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Two applications of topology to physics
by Fredric D. Ancel

I. OStephen Hawking has predicted that black holes can "evaporate”
and disappear from the universe. From the point of view of the universe as
a d-manifold with a preferred time direction, one possible explanation of
the disappearance of & black hole is as an increase in the number of
components in the cross—sections of the universe transverse to fhe time
direction as time increases. {(See Figure 1)
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The universe is a spacetime; ie, 2 smooth 4-manifold with a Lorentz
metric {(a semi-Riemannian metric with signature: —+++). John Friedman
of the Physics Department at the University of Wisconsin, Milwaukee asked
for explicit examples of spacetimes which exhibit such behavier. In other
words, he asked for specific examples of spacetimes in which the number
of components in the cross—sections transverse to the time direction
increases with increasing time?

It is simple to discover such examples based on the observation that
a smooth manifold admits a Lorentz metric if it admits a non-zero vector
field. (The vectors point in the direction of increasing time.) This
opservation reduces the question to an exercise in using the Poincaré-Hopf
Index Thecrem.



TP? has fuler characteristic 3. Hence, it admits a vector field with
3 Zeroes which can be Cchosen 10 be one source and two sinks.  {(Both
sources and sinks have index +1 in dimension 4) Thus, £P2-(3 points) has
a Lorentz metric in which the number of components in the cross-sections
transverse to the time direction changes from 1 to 2. Furthermore, a
typical section with 2 components separates @P4-(3 points) info three
noncompact pieces. {See Figure | again.)

RP% has Fuler characteristic | and, therefore, admiis a vector field
with one source (and some closed trajectories). Hence, €PZgRP* has a
vector Tield with one source and one sink. Thus, €P2gRPY-(2 points) has a
Lorentz metric in which the number of components in the cross—sections
transverse to the time direction changes from 1 to 2. Furthermore, a
typical section with 2 components separates CPZgRP%-(2 points) Inte two
noncompact pieces and one compsct piece containing c/osed time-like
particle paths. {See Figure 2.)

11, At the 1988 Spring Topology Conference in Gainesville, Florida,
Otto Laback, an Austrian physicist, posed the following question. Given that
we can directly observe only certain subsets of R™ (such as smoothly
embedded i-manifolds corresponding to particle paths), what possible
topologies on RM are compatible with the usual topology on physically
observable subsets? To make this more precise, for a3 collection 4 of
subsets of B Jet

T4 = [UCRM: UNS is arelatively open subset of S for each S € 4}
= the largest topology on RM which induces the standard topology on
each element of 4,

and let

% g = he homeomorphism group of R" with the topology T s

Then we reformuiate Laback’'s question as foliows:



Guestion. For which collections & of subsets of BY is T g the

standard topology on B, and is % g the standard homeomorphism group of
RR7

Wwe answer this guestion for two different choices of 4.

Theorem 1. /7 & 7s 2 collection of subsets of BY which containg
all ! embedded T-manifoids, then T & 15 the standard Lopoiogy on RY an¢
¥ 5 75 the stanaard homeomorphism group of BE.

A subset S of R is a smooih sef if for each p € S, there ig a
neighborhood U of p in B, thereisanr = |, and there isa O imap f: U =
E such that 1"N0) = SNU and f has a non—zero partial derivative of order
< r at each point of U. For example, every C? embedded submanifold of RR

is a smooth set, and the zero set of every non-zero polynomial is a smooth
set.

theorem 2. /7 & /s the collection of all smooth subsels of BY,
thein T g 15 Strictly larger that the siandard topology on RBY, and % A
REIther Containg nor 1s contamed in the standard homeomorphism group of
RF.

The following lemma is the key to the proof of Theorem 2.

