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~§0  Intrecduction

In my lecture at the conference I gave a relatively detailed
proof of the following thecrem, which represents joint work
with U. Haagerup, and which had been conjectured by Milnor,

(21,

Theorem 1 In hyperbclic n-space BEY  a geodesic n-simplex
g is of maximal volume if and only if ¢ is ideal and re-—

gular.

Here ideal means that all vertices are on "the sphere at in-

finity" Sinl . And regular means that all faces of ¢ are

congruent module the isometries of o
I alsc ocutlined, very briefly, how this result can be used

in a proof of Mostow's rigidity theorem for hyperbolic mani-

felds.

Theorem 2 [Mostow) Any homotopy equivalence fL:MN be-

tween closed, orientable, hyperbolic n-manifolds with n>3

is homotopic to an isometry.
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The preof that I refer to was given by Thurston (who attri-
buted it to Gromov) in his 1977/78 Princeton University lec-
ture notes, [4]. Thurston considered only the case n=3 be-

cause the wvalidity of theorem 1 was unknown for n>3

Since the lecture notes are not easily accessible, and since,
at the conference, there was considerable interest in some

of the details of Gromov's proof (especially what is below
called step 3) I have decided to write down a rather detailed.
exposition of Gromov's argument. The proof of theorem 1

will then appear elsewhere.

It follows that I claim absolutely no originality concerning
the material in this note. It is nothing but my interpreta-

tion and expansion of one of Thurston's lectures.

i

§1 Outline of Gromov's proof

In this section we outline Gromov's proof of Mostew's theo-
rem. Details are given in later sections. Thus let a homo-
topy equivalence f:M*N be given. It fits into the commu-

tative diagram

M=T\E ————— \B =N
£
where p denotes universal covering maps. Also T is -
equivariant where :I'+8 is the isomorphism of fundamental

groups induced by £
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Step 1 F.a%Hm" is a pseudo isometry, i.e. there are con-
orep L

stants a&a,b suchlthat
a ta(x,y)-bea(Fon  Fy)) <ad (x,v)

for all x,yEHn .

Step 2 Any pseudo iscmetry g of ut gives rise to a
contintous map g+:82—l+82_l on the sphere at infinity.

This association is such that %; is still g-eguivariant.

1

' n— , A
Ster 3 IE VO,VI,.‘.,Vnﬁsm span a geodesic n-simplex

. - = Fo-
of maximal volume then so do ;+(VO),E;(vl},...,h+\vn) .
Step 4 £, =h for some isometry mrETaET
+ S

Let us see how this finishes the proof. It is well known
that an isometry h of B is completely determined by

-1 -3
h+:si ‘+SE L. Tharefore, the above h:g%sr?  ig E-equai-

variant. And the map E:f\Hnwa\En that it covers is the

desired ispmetry. h 1s homotopic to £ because it induces

v on fundamental group level, at least up to conjugacy.

§2 Proof of step 1

We may assume that £ is simplicial w.r.i. triangulations
of M and ¥ . Then f{ satisfies a Lipschitz condition.

Hence so does T ; l.e.
(2.1) a(Fixy, Ely))<=dx,y) .

. We may also choose a homotopy inverse fl covered by an

o v - . . . .
Il vihich =satisfiies {(increase a, if need be)
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(2.2) d(?l(x),?l(y))gad{x,y)

(2.3) %l% iz T-eguivariantly homotopic to 1 _ -
H

On a compact set the homotopy involved in (2.3) moves any

x only a bounded distance. By eguivariance, and compact-

ness of M , the same holds con all of B , 1i.e. for scome
1

Now one has
d(x,y)52b1+d(?1E(x),fl?(ya)gzbl+aa(%(x),?(y))
which implies, wiﬁh b:2bl/a

(2.5) a(Fx), Fly))ra ta(x,y)-b
Q.E.D.

