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VI. Complete Metric Spaces 
 

A.  Fundamental Properties 
 
 Definition.  Let ( X, ρ ) be a metric space.  A sequence { xn } in X is a Cauchy 
sequence if for every ε > 0, there is an n ∈ N  such that ρ(xi,xj) < ε for all i, j ≥ n.  Hence,  
{ xn } is a Cauchy sequence if and only if  

! 

lim
n " #

 diam ( { xi : i ≥ n } )  =  0. 

We can paraphrase the preceding statement by saying “{ xn } is a Cauchy sequence if 
and only if the diameters of the tails { xn } converge to 0”. 
 
 Lemma VI.1.  In a metric space, every converging sequence is Cauchy. 
 
 Proof.  Let ( X, ρ ) be a metric space, and let { xn } be a sequence in X that 
converges to a point y of X.  Let ε > 0.  Then there is an n ∈ N such that ρ(xi,y) < ε/2 for 
all i ≥ n.  Hence, for i, j ≥ n, ρ(xi,xj) ≤ ρ(xi,y) + ρ(y,xj) < 2(ε/2) = ε.  Consequently, { xn } is a 
Cauchy sequence.  
 
 Example VI.1.  Consider the subspace ( 0, ∞ ) of R, and restrict the standard 
metric on R to obtain a metric on ( 0, ∞ ).  The sequence { 1/n } is Cauchy in ( 0, ∞ ) 
because it converges (to 0) in R.  However, { 1/n } doesn’t converge in ( 0, ∞ ).  Thus, a 
Cauchy sequence need not converge. 
 
 Definition.  Let ( X, ρ ) be a metric space. ρ is a complete metric on X and  
( X, ρ ) is a complete metric space if every Cauchy sequence in X converges to a point 
of X. 
 
 Remark.  Completeness indicates that from the perspective of the metric, all 
sequences which ought to converge (because they are Cauchy) do converge.  In other 
words, completeness implies that from the perspective of the metric there are no points 
missing from the space. 
 
 Example VI.1 continued.  Again consider ( 0, ∞ ) with the restriction of the 
standard metric on R.  Since { 1/n } is a non-convergent Cauchy sequence in ( 0, ∞ ), 
then ( 0, ∞ ) with the restriction of the standard metric is not a complete metric space. 
Since the standard metric on R is complete (see below) and since ( 0, ∞ ) is 
homeomorphic to R, then we observe that completeness is not a topological property of 
a metric space.  Instead, completeness is a property of the metric.   
 

Remark.  As Example VI.1 reveals, it is possible for the topology on a metrizable 
space to be induced by two different equivalent metrics one of which is complete and  
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the other of which is not.  On every compact metrizable space, the metrics which induce 
the given topology must be complete.  However, on every non-compact metrizable 
spaces, there is an incomplete metric which induces the given topology.  Some 
metrizable spaces, such as the subspace of R consisting of all rational numbers, admit 
no complete metrics.  However, every non-compact locally compact metrizable space,  
such as ( 0, ∞ ) admits both complete metrics and incomplete metrics.  All of these 
statements will be justified by results in this chapter. 
 
 Recall that according to Theorem III.7 every compact subset of a metric space is 
closed and bounded.  However, the converse of this result is false: closed bounded 
subsets of a metric space need not be compact. 
 
 Example VI.2.  Let ρ denote the discrete metric on the set N of positive integers.  
(ρ(x,y) = 0 if x = y, and (ρ(x,y) = 1 if x ≠ y.)  Then N itself is a closed bounded set in 
(N,ρ), but N is non-compact.  Indeed, { { n } : n ∈ N } is an open cover of N that has no 
finite subcover. 
 