Lemma i. 7here /s atame arc A in BY with engpoint O such that
ror every smooth subser S of BY, /7 Q €3, then 0 ¢ cliSn(A-{01)),

Then A-{0} is a closed subset of RF with respect to the topology
T 4, but A-{0] is not closed in the standard topology on R" Furthermore,
the standard homeomorphism of BM which carries a straight line segment
onto A is not continuous under the topology T 4, and, hence, is not an
element of ¥ 5. (A slight strengthening of this lemma is used to produce
an element of % g which is not a standard homeomorphism.)



To produce the arc A, we use the following nofation. Sel w =
10,1,2,5L Fora = (a,-.48,) € wh, set

lall = a2,

X9 = T for x = Oq,,%,) € BY,
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Let r = 1, and let U be an open subset of BR. A functionf U -~ R is
of class (7 if for each a € w® with llall = r, f(a)(p) exists and is continuous
at every p € U. Let C'(U) denote the collection of all functions from Uto R

which are of class CF.

For r = 1, U an open subset of BR" f ¢ C"(U), and p e U, the degree r
Taylor polvnomial of 7 20 p s
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We can now state

A Version of Taylor's Theorem. /&f r = 1, /et U be a7 apen
sibset of BY Jer e CVYNU), angd Jet pe U JF x € BY such that U
CONLaInNs the straight line segment 7rom p o p+x, then there is 3 6 €

(0,1) such that

fp+rl = Tr,g.:x:; + !—I’i'-J-"'_Dﬂ-t:i!x:} "



We observe that 2 subset 3 of B? is a smooth if for each p € 5, there
is @ nelghborhood U of p in BP, there isan r = 1, and there is an f ¢ CVPIL)
such that f-10) = SnU and Trf # O for each g € U,

To prove Lemma 1, we impose a linear order < on w® as follows. For
a, b e wh we deciare that a < b if either

or

flall = llbll and there isak such that 1 £ k = n, a; = by for 1 £ i <k,
and @, < by.

To prove Lemma 1, we also need

Lemma 2. There /s an embedding § = (§y,,9,)  [0,1] - BY such
that 77 a, b € W and b < a, then
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(Here 93ty = TN /for a = (a,~,3,) € o)

Proof of Lemma 2. First define ¢ : [0,1] = [0,1] by $(0} = O and
Yty =In2/(n2-1nt) for 0 <t = I. Then L'Hospital's Rule implies that
forany r =0, t/($tH7 >0 ast -0 For ! =i = n,set §; = Po-of (the
i~fold composition of ¢ with itself). Then for any r = 0, ¥t/ (¥, (1 -
0 ast—-0,fort =i=n Finally, set ¢(t) = (D) for 1 =i =n. O

Proof of Lemma 1. Set A = 9[0,1] Suppese S is a smoocth subset
of R" and 0 € S. Then there is a neighborhood U of O in B®, there is anr
=z 1, and there is an f ¢ CT*YU)} such that f~1(0) = SNU and Tr.f = 0 for
each p € U. We shall show that O ¢ ci{SN{A-{0})). For assume Sn(A-{0})
contains a sequence that converges to 0. We shall argue that Tff = 0, and
thereby reach a contradiction.



By our assumption, there is a sequence {t;} in (0,1} converging to ¢
such that for each 1 2 1, 9{ty) € SNU and U contains the straight line
segment from O to ¢(4;). According to Taylor's Theorem, for every 1 = 1,
there is a 6; € (0,1} such that
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f0)(0) = £(0) = 0, because 0 € 5. Now suppose b € w®, IIbll = r and
1@} = 0 for every a € " such that a < b. We shall argue that 10X0) =
G, It will then follow that T7,f = O

Fer i = Lif0O =35 =7, set Xgj = 0; and if 5 = r+1, set Xg§ =
8;9(t;). Then the above Tayler Tormula becomes

. o 1o a N P
1 = i i WU g bl .
- Lo g DT eyt T
a €l
fall = r+1
b= 3

Divide this equation by @b(tié and let i = o Then according to Lemma 2,
we are left with (1/60f{b}0) = 0. O



