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i. Imtroduction

Consider hyperbolic n-space H™ represented as the Poincaré disk model

H~ D" = {x€R™| |x[| <1}

with the Riemannian metric

4 13
ds* {dx)? where ri=7 af.

=(1ﬁ”2)2i1 1

Ihvs

The geodesics in H" are the circles orthogonal to the “sphere at infinity”
2H" = {x€R*| x| =1} =8""1.

An n-simplex in H™ with vertices v, ..., v, €H" U 8H" is the closed subset of " bounded
by the n+1 spheres which contain all the vertices except one and which are orthogonal to
8 '. A simplex is called sdeal if all the vertices are on the sphere at infinity. Tt is easy to
see that the volume of a hyperbolic n-simplex is finite alse if some of the vertices are on the
sphere at infinity. A simplex is called regulor if any permutation of its vertices can be in-
duced by an isometry of H*. This makes sense also for ideal simplices since any isometry
of H" can be extended continuously to H™U 8H". There is, up to isometry, only one ideal
regular n-gimplex in H™.

The main result of the present paper is the following theorem which was conjectured
by Thurston ([6], section 6.1).

TEEOREM 1. In hyperbolic n-space, for n 22, a simplex 15 of maximal volume if and
only if it is ideal and regular.

Since any hyperbolic n-simplex is contained in an ideal one it suffices, when proving
Theorem 1, to consider ideal simplices. We shall use the notation t[»] for an arbitrary ideal

n-simplex in A", while t,{n] always denotes a regular t{n].

1 —812801 Acta mathemarica 147, Emprimé le 11 Décemdre 1981



2 TU. HAAGERTUF AND H, J. MUNKHOLM

For n=2 any z[2] is regular and has area equal to 7, so in this case the theorem is
trivially true.

For n=3 one has Lobatcheffsky’s volume formula, [1]. For the form of it given below
see e.g. Milnor [3]. In any 7{3] opposite dihedral angles are equal, and if o, §,  are the three
dihedral angles at one vertex then « -+ f+y =m, and the volume is given by

V(z[3]) = Ala) + AB) +Aly)

where

Ao)y=— f: log (2 sin. u) du.

As shown in [3] this formrula implies Theorem 1 for n=3.

The motivation for the present study is a very elegant proof, due to Gromov, of
Mostow’s rigidity theorem, [5], for oriented closed hyperbalic 3-manifolds. The theorem
states that for n=3 two oriented, closed, hyperbolic n-manifolds which are homotopy
equivalent are automatically isometric. It is clear that Gromov’s proof (as presented in
Thurston’s lecture notes [6], section 6.3) works also for »>3 once one knows that ideal
simplices of maximal volume in H” are automatically regular,

For the convenience of the reader we give here a very brief outline of Gromov’s
argument.

Let f: M—+N be a homotopy equivalence between closed, oriented hyperbolic n-mani-
folds with # 3. To prove that M and N are isometric one notes that they are orbit spaces
I'NH" and @~ H*, respectively, for discrete isometry groups I" and ® on hyperbolic
n-space H™ Also, f induces an isomorphism f,: I'~® and it lifts to a map f. H*— H® which
is equivariant with respect to f I'»®. The first step now consists in showing that f
“induces’”’ a continuous map f: " '8! on the sphere at infinity; /© is also equivariant
with respect to f,. In the second step one utilizes Gromov’s norm to prove that f® has the

following property:

(L.1) Whenever ¥y, ¥y, ..., ¥, €8™ ! span an ideal hyperbolic simplex of maximal volume
then so do f2{v,), F2(¥1), «o [2{V0).

At this point Theorem 1 enters. It is used simply to translate (1.1) into

(1.2 Whenever vy, Vg, .., Y, €8™ " span a regular, ideal, hyperbolic simplex, then so do
F2(Vo)y [2(¥1), vy [2{¥0).

The fourth step then consists in. proving that any continuous map f*: §71 §1 gatisfying
(1.2) is the “restriction” to §** of a unique isometry ¢ of H" (when n>3). Since this g is

still equivariant with respect to f,: T'>® it induces the desired isometry M —N.
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The proof of Theorem 1 avoids explicit computation of the volumes Vitn]). Never-
theless the methods involved can be used to give an asymptotic estimate of Viz,[n]) for
n—+oo. We found that

. Vlzln])
lim " =V
nco V(0o[n])

where gy[n] i3 a regular euclidean n-simplex with vertices on the unit sphere. This asymp-
totic formula has been known to Milnor for some time [4], but sinoe his proof is less direct

than ours, we find it worthwhile fo present our proof here (cf. section 4).

