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Completions

Definition.  Let ( X, ρ ) and ( Y, σ ) be metric spaces.  A function f : X → Y is
distance preserving or isometric if σ(f(x),f(x´)) = ρ(x,x´) for all x, x´ ∈ X.

Observe that if ( X, ρ ) and ( Y, σ ) are metric spaces and f : X → Y is a distance
preserving function, then f is injective and f–1 : f(X) → X is also distance preserving.
Also distance preserving functions are continuous.  Hence, distance preserving
functions are embeddings and distance preserving onto functions are
homeomorphisms.  For this reason, we introduce new terminology for distance
preserving functions.

Definition.  If ( X, ρ ) and ( Y, σ ) are metric spaces and f : X → Y is a distance
preserving function, then we say that f : ( X, ρ ) → ( Y, σ ) is an isometric embedding.  If
f : X → Y is a distance preserving and onto, then we say that f : ( X, ρ ) → ( Y, σ ) is an
isometry.

Recall that if X is a topological space, then C(X, R) denotes the set of all bounded
continuous functions from X to R.  If σ denotes the supremum metric on C(X, R) (σ(f,g) =
sup { | f(x) – g(x) | : x ∈ X } for f, g ∈ C(X, R)), then according to Theorem VI.13, σ is a
complete metric on C(X, R) because the standard metric on R is complete.

Theorem VI.19.  The Isometric Embedding Theorem.  If ( X, ρ ) is a metric
space, then there is an isometric embedding of ( X, ρ ) in ( C(X,  R), σ ).

Proof.  We begin by noting a useful variant of the triangle inequality:
∗)  | ρ(x,z) – ρ(y,z) |  ≤  ρ(x,y) for all x, y, z ∈ X.

To prove ∗), observe that the triangle inequality implies ρ(x,z) ≤ ρ(x,z) + ρ(x,z) and
ρ(y,z) ≤ ρ(x,y) + ρ(x,z).  Hence, ρ(x,y) is an upper bound of both ρ(x,z) – ρ(y,z) and
ρ(y,z) – ρ(x,z).  Therefore, | ρ(x,z) – ρ(y,z) |  ≤  ρ(x,y).

To prove this theorem we must find a bounded map fx ∈ C(X,  R) for every x ∈ X
such that the function x   

€ 

a fx : X → C(X, R) is distance preserving.

As motivation for this proof, we first consider the special case in which the metric
ρ on X is bounded.  In this case the bounded map fx associated to x can be defined by
the equation fx(z) = ρ(x,z) for z ∈ X.   (When X = [ 0, 1 ], this choice of fx is illustrated in
the figure at the end of this paragraph.)  In this situation, we must prove that σ(fx,fy) =
ρ(x,y) for all x, y ∈ X.  To this end, let x, y ∈ X.  First note that variant ∗) of the triangle
inequality implies  | fx(z) – fy(z) |  =  | ρ(x,z) – ρ(y,z) |  ≤  ρ(x,y) for all z ∈ X.  Hence,
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σ(fx,fy) ≤ ρ(x,y).  Also

σ(fx,fy)  ≥  | fx(y) – fy(y) |  =  | ρ(x,y) – ρ(y,y) |  =  | ρ(x,y) |  =  ρ(x,y).

This proves σ(fx,fy) = ρ(x,y) for all x, y ∈ X, and finishes the proof in the case that ρ is a
bounded metric on X.

                    σ(fx,fy) = ρ(x,y)
                                                             fx

                                                                   fy

                    0                    x                 y                  1

With this motivation, we now give the proof in the general case that the metric ρ
on X is not necessarily bounded.  In this situation, we first choose a point x0 ∈ X.  Then
for each x ∈ X, we define the function fx : X → R by fx(z) = ρ(x,z) – ρ(x0,z) for all z ∈ X.
To prove that fx is a bounded function, note that variant ∗) of the triangle inequality
implies that  | fx(z) |  =  | ρ(x,z) – ρ(x0,z) |  ≤  ρ(x0,x) for all z ∈ X.  (Observe that the term
ρ(x0,z) in the definition of fx(z) is a “fudge factor” introduced to insure that fx is a bounded
function even if ρ is an unbounded metric.)   To prove that fx is continuous, note that
variant ∗) of the triangle inequality implies that

