PROPER HEREDITARY SHAPE EQUIVALENCES PRESERVE PROPERTY C

Fredric D. ANCEL*

Department of Mathematics, University of Oklahoma, Norman OK 73019, USA

Received 30 June 1983

In a recent paper [6], van Mill and Mogilski prove that a proper hereditary shape equivalence preserves property C, if its domain is σ -compact. In this note, the same result is established without the hypothesis of σ -compactness.

AMS Subj. Class. (1980): 54C56, 54F45cell-like mapcountable dimensionalhereditary shape equivalenceproperty Capproximately invertible map

1. Introduction

Consider only metrizable spaces. A space is zero dimensional if each open cover is refined by an open cover whose elements are pairwise disjoint. A space is finite (countable) dimensional if it is the union of a finite (countable) collection of zero dimensional spaces. There is a property (defined below), called property C, which was first formulated in [3] and which captures an essential part of the nature of countable dimensionality. All countable dimensional spaces have property C. The ingenious construction in [5] has recently provided an example of a compactum which has property C but is not countable dimensional. (The observation that this example has property C was made by R. Engelking and E. Pol after the appearance of [5].)

A map $f: X \to Y$ is cell-like if it is proper and surjective and if for each $y \in Y$, $f^{-1}(y)$ is a cell-like set (has the shape of a point). One of the major unsolved problems of topology is whether cell-maps necessarily preserve finite dimensionality. In [4], it was recognized that the class of cell-like maps which do preserve finite dimensionality coincides with the class of proper hereditary shape equivalences. However, it is not known whether proper hereditary shape equivalences preserve countable dimensionality. A related but (because of the example in [5]) not quite equivalent question is: do proper hereditary shape equivalences preserve property

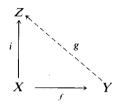
* Partially supported by N.S.F. grant No. MCS 8103420.

C? This question has recently been answered affirmatively in [6] under the hypothesis that the domain of the map be σ -compact. In this note, it is shown that the answer remains affirmative without the hypothesis of σ -compactness.

Let $\mathbb{N} = \{1, 2, 3, \ldots\}.$

A space has property C if for each sequence $\{\mathcal{U}_n : n \in \mathbb{N}\}$ of open covers of X, there is an open cover $\mathcal{V} = \bigcup \{\mathcal{V}_n : n \in \mathbb{N}\}$ of X such that for each $n \in \mathbb{N}$, \mathcal{V}_n is a pairwise disjoint collection which refines \mathcal{U}_n .

A map $f: X \to Y$ is approximately invertible if some closed embedding $i: X \to Z$ into a space Z (hence, every closed embedding $i: X \to Z$ into an ANR Z) has the following property. For every collection \mathcal{W} of open subsets of Z which is refined by $\{i(f^{-1}(y)): y \in Y\}$, there is a map $g: Y \to Z$ such that $g \circ f$ is within \mathcal{W} of i (in other words, $\{\{g \circ f(x), i(x)\}: x \in X\}$ refines \mathcal{W}).



Theorem. Let $f: X \to Y$ be an approximately invertible surjective map such that $f^{-1}(y)$ is compact for each $y \in Y$. If X has property C, then so does Y.

A proper hereditary shape equivalence is approximately invertible by Theorem 4.5 of [1]. Also a hereditary shape equivalence is necessarily surjective. Thus we have

Corollary. A proper hereditary shape equivalence preserves property C.

In [1], it is proved that a cell-like map is a hereditary shape equivalence if its range has property C. Thus we have

Corollary. Let $f: X \to Y$ be a cell-like map, and suppose X has property C. Then Y has property C if and only if f is a hereditary shape equivalence.

2. Proof of the theorem

Let $\{\mathcal{U}_n : n \in \mathbb{N}\}$ be a sequence of open covers of Y. For each $n \in \mathbb{N}$, let \mathcal{U}_n^* be a star refinement of \mathcal{U}_n ; i.e., for every $U' \in \mathcal{U}_n^*$, there is a $U \in \mathcal{U}_n$ such that $\operatorname{Star}(U', \mathcal{U}_n^*) \subset U$ where

 $\operatorname{Star}(U', \mathcal{U}_n^*) = \bigcup \{ U'' \in \mathcal{U}_n^* \colon U' \cap U'' \neq \emptyset \}.$

Since X has property C, there is an open cover $\mathcal{V} = \bigcup \{\mathcal{V}_n : n \in \mathbb{N}\}$ of X such that for each $n \in \mathbb{N}$, \mathcal{V}_n is a pairwise disjoint collection which refines $f^{-1}\mathcal{U}_n^*$. We can

assume \mathcal{V} is a locally finite collection; for if it is not, it can be replaced by a "precise" locally finite refinement. (See pages 61 and 62 of [2].)