2. Recollections about hyperholic n-space

Besides the Poincaré disk model of H™ we shall use two other models, namely the pro-
jective model and the hall space model. The projective madel can be obtained from the

Poincaré disk model by wse of the map

2
’}’).X“"W!{, HX”<.1.

Note that p{H")=D" and that p can be extended continuously to H"UZH" by putting
p(x)=x for all x€8* L. The induced metric on p(H") is

ds* = (1— 1S (da* + (1 — 7372 Y a2 dow, day,
; 4

I

and the associated volume form is
ayv = (L—r2)=0hizdy, | dr,. -

The advantage of the projective model is that geodesics become straight lines in the euclid-
ean geometry on D" Hence, if 7[n] is an ideal hyperbolic n-simplex with vertices v, ..., v,
on S§** then p(z[n]) is simply the euclidean n-simplex with the same vertices. Therefore,

the volume of 1{n] is given by the formula

V(z[n]) = f (1 — 2yt gy 2.1
nizind)

Let e, ..., &, be the standard basis in B*. The half space model of H* can be obtained from

the Poincaré disk model by use of the map

1
h:x F‘)l**———g-n*z (2271, 2552, veey 21, 1 — iEX”z), ”X“< 1.
"

[x—-
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Note that A{(H™) is the half space {xeR™{x,>0}. Moreover, A can be extended to the
sphere at infinity by using the same formula except for x=—e, where one puts h{e,)=°.
Then k(6H") =R*"1U {eo} with R ={x€R"|x,=0}. The indnced metric on A(H™) is

dsz = x;Z Z (dw1)2:

and the associated volume form is
dV —x; dx, .. dz,.

The geodesics in A(H") are half circles and half lines orthogonal to B,

Tet 7[r] be an ideal simplex with vertices ¥y, ..., V. It is no loss of generality to assume
that v,=e,, and hence h(V,)="°. The isometries of A(H™) fixing = on the boundary form
the group generated by (a) translations parallel to R, (b) rotations leaving the z,-axis
pointwise fixed, and () multiplications by positive scalars. Hence, by replacing 7[n] by an
isometric n-simplex one can achieve that B{vg)=oc and A(vy) e e R (=1, 2, .., 0k
Let e(z[n]) be the euclidean (7 —1)-simplex in R spanned by B{(Vy), ..., b{v,). Then
h(z[n])—{oo} consists of those points of e(z{n]) x {0, *{ which are outside the unit disk
in R* Thus, putting o=} +...+x51)t and dp=dz, ... d, . one gets

Vitn]) = f (J x™" da:) dp
=(elnl) v Q-

1
. 1-— 92)—(71--—-1)i'2d .
71 Joeey ( P

(2.2)

Let us finally note, that z{n] is regular if and only if e(r[n]) is euclidean regular.

3. Proof of Theorem 1
The proot of Theorem 1 relies on an interplay between the formulas (2.1) and (2.2).

The fact that (2.1) expresses V(z[n]) as an integral over an n-dimensional euclidean simplex
while (2.2) expresses V(r[n]) ag an integral over an {(n—1)-dimensional euclidean simplex
makes it possible to compare volumes of ideal simplices in H*** with volumes of ideal
simplices in A", and finally to prove the main theorem by induction on #.

We start by giving an estimate for the growth. of V{z,[n]) which will be used in the
proof but which is also of interest in itself. Recall that T,[n] denotes a regular ideal n-simplex

in A™.

ProrosSITION 2. For all n =2 one has

n—1  V(t[n+1}) <1

S Tl W -

i B T e o

.w-;-;;-:,-; :=-'-:Lg R
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Remark. The upper bound was noted by Thurston ([6], section 6.1).

Proof. Let ayn] be any regular euclidean n-simplex with vertices on 81, We shall

prove the following three formulas

f (1 =73~ D2 gy = Tz [n]) (3.2)
aoin]
f (1—r3)"2dr=aV(zln+1]) (3.3)
ooln]
f (1~ rz)‘(“‘l”" dr == ?———1 Vit in]). (3.4)
golnl 14

Clearly these three formulas imply that

n

L anl) < n¥{rofn+ 1)< Virgdn)

which is equivalent to (3.1).

Since all ideal, regular n-simplices in H" are isometric we can assume that p(rn]) is
enclidean regular, Hence (2.1} implies (3.2). Next (2.2) implies (3.3) because regularity of
7,[n + 1] agsures regularity of the euclidean n-simplex e(zy[n +1]). It remains to prove (3.4).