§3 Proof of step Z

The main ingredient is the folleowing proposition which states
that pseudo isometries "almost presarve” geodesics and "al-
most preserve" normal geodesic hyperplanes. If Yy is a geo-

desgic in H' we let PY denote the orthogonal projecticn

onto Y

Proposition 3.1 If g:Hn+Hn is a pseudo isometry then

there exists a constant 1 sco that

(i) Any gecdesic Yy has g(y) contained in a tubular

neighbourhood N (Y] of radius r around a unigue

gaodesic 2
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{ii) For any geodesic Y and any geodesic hyperplane
Q orthogonal to vy the image P?(g(Q)) is a

segment of length <r

Before we ocutline a proof let us apply the proposition. If
we call two geodesics equivalent when d(Yl(t),Yz(t}) is

2_1 is the

bounded for t+« (t & natural parameter} then &
set of equivalence classes of geodesics (as a set). It is
easily seen that Ty respects the eguivalence relation.

n—l+
&

s

271l Note that

Hence v-+Y. induces a function g+:S

when g 1is an isometry we may take r=0 and we recover the

) . . . n-1
usual extension of isometries over 5

. Also if g is
equivariant w.r.t. toc some @:T+6& (where T and © are

isometry groups) then so is 9,

To check continuity of g, - at zESn—l we argue in the upper
+ m

n-1_

@

" half space model. Then S Rn_lUm and we arrange coordi-
nates so that beth 2z and g+(z) are = . Let =z bg
determined by vy which passes through = . We may arrange
coordinates.so that =€y . Now any neighbourhood of g+(z)
contains a disc D which is "boundary" for a geodesic hyper-—

plane @ orthogonal to ? .

/LL\

y.

3
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Let H+(Q}' and H (Q) be the half spaces determined by Q .

One easily checks that
ﬁl(P"Y-(gY(t)),H—(Q))**m
as toe . Hamefm:yutﬁﬂeto
(3.1} d(P;(gY(t)),H'{Q)wzr , for 2t

If Q{t) 1is the geodesic hyperplane orthogonal to vy through

y(t) then (ii) and (3.1} imply that

(3.2) d(Po(g(Q(t) ) JE(0))ve , for b2t
Let ﬁé be the disc in ,Rn_l "bounding” Q(to) . We finish
the proof of continuity by showing that g+(DO)ED . In fact

iet y€DR, be determined. by y . If g+(y)$D then () ,

and hence P?(u(t)) , must be in 3 (0) for all t > some

T Since P? decreases distances it follows that

1 -
d(P;(g(u(t)}),H-‘m))ﬁr

for arbitrarily large values of t But this contradicts

(3.2).

The rest of this section contains a proof of part (i) of
proposition 3.1. We start by considering geodesics vy and
p and a fixed s>0 with cosh(s)>a2 {a = the Lipschitz
constant for g ) Let & be the length of a bounded, con-
nected component g(Y)l of g{Y)ﬂ(Hn—NS(p)) We first
want to establish an upper bound for & Let the endpoints
of g(vy}; be glp) and g(g) ard put p'=P (g(p)) .
q'=P, (g(a)) Then d(g{p)},p")=d{g{g).,q’)=s . 2Also, elemen-

tary hyperbolic gemoetry shows that PY]HD—NS(Q) decreases

—
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-1

lengths by a factor <coshis) Therefore

a_ld(P.q)—bgd(g(p},g(qJ)

525+1cosh(s)_l

<2s+ acosh(s)"ld{Prq} -

It follows that . gﬁg)

(2s+h) a cosh(s)

d(qu)Sk 2
cosh(s)-a

and, by the Lipschitz condition,

L<ak

Now take r=s+ak . We then have
(3.3) If gy(p) and gy(g) lie on p then gylp,qlel_(p)

In fact, if g(y{t)) Ileaves Ns(p) for some t€[p,gql] then

it must return to Ns(p) before arc length has grown by ak ,

so it cannot leave Nr(p)

For fixed Yy we now let Po be the geodesic through g(y{0))
and g({vy{n)) . Since d(g(y(n)),g(y(0))}+= as n+ (3.3} im—

plies that the angle Vo m between Py and ¢ at gf(y({o))

I

n+m

- 1
goes to zero as nre {(any m>0}, see the figqure .

g(&’(mm))

V’”J’?J

3@ j(m))

" Hence Pn has a limit geodesic Y as n*w . &nd one may

show that g(y)gNr(Y)
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Unigueness of Y is clear since Nr(?) and NI(Y) are

asymptotically disjoint in at least one end, if ?%? .

