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The Baire Property

Definition.  A topological space X has the Baire property or is a Baire space if
the intersection of every countable collection of dense open subsets of X is a dense
subset of X.

Theorem VI.14.  The Baire Theorem.  Every complete metric space has the
Baire property.

Proof. Let ( X, ρ ) be a complete metric space, and let { Un : n ∈ N } be a
countable collection of dense open subsets of X.  To prove that ∩ n ∈ N  Un is a densce
subset of X, let V be a non-empty open subset of X.  We must prove that
( ∩ n ∈ N  Un ) ∩ V ≠ ∅.

We will inductively construct a sequence { Cn } of closed subsets of X with non-
empty interior such that
• C1 ⊂ U1 ∩ V  and  diam(C1) ≤ 2

and for n > 1,
• Cn ⊂ Un ∩ int(Cn – 1)  and  diam(Cn) ≤ 2/n.

To begin, since U1 is a dense open subset of X, then U1 ∩ V is a non-empty open
set.  Choose x1 ∈ U1 ∩ V.  Since metric spaces are regular, then is an ε1 > 0 such that ε1

< 1 and cl(N(x1,ε1) ⊂ U1 ∩ V.  Let C1 = cl(N(x1,ε1).  Then int(C1) ≠ ∅, C1 ⊂ U1 ∩ V  and
diam(C1) = diam(N(x1,ε1)) ≤ 2ε1 ≤ 2.

Next let n ≥ 1 and assume there is a closed set Cn with non-empty interior.  Since
Un + 1 is a dense open subset of X, then Un + 1 ∩ int(Cn) is a non-empty open set.  Choose
xn + 1 ∈ Un + 1 ∩ int(Cn).  Since metric spaces are regular, then is an εn + 1  > 0 such that
εn + 1  < 1/n + 1 and cl(N(xn + 1,εn + 1) ⊂ Un + 1 ∩ int(Cn).  Let Cn + 1 = cl(N(xn + 1,εn + 1).  Then
int(Cn + 1) ≠ ∅,  Cn + 1 ⊂ Un + 1 ∩ int(Cn) and diam(Cn + 1) = diam(N(xn + 1,εn + 1)) ≤ 2εn + 1 ≤ 2/n + 1.

 This completes the inductive construction of { Cn }.

Since each Cn is a non-empty closed subset of X such that C1 ⊃ C2 ⊃ C3 ⊃ …
and lim n → ∞ diam(Cn) = 0, then the Cantor Intersection Theorem VI.5 implies ∩ n ∈ N  Cn ≠
∅.  Let x ∈ ∩ n ∈ N  Cn.  Since x ∈ C1, then x ∈ U1 and x ∈ V. For n > 1, since x ∈ Cn, then
x ∈ Un.  Thus, x ∈  ( ∩ n ∈ N  Un ) ∩ V.  Hence, ( ∩ n ∈ N  Un ) ∩ V ≠ ∅.  This proves
∩ n ∈ N  Un is a dense subset of X. 

A similar argument proves:
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Theorem VI.15.  Every locally compact Hausdorff space has the Baire property.

Problem VI.3.  Prove Theorem VI.15.

Problem VI.4. a)  Prove that if X is a topological space with the Baire property
and { Un : n ∈ N } is a countable collection of dense open subsets of X, then ∩ n ∈ N  Un

has the Baire property.
b)  Prove that if X is either a complete metric space or a locally compact Hausdorff
space, and { Un : n ∈ N } is a countable collection of open subsets of X with non-empty
intersection, then ∩ n ∈ N  Un has the Baire property.

Example VI.3. a)  Since the standard metric on R is complete, then Theorem
VI.14 implies that R has the Baire property.

b)  Let Q denote the subspace of R consisting of all rational numbers.  Q does not have
the Baire property.  Indeed, { Q – { x } : x ∈ Q } is a countable collection of dense open
subsets of Q such that ∩ x ∈ Q  ( Q – { x } ) = ∅.

c)  The subspace R – Q of R, consisting of all irrational numbers, does have the Baire
property.  This follows from the result of Problem VI.4 because R – Q is the intersection
of the countable collection { R – { x } : x ∈ Q } of dense open subsets of R.

According to Theorem VI.14, every complete metric space has the Baire
property.  However, the converse is false: there is a metric space X with the Baire
property such that no metric which induces the given topology on X is complete.  We
remark that the space R – Q of irrational numbers is not such a space because,
although R – Q has the Baire property and the restriction to R – Q of the standard
metric on R is not complete, none the less there is a complete metric on R – Q which
induces the given topology.  (The existence of a complete metric on  will be explained
insection VI.D.)

