Use of uniform Heegard
diagrams substantially simplified our original proof. Much of the work done
in proving the our theorem is aimed at securing these properties when
choosing new curves {see for example the lemma below).

To a uniform Heegaard diagram S(X,¥), where 8 is non-orientable, assign
a complexity ®{X.,¥} = {n.k) where n = genus(s) and
k=min{lx n ¥yl : x€ X, y €¥}). Note that since 5 is non-orientable, then
n 2z 1. Our proof is by induction on the complexity of these uniform Heegaard
diagrams under the lexicographic ordering.

While many facts about surfaces and 3-manifolds must be verified to give

a complete proof of the theorem, the key is the following:

LEMMA Suppose x and y are two non-separating 2-sided curves on a
non-orientable genus n surface § and that x meets y ‘transversally. Let
iz n ¥l denote the number of intersection paints.

(8) If 1z n y! = 0 and both z and vy are ordinary, then there is a
{necessarily ordinary) n-on-—separating 2-gided curve z on § which meets each of
x and y transversally in a single point.

(b) If i1z n y! > 1, then there is a2 non-separating 2-sided curve z on S
with [z n zl <lzxn yl and ¥ n 2| < {x n y|. Moreover, if x and v are

ordinary then z can be chosen to be ordinary.

Proct of this lemma requires careful examination of approximately ten
different cases. Its complete proof as well as the remaining ingredients in

the proof of the main theorem can be found in [1]
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