The proof of (il) is another relatively simple.geometric
exercise left to the reader (one may of course have to in—

crease. I ) -

§4 Gromoy's norm

For any smocth manifold M let Cl{A(k},MT be the space

1

(with C topoloéy) of Cl maps o:A(k)+M of the standard

k-simplex 4{k) into M . Let él(M) be the real vector

space of compactly supported Borel measures U

The wvarious face
1
(

1
variation ||ull. on the space C (A(k), M)

inclusions ni:A(k—l)+é(k) induce maps ni*:c Alk) M)

ct(a(x-1),M) and homomorphisms’ ai=(ni*)*:g{(m)+g§_l(m .

B=E{—l)i3i:€L(M)+£;_l(M) makes’ %@(M) into a chain complex.

If Cy (M) 'ig the real, singular chain complex, based on
Cl(A(k),M) , then there is an obvious patural transformation

on homology i induces an iscmorphism. More-—

110y (M) >, (1)

over, if A*(M) 18 the deRham cochain complex then the usual

pairing

<> 1 Cy (M)®A¥ (M) R
extends to a palring

<,>: & (M)@h* (M) R

defined by

of bounded total

U, W=

Now let M be 3

volume form QM

1

RV () T[]

the orientation
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defines Gromov's
[} =
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llm][ =
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<u.m>=j d*(w))du

sect (A (k) M) HA(}{)

Now let M be a closed, criented, hyperbolic n-manifold with

volume form QM . If u€g;(M)' is a cycle then | represents

<u,QM>V(M}_l[M] , where V(M) is the volume of M and [M]

the orientation cléss.

Definition 4.1 For a closed, oriented n-manifold M one

defines Gromov's norm to be
[[M]] = inf{{[ni] | u & cycle representing [M]] .

Theorem 4.2 (Gromov) For any closed, oriented, hyperbolic

n-manifcid M one has
fulj = van /v
(Vn = maximal volume of a gecdesic n-simplex in Hn) .

Proof We include a proof because it is wvery nice and be-—

cause it is used in the next section.

If UECI(A(k),Hn) we have another simplex s(c)€Cl(A(k),Hn)

which is affine and has the same vertices as o . Obviously

this defines a continuous map
s:eta ,mM et 5N

which is homotopic to the identity. Represent M as T\Hn
with universal covering projection .p:Hn+M . One easily
checks that there is a unique map E:Cl(ﬂ(k)-M)*Cl(A(k);M) .
hcmotcpic to the identity, which has p*s=gp* . The induced

chain map
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SM='“S-* :g* (M) "'g* (M)

iz chain homotopic to the ideptity, and of course

p*SHn SMP* )G o)

" Now let u be a cycle representing [M] . Then so does

s, (1) so, if Fect(a(n) ,HY) 1ifts o ,

fl

v = <y )y 2y

M

ol

: J 1 )d(s*u)
TECT (A (n) M) A(n )

s{o0)* (8 ))
An)

J
J
JA s {8) *p* (R ))du
oo

(

[

. JUEC {A(n) M} \
B JGEC A(n),M)(
f (
JGEC (A{n) M)

A H

Since s(g) iz affine one has

s(5)*( ) =J N Q
JA(n) g | s(3) (a(n)) EY
= V(s(3) {4{n)))
< V
- n
Hence
v(M)sJVn alui = v_[lul]

and we have proved that

lfal] = v /v,

To prove the opg
tion of a cycle
close to V(M) /v
of principal K

subgrcup cf the

H
R |

—_—

m

and the horizc
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g c
cally trivial T-

that I+{Hn)+D(M;

ny, isthe produc:
cne has
(4.1) hM(D(M

Cne now defines

a:C7 (A
as fcllows. Give
DM

given by

wU(Fg)