| fx(z) – fx(z´) |  =  | ( ρ(x,z) – ρ(x0,z) ) – ( ρ(x,z´) – ρ(x0,z´) ) |  =

| ( ρ(x,z) – ρ(x,z´) ) + ( ρ(x0,z´) – ρ(x0,z) ) |  ≤

| ρ(x,z) – ρ(x,z´) | + | ρ(x0,z´) – ρ(x0,z) |  ≤  2ρ(z,z´)

for all z, z´ ∈ X.  We conclude that fx ∈ C(X, R) for every x ∈ X.

To complete this proof, we must show that the function x   

€ 

a fx : X → C(X, R) is
distance preserving.  To this end, let x, y ∈ X.  First note that variant ∗) of the triangle
inequality implies

| fx(z) – fy(z) |  =  | ( ρ(x,z) – ρ(x0,z) ) – ( ρ(y,z) – ρ(x0,z) ) |  =  | ρ(x,z) – ρ(y,z) |  ≤  ρ(x,y)

for all z ∈ X.  Hence, σ(fx,fy) ≤ ρ(x,y).  Also

σ(fx,fy)  ≥  | fx(y) – fy(y) |  =  | ( ρ(x,y) – ρ(x0,y) ) – ( ρ(y,y) – ρ(x0,y) ) |  =  | ρ(x,y) |  =  ρ(x,y).
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This proves σ(fx,fy) = ρ(x,y) for all x, y ∈ X.

We have proved that the function x   

€ 

a fx : ( X, ρ ) → ( C(X, R), σ ) is an isometric
embedding. 

Definition.  A completion of a metric space ( X, ρ ) is a pair ( ( Y, σ ), e )
satisfying the following three conditions:
• ( Y, σ ) is a complete metric space,

• e : ( X, ρ ) → ( Y, σ ) is an isometric embedding and

• e(X) is a dense subset of Y.

Theorem VI.20.  The Existence of Completions.  Every metric space has a
completion.

Proof.  Let ( X, ρ ) be a metric space.  Theorem VI.19 provides an isometric
embedding e : ( X, ρ ) → ( C(X, R), σ ) where σ is the supremum metric on C(X,  R).  Let Y
= cl(e(X)) and let σY denote the restriction of the metric σ to Y.  Then e(X) is a dense
subset of Y and σY is a complete metric on Y by Theorem VI.13 and VI.3.
Consequently, ( ( Y, σY ), e ) is a completion of ( X, ρ ). 

Theorem VI.21.  The Uniqueness of Completions.  The completions of a
metric spaces are unique up to isometry.  In other words, if ( ( Y1, σ1 ), e1 ) and
( ( Y2, σ2 ), e2 ) are both completions of a metric space ( X, ρ ), then there is an isometry
g : ( Y1, σ1 ) → ( Y2, σ2 ) such that gºe1 = e2.

X
  e1         e2

Y1       g Y2

We will deduce Theorem VI.21 from a more general result which we now state
and prove.

Definition.  Let ( X, ρ ) and ( Y, σ ) be metric spaces.  A function f : X → Y is
uniformly continuous if for every ε > 0, there is a δ > 0 such that ρ(x,x´) < δ implies
σ(f(x),f(x´)) < ε for all x, x´ ∈ X.
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Theorem VI.22.  If Z is a dense subset of a metric space ( X, ρ ), ( Y, σ ) is a
complete metric space, and f : Z → Y is a uniformly continuous map, then there is a
unique uniformly continuous map g : X → Y which extends f.  (Thus, g | Z = f.)

Before proving Theorem VI.22, it is convenient to establish the following two
lemmas and a corollary.

Lemma VI.23.  Uniformly continuous functions preserve Cauchy sequences.  In
other words, if ( X, ρ ) and ( Y, σ ) are metric spaces, f : X → Y is a uniformly continuous
function and { xn } is a Cauchy sequence in ( X, ρ ), then { f(xn) } is a Cauchy sequence
in ( Y, σ ).