 Despite such examples, there is an important collection of metric spaces in which 
closed bounded subsets are always compact.  Indeed, the Heine-Borel Theorem (III.8) 
tells us that R with the standard metric and Rn with the Euclidean metric (for n ≥ 2) enjoy 
this property.  We now prove that all such metric spaces are complete.  It will follow that 
R with the standard metric and Rn with the Euclidean metric for n ≥ 2 are complete 
metric spaces.  It will also follow that all compact metric spaces are complete.  We first 
assign a term to metrics which enjoy the property that all closed bounded subsets are 
compact. 
 
 Definition.  Let ( X, ρ ) be a metric space.  If every closed subset of X that is 
bounded with respect to ρ is compact, then we call ρ a proper metric on X.  An 
equivalent way to say that ρ is a proper metric on X is to say “( X, ρ ) has the Heine-
Borel property”. 
 
 Theorem VI.2.  If ρ is a proper metric on a metrizable space X, then ρ is a 
complete metric. 
 
 Proof.  Assume ρ is a proper metric on the space X.  Let { xn } be a Cauchy 
sequence in X.  Then there is an n ≥ 1 such that ρ(xi,xj) < 1 for all i, j ≥ n.  Let M =  
max { ρ(xi,xj) : 1 ≤ i ≤ j ≤ n }.  Observe that for i, j ∈ N: ρ(xi,xj) ≤ M if i ≤ n and j ≤ n, ρ(xi,xj) 
≤ ρ(xi,xN) + ρ(xN,xj) < M + 1 if i ≤ n ≤ j, and ρ(xi,xj) < 1 if i ≥ n and j ≥ n.  Thus,  
diam( { xn } ) ≤ M + 1.   
 
 Next we need a lemma. 
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 Lemma VI.3.  If A is a subset of a metric space X, then diam(cl(A)) = diam(A). 
 
 Proof of Lemma VI.3.  Since A ⊂ cl(A), then diam(A) ≤ diam(cl(A)).  Let ε > 0.  
Let x, y ∈ cl(A).  Then N(x,ε/2) ∩ A ≠ ∅ and N(y,ε/2) ∩ A ≠ ∅ by Theorem I.16.b.  Hence, 
we can choose points x´ ∈ N(x,ε/2) ∩ A and y´ ∈ N(y,ε/2) ∩ A.  Therefore,  
ρ(x,y)  ≤  ρ(x,x´) + ρ(x´,y´) + ρ(y´,y)  <  ε/2 + diam(A) + ε/2  = diam(A) + ε. 
It follows that diam(cl(A)) ≤ diam(A) + ε.  Since this inequality holds for every ε > 0, then 
we conclude that diam(cl(A)) ≤ diam(A).  Therefore, diam(cl(A)) = diam(A).  
 
 Since diam( { xn } ) ≤ M + 1, then Lemma VI.3 implies diam( cl({ xn }) ) ≤ M + 1.  
Thus, cl({ xn }) is a closed bounded subset of X.  Since ρ is a proper metric on X, then it 
follows that cl({ xn }) is compact.  Since cl({ xn }) is a metric space, then Theorem III.30 
implies that cl({ xn }) is sequentially compact.  Consequently, there is a subsequence 
n(1) < n(2) < n(3) < … of N such that { xn(i) } converges to a point y ∈ X. 
 
 We will now prove that { xn } converges to y.  Let ε > 0.  Since { xn } is a Cauchy 
sequence, then there is an m ≥ 1 such that ρ(xi,xj) < ε/2 if i, j ≥ m.  Since { xn(i) } converges 
to y, there is a k ≥ 1 such that ρ(xn(i),y) < ε/2 if i ≥ k.  Since n(1) < n(2) < n(3) < … are 
positive integers, then there is a j ≥ k such that n(j) ≥ m.  Then i ≥ m implies ρ(xi,y) ≤ 
ρ(xi,xn(j)) + ρ(xn(j),y) < 2(ε/2) = ε.  We conclude that { xn } converges to y. 
 
 We have proved that every Cauchy sequence in X converges.  Therefore, ρ is a 
complete metric on X.  
 