For each $y \in Y$, since $f^{-1}(y)$ is compact and \mathcal{V} is locally finite, $f^{-1}(y)$ has an open neighborhood W_y in X which intersects only a finite number of elements of \mathcal{V} . Thus the set

$$N_v = \{n \in \mathbb{N}: W_v \text{ intersects an element of } \mathcal{V}_n\}$$

is finite. We "cut down" W_y further so that for each $n \in N_y$, there is a $U \in \mathcal{U}_n^*$ such that $W_y \subset f^{-1}(U)$.

Let $i: X \to Z$ be a closed embedding into a space Z which witnesses the approximate invertibility of the map $f: X \to Y$. For convenience, we regard X as a closed subset of Z and $i: X \to Z$ as the inclusion. Let ρ be a metric on Z. For each subset S of X, let

$$\tilde{S} = \{z \in Z \colon \rho(z, S) < \rho(z, X - S)\}.$$

We shall use the following facts whose easy proofs are left to the reader.

- 1) $\tilde{\emptyset} = \emptyset$, because $\rho(z, \emptyset) = \infty$ for each $z \in Z$.
- 2) For each $S \subset X$, \tilde{S} is an open subset of Z.
- 3) If S is an open subset of X, then $\tilde{S} \cap X = S$.
- 4) If $S \subset T \subset X$, then $\tilde{S} \subset \tilde{T}$.
- 5) For all $S, T \subset X, \tilde{S} \cap \tilde{T} = \widetilde{S \cap T}$.

Let $R = \bigcup \{\tilde{V}: V \in \mathcal{V}\}$. *R* is an open neighborhood of *X* in *Z*. Let $\mathcal{W} = \{\tilde{W}_y \cap R: y \in Y\}$. Then \mathcal{W} is a collection of open subsets of *Z* which is refined by $\{i(f^{-1}(y)): y \in Y\}$. Since the closed embedding $i: X \to Z$ witnesses the approximate invertibility of $f: X \to Y$, there is a map $g: Y \to Z$ such that $g \circ f$ is within \mathcal{W} of *i*. Hence $g(Y) \subset R$.

So $\{g^{-1}(\tilde{V}): V \in \mathcal{V}\} = \bigcup \{\{g^{-1}(\tilde{V}): V \in \mathcal{V}_n\}: n \in \mathbb{N}\}\$ is an open cover of Y. For each $n \in \mathbb{N}$, since $\{\tilde{V}: V \in \mathcal{V}_n\}\$ is a pairwise disjoint collection, so is $\{g^{-1}(\tilde{V}): B \in \mathcal{V}_n\}$.

Let $n \in \mathbb{N}$. It remains to show that $\{g^{-1}(\tilde{V}): V \in \mathcal{V}_n\}$ refines \mathcal{U}_n . Let $V \in \mathcal{V}_n$. Then there is a $U' \in \mathcal{U}_n^*$ such that $V \subset f^{-1}(U')$, and there is a $U \in \mathcal{U}_n$ such that $\operatorname{Star}(U', \mathcal{U}_n^*) \subset U$. We shall prove that $g^{-1}(\tilde{V}) \subset U$. Let $y \in g^{-1}(\tilde{V})$. Let $x \in f^{-1}(y)$. Since $g \circ f$ is within \mathcal{W} of *i*, there is a $z \in Y$ such that $\{x, g(y)\} \subset \tilde{W}_z$. Hence $g(y) \in \tilde{V} \cap \tilde{W}_z = V \cap W_z$. So $V \cap W_z \neq \emptyset$. Since $V \in \mathcal{V}_n$, it follows that $n \in N_z$. So there is a $U'' \in \mathcal{U}_n^*$ such that $W_z \subset f^{-1}(U'')$. Since $\emptyset \neq V \cap W_z \subset f^{-1}(U') \cap f^{-1}(U'') =$ $f^{-1}(U' \cap U'')$, then $U' \cap U'' \neq \emptyset$. Since $x \in W_z \subset f^{-1}(U'')$, then $y = f(x) \in U''$. Consequently, $y \in \operatorname{Star}(U', \mathcal{U}_n^*)$. So $y \in U$. This proves $g^{-1}(\tilde{V}) \subset U$.

References

 F.D. Ancel, The role of countable dimensionality in the theory of cell-like relations, to appear in Trans. Amer. Math. Soc.

- [2] J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
- [3] W.E. Haver, A covering property for metric spaces, in: Topology Conference, V.P.I. and S.U., R.F. Dickman and P. Fletcher, editors, Lecture Notes in Math. No. 375, Springer-Verlag, New York, 1974, 108-113.
- [4] G. Kozlowski, Images of ANR's, to appear in Trans. Amer. Math. Soc.
- [5] R. Pol, A weakly infinite-dimensional compactum which is not countable dimensional, Proc. Amer. Math. Soc. 82 (1981), 634-636.
- [6] J. van Mill and J. Mogilski, Property C and fine homotopy equivalences, preprint.