- We shall apply Gauss® divergence formula

f div V(r)dr= f V-ndS {3.5)
aylr] doulnl
to the vector field

Vi{r) = (1 —¢2)-0=Dizr r|| <1

Here, of course, 1 is the outward pointing normal to the boundary day[n]. An easy compu-

tation shows that
div V{r) = (1 —2)=0-072 4 (n — 1){1 —p2)=-*H12,
For simplicity put

(p"(a)a_[ []{1-—r2)‘°‘ dar. (3.8)

Then the left hand side of (3.5) becomes

P (GL;-) + (ﬂ‘" 1}(Pn (%—1) -
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To compute the right hand side of (3.5) we note that dog[n] consists of (n-+1) regular

(n —1)-simplices 8;0q[n]. =0,1, ..., 7. On 9;0,(n] one has v

1—r2= g‘?,mgz, r€d;c n]

rn=1ln

where g,=(1—n?%)? is the radius of the circumscribed (n—2)-sphere for 8;0,[n), and g
denotes the distance from the center of &;0,[n] to the point r€8;5y[n]. Therefore the right
hand side of (3.5) becomes

nt1

7 Boolnd

(g7 — 0%~ PR dS.

Since 8,0,[n] is isometric to g, ggln —1] this integral transforms into

ntl 2_ 2 sy—(n-1)2 n-1 n+l " n-+1 -1
e — o2l Tt fp = 1=y Yy e, ]
B Joeln-1j (Qn ¢ ) ¢ n o‘.,[n—l]( ) n Pr-1 2

Thus we have proved
o (552) - (22) =2 s ) =
By (3.2) and (3.3) @u{(n+1}/2)=V(rin]} and @, ;((n—1)/2)=(n—1) V(z,[n]). Hence

. (257) =25 viein)

which proves (3.4].

LEmma 3. Let f: 70, 1]->R be continuous and concave. Let ¢ be the center of mass of an

arbitrary euclidean n-simplex o{n] with vertices on 8§ and put c=||¢||. Then

V{oln])™ J

ofn]

H1—1R)dr < V(gy[n]) ™" f H(L—¢) (1 —7%))dr

ool

whenever both of these improper integrals converge. Moreover, if | is strictly concave then

equality holds if and only if ofn] is regular.

Proof. Let the left and right hand side of the inequality be 4 and B respectively. Let

Yg» Vis <o Vo be the vertices of o[n]. We have the standard n-simplex

Aln] = {{to, bs v tn)]tizo, Z tig]_} < R,
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Under the homeomorphism (£, ¢, .., &) =3, £;V; of Aln] with o[n] the measure V{o[n])dr
on ¢[#] transforms into a measure g on Aln] which is just the “Iebesgue measure” nor-
malized to have u(A[»])=1. Hence
am [ a-lS i
Al i

Since g is invariant under the transformation #,—t,, for any permutation 7 of 0, 1, ..., n

we also have

A= Al tor sy .
Al i

Tf Z denotes the formation of mean values over all such 7, then

A=F ( FE=1IZ tany vell®) d‘“) .

Al i .

The concavity of f then implies that

A< [ HEO-]T taw D 58)
Thé mean value involved here can easily be computed from the following formulas

1= tn(uvinz = 2 by by (W, V) >
: i+ t

1 ..
Eltxnteg) = =m(1—izif), e

‘% (Vi ¥j)= ||12v{]|2—iz (v ]| = (n+ 1) *— (n+1).
Here, of course, (-, +) is the euclidean inner product. One gets

Ag'[ f(ﬂ'-l (1—¢% (l—zt?)) dg. (3.9)
Aln] n

1t o[n] is regular then equality holds in (3.9). Therefore, if one applies (3.9) to g,[n] and
to g(x)=f{{1 —¢?)x) one gets

B=f f(71+—1 (1—¢% (1—§jt?)) dy. (3.10)
Alnl

"
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Here we have used that the center of mass for ap[n] is 0. This finishes the proof of 4 < B.
1f equality holds in Lemma 3 then we also have equality in (3.8). In case of strict

concavity this is possible only when
(12t Vilf? = | 2 07]1®

for all {tg, t;, ..., t,) EA[n] and all permutations 7. Letting {,=# =}, £;=0 for i>1 it follows

that
vl = vl for all i+

Since ||v;—v,[|2=4—||v;+7,||* we see that
[[vy—Va|| = || v;—7,]| for all ik,
and that gnarantees the euclidean regularity of ¢[n].