118

To prove the opposite ineguality we need an explicit construc-
tion of a cycle representing [M] and of total variation
close to V{M)/Vr‘i . It proceeds as follows. We have a map

of principal X bundles, where K is a maximal compact

I

)

subgroup of the orientation preserving iscometry group I+ (B

= hid

l

B} —————— T\I_ (5" =D (M)

]
B

———  \u%=m

P

and. the horizontdl maps are prindipal [ bundies. As a

topologidal space I+(Hn)=KXHn' and the Haar measure hO on

I+{Hn) is the product of the one on K and the volume form
Q . Since hO is left invariant and I+(Hn}—x—D{M) is a lo—

H
cally trivial T=bundle, there is a unique measure hM on D{M) such

that I+ (Hn)+D(M) is locally measure preservindg. Since, logcally,

hM
one has .
(4.1) hM(D(M))=V(M) .

is the product of the Haar measure cn X and the volume form Q‘M

One now defines a function
a:ch(a(k) 2N 00

as follows. Given o:4(k)~+H" there is a continuous map
(g :D (M) >C (A (k) ,19)

gi_ven by

vy (Tg)=pgo , geI (E") .
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We let
o (6) =0y (hy) €6, (1) .

I+ is then easy to check the following properties.

Lemma 4.2

(1) a(u)=a(go) , all geI_ (")
(i1) a(ﬁ(i))=3iu(c) , o\ B ogth foce of o
(1i1) lo(o) i =vn  if oect(a(n) B
(iv) 1¢ cect(a(m),EY)  then <a(s),2>=V(o)V{M)
where V{G)=J a* (0 n) .
A(n) 1

Tn fact (ii) is purely formal, (iii) a restatement of (4.1,
(i) a conseguence of the right invariance of hM under

I+{Hn) , and {iv} is seen by the following computatiop
<u(a),ﬂM> =
= (J T {{ ))d(wg*(h )
JTECI(A(n),M) Agmy M M

05 (T9)* (By) )aty,

JTgGD(M)(JA(n)

o*g¥p® (D) })dh
JFgED(M)(JA(n) = M

a% (2 9@h
gED(M)(JA(n) gt/ M

.
S(J o¥ ({1 n))V(M) .
A{n) H
¥ote that when o:A(n)>H® is affine with image set ocH™
then V{0)=tV(s) where the sign depends on the orientation

character of o .

For any affine’ g
where o_ =0 fg
Propérties (i) an
is a cycle { g (1)
even thouch ¢ g
fafa ) ]| =2v(M) b
disjointly suppor
sents 2V (o) IM]

since V{g) ecan .

implies that [|m|]

Assume that v _,wv.

Ol
maximal volume,

neighbourhocds U,

{5.1) If v, &l

by Vg

Here s isg the "¢
4. Nate that (5.1)

n .
H'y no ideal vert

For smaller neight

condition

{(5.2) viEV. ;

g(v,) €U

It is easily seen
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For any affine _GECl(A(n),M) let C{G}=a(a)—u(d_)6€;{M}
where ¢ = g followed by a reflection in one of 0o's faces.,

Properties (i} and (ii) above immediately imply that (o}

is a cycle U(i) and U_(i) are congruent modulo I+(Hn)
even though ¢ and o_ are not). Also [|g(o) | = [Ja(o)]|] +
Ja(o V]| =2v{M) by (iii} (and because a(g) , a(v ) are

disjointly supported). And, because of (iv), tr{c) repre-
sents 2V(o)[M] . It follows that [|M|] <v)/v(c) , and
since V(d) can be chosen arbitrarily cleose +o Vh this
implies that [|¥[[ v (M)/V, .

Q.E.D.