Proof.  Let { xn } be a Cauchy sequence in ( X, ρ ).  To prove { f(xn) } is a Cauchy
sequence in ( Y, σ ), let ε > 0.  Since f is uniformly continuous, then there is a δ > 0 such
that ρ(x,x´) < δ implies  σ(f(x),f(x´)) < ε for all x, x´ ∈ X.  Since { xn } is Cauchy in ( X, ρ ),
then there is an n ∈ N such that ρ(xj,xk) < δ for all j, k ≥ n.  Hence, σ(f(xj),f(xk)) < ε for all
j, k ≥ n.  This proves { f(xn) } is Cauchy in ( Y, σ ). 

Lemma VI.24.  If f : X → Y and g : X → Y are both maps from a topological
space X to a Hausdorff space Y, then { x ∈ X : f(x) = g(x) } is a closed subset of X.

Proof.  Let E = { x ∈ X : f(x) = g(x) }.  We will prove that X – E is an open subset
of X.  Let x ∈ X – E.  Then f(x) ≠ g(x).  Since Y is a Hausdorff space, then there are
disjoint open subsets U and V of Y such that f(x) ∈ U and g(x) ∈ V.  Let W =
f–1(U) ∩ g–1(V).  Since f and g are continuous, then W is a neighborhood of x in X such
that f(W) ⊂ U and g(W) ⊂ V.  Hence f(W) ∩ g(W) ⊂ U ∩ V = ∅.  Therefore, W ⊂ X – E.
This proves X – E is an open subset of X.  We conclude that E is a closed subset of X.


Corollary VI.25.  If f : X → Y and g : X → Y are both maps from a topological
space X to a Hausdorff space Y and f | Z = g | Z where Z is a dense subset of X, then
f = g.

Proof.  Let E = { x ∈ X : f(x) = g(x) }.  Then Z ⊂ E.  Lemma VI.24 implies cl(Z) ⊂
E.  Since Z is a dense subset of X, then cl(Z) = X.  Therefore, X = E.  Hence, f = g. 

Proof of Theorem VI.22.  For each x ∈ X, choose a sequence { zn } in Z which
converges to x.  ({ zn } exists because Z is a dense subset of X.)  Furthermore, if x ∈ Z,
then let { zn } be the constant sequence at x.  Since { zn } converges, then it is a Cauchy
sequence in ( X, ρ ).  Since f is uniformly continuous, then Lemma VI.23 implies that
{ f(zn) } is a Cauchy sequence in ( Y, σ ).  Since ( Y, σ ) is a complete metric space, then
it follows that { f(zn) } converges to a point of Y which we call g(x).  This defines the
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function g : X → Y.

If x ∈ Z, then { zn } was chosen to be the constant sequence at x.  Hence, { f(zn) }
is the constant sequence at f(x).  Therefore, { f(zn) } converges to f(x).  Since { f(zn) }
also converges to g(x), then g(x) = f(x).  Thus, g | Z = f.

To prove g : X → Y is uniformly continuous, let ε > 0.  Since f : Z → Y is uniformly
continuous, there is a δ > 0 such that ρ(z,z´) < δ implies  σ(f(z),f(z´)) < ε/3 for all z, z´ ∈ Z.
Let x, x´ ∈ X such that ρ(x,x´) < δ/3.  We will prove that σ(g(x),g(x´)) < ε.  To define g(x)
and g(x´), we chose sequences { zn } and { z´n } in Z that converge to x and x´,
respectively.  Then g(x) and g(x´) were chosen so that { f(zn) } converges to g(x), and
{ f(z´n) } converges to g(x´).  Hence, there is a positive integers n ∈ N such that i ≥ n
implies ρ(x,zi) < δ/3, ρ(x´,z´i) < δ/3, σ(g(x),f(zi)) < ε/3 and σ(g(x´),f(z´i)) < ε/3.  Thus, i ≥ n
implies ρ(zi,z´i) ≤ ρ(zi,x) + ρ(x,x´) + ρ(x´,z´i) < δ.  Hence, i ≥ n implies σ(f(zi),f(z´i)) < ε/3.
Combining these inequalities, we obtain:

σ(g(x),g(x´))  ≤  σ(g(x),f(zn)) + σ(f(zn),f(z´n)) + σ(f(z´n),g(x´))  <  ε.