End of proof of Theorem 1. Assume inductively that the theorem holds for some n.>3,

and consider an arbitrary z[n-+1]. Put
() =t KPR 0]

where K,=nV{rn+11)/V{t[n]). An elementary computation shows that f is strictly
concave on 10, 1] if and only if K, >n(n+2){(n+1){n+3). On the other hand Proposition
2 guarantees' that K,> (n—1)jn which exceeds n(n-+2)/(n+1)(n+3) for 3. Lemma 3
can, therefore, be applied to f and the euclidean n-simplex o[n] =&(z{n +11) (ef. section 2).
Using also {2.2) {for n+1) and (2.1) and letting t[n]=p"{o[n]) one gets

nV(wn+1]) = K, V(r[n]) < Jr f(E—e®) (A — %) dr
oyln]

= (1= &%) P (rgln+ 1)~ Kol =)~V (zo[n])

(3.11)
< (1 =)™V (zo[n + 11) — K, V(zo[n])
=0.
By the inductive hypothesis V(r[n]) <V [nl) so (3.11) implies
aVirn+ 1)) < K, Vig[n]) =nVir[n+1]) {3.12)

which shows that V{r,[n+1]) 15 maximal.
Tf equality holds in (3.12) then also in {3.11). By Lemma 3 this implies that (e[ +1])
is euclidean regular. But then z[n-+1] is hyperbolically regular.
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4. Am asymptotic formula for ¥(v[n])

From section I we have
Vizy[2]) = =3.14159...

ik ]
T (To[3]) =3 J ~log (2 sin 8)d6 ~1.01494 .. .
0

‘We mention, without giving details, that it is possible fo compute V(zr,[4]) using the gene-
ralized Gauss formula (ef. Klein [1], p. 205). We found

1 2
VT [d]) = %I arosin % - 0.26889 ...

It seems to be very diffieult to obtain simple expressions for V(z,[n]) when » > 5. However,
we have the following asymptotic formula for V{r,in]) (recall that 5[] is a regular euclidean

n-simplex with vertices on §*T).

THEOREM 4.

V)
il et O 1)

The proof of Theorem 4 relies on an investigation of the functions
@ (22) =f (L= "dr, n=1,2,....
golit]

When n>2 @,(x) is defined for a<(n41}/2 (in fact ¢ (&) < oo if and only if «<<n but we
shall not need this). Moreover g, is monotonically increasing, and being an integral of a
logarithmically convex function g, is itself logarithmically convex, ie. a—logp,(a) is a

convex function.

Lemma 5.

@nl — 1)@, (0) = ;% n>1 (4.2)

n—1 n+1y n—1
w(5)/m() o

Proof. Formula (4.3) is an immediate consequence of (3.2} and (3.4). To prove {4.2)

consider a regular euclidean simplex oy[n] with vertices vy, vy, ..., v, on the unit sphere.
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Regularity implies that the inner product (v, v,) equals —1/n for 4=j. Let dy be the nor-
malized “Lebesgue measure” on Aln]={(fy, &1, ., tp}[4:>0, 3 £;=1}SR"". Arguing as in
the proof of Lemma 3 we get

Pl — 1}a(0) = V(%En]}'lf (L—7%)dr

aoln]

- a-isunla

Aln} i

= f (=2 8|Vl = 2 tatslv, vy)) dpe
o Aln] i (5]

[ (i-zgelsus)ae
‘ Al i n

i EES)
n+1

= 1—> 8 dy.
7 A[n]( T?':)M

Sinee u(Alr]) =1 and since [sptidy is independent of 1=0, 1, ..., n we get

f (1->t)du=1—(n+ I}J £2 dys.
Aln) i

Aln]

The map (g, sy £) > (Ey: v, by} 18 an affine isomorphism of Aln] onto {tER"[2,20, 31t <1}

which transforms dy into the measure nld, ... df,..

Hence,
f tgd,umnlf N 24t ... dt,
Alay 120, T 4l
1
=n!f (f et dty ... dtﬂ_l) tndt,
0 \Ji=o, ¢§1 1t
Pl 1,2
=Tb!f0 m{l*tn) tadi,
_ 2
n+1)(n+2)
And thus

ntl n+1
(pn(“h/%(o)ﬂ“}r (lﬂ(n_l-l)fam b cly) Tate

Proof of Theorem 4. Let n>>2. Using the logarithmic convexity of g, one gets

( 7a(0) )‘“‘”’2 < (%((% 1)/2)) < (q‘ln((n + 1)/2))<ﬂ-1)f2
oal 1) 72(0) galn—1)2))
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Since @,(0) = V{oy[n]) and @,((rn—1)/2)=({n--1)/n) V(v [n]) (by (3.4)) we get, by applying
Lemma 5, that

n+1 n Vie[n]} \n—1 )

Since

?’b+2 (n-1)/2 n m—1)/2
lim = =lim {— =
n]i'clo (?’b+1) nl—]ilo (")‘L'—l) V;

this proves Theorem 4.

Remark. Using the fact that the edgelength of a,[n] is (2(1+1/r))"* the volume of

go[n] can easily be computed to be

V(o) = Vn+1 (1 N 1)ﬂf2

nl

which is asymptotically equal to V?;/n' Ve for n->eco, Hence, by Theorem 4

Vi) ~ 2.
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