§5 Proof of step 3

Assume that vo,vl,...,VHESEml span & gecdesic simplex of

maximal volume, but ?+(vo),...,?+(vn) do not. We may find
neighbourhoods Ui of Vi s in EO y and an g>0 so that
{(5.1) If ViEUi and ¢ 1is the geodesic simplex spanned

by Vpys.e...v,  then V(s?+(s))§vn-€ -

Here s 1is the "straightening” map introduced in section
4. Note that (5.1) deals only with geodesic simplices in

n . , .
H', no ideal vertices are involved any more.

For smaller neighbourhoods Vi(EUiEHn) cf v, consider the

condition

(5.2) gvievi y i=0,1,...:n

g(vi)EUi.

It is easily seen that Vi may be chosen sc that
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Dy (M)={Fg€D (M)} g satisfies (5.2)}
has measure
(5.3 hM(Dl(M))=hl>0 .

Now choose a positively oriented affipe simplex UDECl(A{nJ,M)

with vertices in the neighbourheccds Vi and with
{5.4) V(Go)>vh_6 .
By (5.1) and the definition of D, (M) one has

(5.5) 1f I'g€p, (M) then

V¥SE+(gUD))gvnﬁE§V(dO}+6~a .
Also

(5.6} If rgefnl (%) then

V(s (go ) )<V <V (o )48 .

We go on to com?ute which multiple of [N] is represented

by SNf*ﬁ{UO) . We have
<SEet{o) fy>=

= CoTH(Q J)d(E a9 o (h )}
'[':ECl(ﬁ (n) ,N}UA(n} N T

(E{fp))*(QN))d(wU « ()

pecl{A(n),M)(Ja(n) o

(5 (£p50,) ) * () )iy,

_ -

(s (pfgo)) (%) )th_

(s (Fgo 1) #p* () ),

(s(¥go V1% (0 )\‘d‘nx
TgeED (M) Ay © yn/ M

§
i
|
],
|
i
!

_f
B

<hy (v

Iger

=(V(o,
Now choose &<eglr

<SNf*o

Similarly

~<8y £,

Also Y (M)=V(N)
Hence. it follows
AfN] with 2a<2v

C(UO) represent

It iz in this pa

permits cne to t

(6.1) if Vo

desic
The rest of the

Poincaré (unit 4

We may compose
h,f, fixes all
0

say ABC.
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f

= V(s (fgo_))dh
Yrgen oy o K

ghl{V(Go)+5*E)+(V(M)*hl)(VTGO}+5)
=(V{o )+8) V(M) -€hy .
Now choose 6<Ehl/V(M) . Then one gets
€S f.a(0,) R <V (e )V ) .
Similarly

) 1 Q> <=V (o JV(M)=V (G )V () -

o= N

Also V(M)=V(N) , because £,([¥])=[F] and [[£,0m3]} < |l .
Hence it feollows that SNf*(g(UG)) represents a multiple
A[N] with A<2V(g)) and this contradicts the fact that

t(o,) represents 2V(o, )iM] .

66 Proof of step 4

It is ir this part that theorem 1 enters the picture. 1t

permits one to translate the result of step 3 into

(6.1} If vo,vl,...,vneszfl span an ideal, regular, geo-

desic n-simplex in H' then so do E‘+(xro),.-.,%’+(vn) }

The rest of the argument is conveniently illustrated in the

Poincaré (unit disc) model.

We may compose ¥  with an isocmetry h to cobtain that
T
bra . - . - . 2
h, T, .fixes all vertices of scme regular, ideal n-simplex,
e

say ABC.
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Bu{ then it must alsc fix the reflection of each vertex in
the opposite face, such as A' (bezcause, for n>2, there are ¢cnly two
ideal regular n-simplices containing the given face, and

?+“ is injective). Repeating this procedure ad infinitum we

see that h+%; fixes a dense subset of Sﬁ;l . By continui-
= . : i = =1
ty h4f4f1d, i.e. the original T h& .
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