This proves g is uniformly continuous.

To prove the uniqueness of g : X → Y, suppose that h : X → Y is also a map
such that h | Z = f.  Then Z is a dense subset of X such that g | Z = f = h | Z.  Therefore,
Corollary VI.25 implies that g = h. 

Finally we prove Theorem VI.21.

Proof of Theorem VI.21.  Suppose ( ( Y1, σ1 ), e1 ) and ( ( Y2, σ2 ), e2 ) are both
completions of a metric space ( X, ρ ).  Since e1 : X → Y1 and e2 : X → Y2 are distance
preserving functions, so are e1

–1 : e1(X) → X and e2
–1 : e2(X) → X.  Therefore,

e2ºe1
–1 : e1(X) → Y2 is a distance preserving function from a dense subset of Y1 to the

complete metric space Y2, and e1ºe2
–1 : e2(X) → Y1 is a distance preserving function from

a dense subset of Y2 to the complete metric space Y1.  Observe that distance
preserving functions are uniformly continuous.  (Indeed, given a distance preserving
function and an ε > 0, one can choose δ = ε to verify uniform continuity.)  Hence, we can
apply Theorem VI.22 to e2ºe1

–1 : e1(X) → Y2 and e1ºe2
–1 : e2(X) → Y1 to obtain uniformly

continuous maps g : Y1 → Y2 and h : Y2 → Y1 such that g extends e2ºe1
–1 and h extends

e1ºe2
–1.  Therefore, gºe1 = e2ºe1

–1ºe1 = e2 and hºe2 = e1ºe2
–1ºe2 = e1.

It remains to prove that g : ( Y1, σ1 ) → ( Y2, σ2 ) is an isometry.

First we prove that g : Y1 → Y2 is onto.  Since gºhºe2 = gºe1 = e2, then gºh | e2(X)
= idY2

 | e2(X).  Since e2(X) is a dense subset of Y2, then Corollary VI.25 implies that
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gºh = idY2
.  It follows that g : Y1 → Y2 is onto.

Now we prove that g : Y1 → Y2 is distance preserving.  Define the function
D : Y1 × Y1 → R by D(y,y´) = σ1(y,y´) – σ2(g(y),g(y´)) for (y,y´) ∈ Y1 × Y1.  Since the
metrics σ1 and σ2 and the functions g are continuous, then D is clearly continuous.
Obviously, to prove that g is distance preserving, it suffices to prove that D(y,y´) = 0 for
all (y,y´) ∈ Y1 × Y1.  We will first show that D | e1(X) × e1(X) = 0.  Let (y,y´) ∈
e1(X) × e1(X).  Then there are elements x, x´ of X such that y = e1(x) and y´ = e1(x´).
Thus, g(y) = gºe1(x) = e2(x) and g(y´) = gºe1(x´) = e2(x´).  Therefore, D(y,y´) =
σ1(e1(x),e1(x´)) – σ2(e2(x),e2(x´)).  Since e1 : ( X, ρ ) → ( Y1, σ1 ) and
e2 : ( X, ρ ) → ( Y2, σ2 ) are isometric embeddings, then σ1(e1(x),e1(x´)) = ρ(x,x´) =
σ2(e2(x),e2(x´)).  Consequently, D(y,y´) = 0.  Thus, D | e1(X) × e1(X) = 0.  Since e1(X) is a
dense subset of Y1, then e1(X) × e1(X) is a dense subset of Y1 × Y1.  (Verify this
assertion.)  It now follows from Corollary VI.25 that D(y,y´) = 0 for all (y,y´) ∈ Y1 × Y1.
We conclude that g : Y1 → Y2 is distance preserving.

We have now proved that g : ( Y1, σ1 ) → ( Y2, σ2 ) is an isometry. 

Corollary VI.26.  Up to isometry, R with the standard metric is the unique
completion of Q with the standard metric. 