Example VI.4.  Let X denote the subspace ( Q × { 0 } ) ∪ ( R × ( 0, ∞ ) ) of R2.
We assert that X has the Baire property and no metric on X which induces the given
topology is complete.  To prove that X has the Baire property, let { Un : n ∈ N } be a
countable collection of dense relatively open subsets of X.  Since R × ( 0, ∞ ) is a dense
open subset of X, then Un ∩ ( R × ( 0, ∞ ) ) is a dense open subset of R × ( 0, ∞ ) for
each n ∈ N.  R × ( 0, ∞ ) has the Baire property because it is homeomorphic to R2, and
R2 has the Baire property by Theorem VI.14 because the Euclidean metric on R2 is
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complete.  Thus, ∩ n ∈ N  ( Un ∩ ( R × ( 0, ∞ ) ) ) = ( ∩ n ∈ N   Un ) ∩ ( R × ( 0, ∞ ) ) is a dense
subset of R × ( 0, ∞ ).  Since R × ( 0, ∞ ) is a dense subset of X, then
( ∩ n ∈ N   Un ) ∩ ( R × ( 0, ∞ ) ) is a dense subset of X.  Since
( ∩ n ∈ N   Un ) ∩ ( R × ( 0, ∞ ) ) ⊂ ∩ n ∈ N   Un, then it follows that ∩ n ∈ N   Un is a dense
subset of X.  This proves X has the Baire property.  Now we argue that no metric on X
that induces the given topology is complete.  For suppose there is a complete metric ρ
on X that induces the given topology.  Since R × { 0 } is a closed subset of R2, then
( R × { 0 } ) ∩ X = Q × { 0 } is a closed subset of X.  Hence, ρ restricts to a complete
metric on Q × { 0 } by Theorem VI.6.a.  Therefore, Q × { 0 } has the Baire property by
Theorem VI.14.  However, Q × { 0 } is homeomorphic to Q which does not have the
Baire property according to Example VI.3.b.  We have reached a contradiction.  We
conclude that no metric on X that induces the given topology is complete.

Definition.  A subset A of a topological space X is nowhere dense if int(cl(A)) =
∅.

Let A be a subset of a topological space X.  Observe that the following three
statements are equivalent.
• A is a nowhere dense subset of X.
• cl(A) contains no non-empty open subset of X.
• If U is a non-empty open subset of X, then U – cl(A) ≠ ∅.

• X – cl(A) is a dense open subset of X.

Definition.  A topological space X is of the first category if it is the union of a
countable collection of nowhere dense subsets.  X is of the second category if it is not of
the first category.

Theorem VI.16.  Every space which has the Baire property is of the second
category.

Proof.  Assume X is a space of the first category.  We will prove that X does not
have the Baire property.  Since X is of the first category, then X = ∪ n ∈ N  An where each
An is a nowhere dense subset of X.  Then X = ∪ n ∈ N  cl(An); and for each n ∈ N, cl(An)
contains no non-empty open subset of X.  For each n ∈ N, let Un = X – cl(An).  Then
each Un is a dense open subset of X.  Observe that

∩ n ∈ N  Un  =  ∩ n ∈ N  ( X – cl(An) )  =  X – ( ∪ n ∈ N  cl(An) )  =  ∅.
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Thus, ∩ n ∈ N  Un is not a dense subset of X.  It follows that X does not have the Baire
property. 

Theorems 6.14 and 6.16 imply:

Corollary VI.17.  The Baire Category Theorem.  Every complete metric space
is of the second category. 

The converse of Theorem VI.16 is false: there is a metric space of the second
category which does not have the Baire property.

Example VI.5.  Let X denote the subspace ( R × { 0 } ) ∪ ( Q × { 1 } ) of R2.  We
assert that X is of the second category but X does not have the Baire property.  To
prove that X is of the second category, assume X is of the first category.  We will derive
a contradiction.  Since X is of the first category, then X = ∪ n ∈ N  An where each An is a
nowhere dense subset of X.  For each n ∈ N, let Cn denote the relative closure of An in
X.  Then X = ∪ n ∈ N  Cn; and for each n ∈ N, Cn is a relatively closed subset of X that
contains no non-empty relatively open subset of X.  Hence, R × { 0 } =
∪ n ∈ N  ( Cn ∩ ( R × { 0 } ) ).  Also each Cn ∩ ( R × { 0 } ) is a closed subset of R × { 0 }.
Since R × { 0 } is a relatively open subset of X, then any non-empty relatively open
subset of R × { 0 } is also non-empty relatively open subset of X.  Hence, for each n ∈
N, Cn contains no non-empty relatively open subset of R × { 0 }.  Thus, for each n ∈ N,
Cn ∩ ( R × { 0 } ) is a closed subset of R × { 0 } that contains no non-empty relatively
open subset of R × { 0 }.  Thus, Cn ∩ ( R × { 0 } ) is a nowhere dense subset of R × { 0 }.
Since R × { 0 } = ∪ n ∈ N  ( Cn ∩ ( R × { 0 } ) ), then it follows that R × { 0 } is of the first
category.  However, since R × { 0 } is homeomorphic to R, and R is of the second
category because the standard metric on R is complete, then R × { 0 } is of the second
category.  We have reached a contradiction.  We conclude that X is of the second
category.  To prove that X does not have the Baire property observe that
{ X – { (x,1) } : x ∈ Q } is a countable collection of dense open subsets of X such that
∩ x ∈ Q  ( X – { (x,1) } )  =  X – ( Q × { 1 } )  =  R × { 0 }.  Therefore, Q × { 1 } is a non-empty
relatively open subset of X that is disjoint from ∩ x ∈ Q  ( X – { (x,1) } ).  Consequently,
∩ x ∈ Q  ( X – { (x,1) } ) is not a dense subset of X.  It follows that X does not have the
Baire property. 

A more precise relationship between spaces with the Baire property and spaces
of the second category than Theorem VI.16 is established by the following result.
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Theorem VI.18.  A topological space X has the Baire property if and only if every
non-empty open subset of X is of the second category.

Problem VI.5.  Prove Theorem VI.18.

The fact that complete metric spaces have the Baire property and are of the
second category has many applications both in topology and in other areas of
mathematics.  We close this section with two simple applications of these ideas.

Problem VI.6.  Prove that R – Q can’t be expressed as the union of a countable
collection of closed subsets of R.

Problem VI.7.  Let A be a nowhere dense subset of R.  Use the fact that R is of
the second category to prove that there is an x ∈ R such that A + x ⊂ R – Q, where
A + x = { a + x : a ∈ A }.



192