 Corollary VI.4.  Every compact metric space is complete. 
 
 Proof.  Let ( X, ρ ) be a compact metric space.  Since every closed subset of X is 
compact by Theorem III.2, then ρ is a proper metric.  Hence, Theorem VI.2 implies that 
ρ is a complete metric.   
 
 Corollary VI.4.  R with the standard metric and Rn with the Euclidean metric (for 
n ≥ 2) are complete metric spaces. 
 
 Proof.  The Heine-Borel Theorem (III.8) tells us that the standard metric on R 
and the Euclidean metric on Rn (for n ≥ 2) are proper metrics.  Hence, Theorem VI.2 
implies that these metrics are complete.   
 
 Recall that, according to Theorem III.10, a nested sequence of non-empty 
compacta has non-empty intersection.  Complete metric spaces are characterized by a 
similar property which we now present.     
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 Theorem VI.5.  The Cantor Intersection Theorem.  A metric space ( X, ρ ) is 
complete if and only if it has the following property.  If C1 ⊃ C2 ⊃ C3 ⊃ … is a nested 
sequence of non-empty closed subsets of X such that 

! 

lim
n " #

diam(Cn) = 0, then  
∩ n ≥ 1 Cn ≠ ∅. 
 
 Proof.  First assume ( X, ρ ) is a complete metric space.  Let C1 ⊃ C2 ⊃ C3 ⊃ … 
be a nested sequence of non-empty closed subsets of X such that 

! 

lim
n " #

diam(Cn) = 0.  
For each n ≥ 1, since Cn is non-empty, we can choose a point xn ∈ Cn.  For n ≥ 1, since i 
≥ n implies xi ∈ Ci ⊂ Cn, then { xi : i ≥ n } ⊂ Cn.  Hence, for n ≥ 1, diam ( { xi : i ≥ n } ) ≤ 
diam(Cn).  Consequently, 

! 

lim
n " #

diam( { xi : i ≥ n } ) = 0.  Therefore, { xn } is a Cauchy  
sequence.  Since ( X, ρ ) is a complete metric space, then { xn } converges to a point y ∈ 
X.  Let n ≥ 1.  We will prove y ∈ Cn.  Let U be a neighborhood of y in X.  Then there is an 
m ≥ 1 such that xi ∈ U for every i ≥ m.  Let i = max { m, n }.  Then xi ∈ U and xi ∈ Ci ⊂ 
Cn.  Thus, U ∩ Cn ≠ ∅.  Thus, every neighborhood of y intersects Cn.  Since Cn is a 
closed subset of X, then it follows from Theorem I.15 that y ∈ Cn.  Hence, y ∈ ∩ n ≥ 1 Cn.  
This proves ∩ n ≥ 1 Cn ≠ ∅. 
 
 Second assume that if C1 ⊃ C2 ⊃ C3 ⊃ … is a decreasing sequence of non-empty 
closed subsets of X such that 

! 

lim
n " #

diam(Cn) = 0, then ∩ n ≥ 1 Cn ≠ ∅.  To prove that  
( X, ρ ) is a complete metric space, let { xn } be a Cauchy sequence in X.  For each n ≥ 
1, let Cn = cl( { xi : i ≥ n } ).  Lemma VI.3 implies that diam(Cn) = diam( { xi : i ≥ n } ).  
Since { xn } is a Cauchy sequence, then 

! 

lim
n " #

diam( { xi : i ≥ n } ) = 0.  It follows that 

! 

lim
n " #

diam(Cn) = 0.  Hence, our hypothesis implies ∩ n ≥ 1 Cn ≠ ∅.  Therefore, there is a 
point y ∈ ∩ n ≥ 1 Cn.  We will now prove that { xn } converges to y.  To this end, let ε > 0.  
Since 

! 

lim
n " #

diam(Cn) = 0, then there is an n ≥ 1 such that diam(Cn) < ε.  Since y ∈ Cn and 
xi ∈ Cn for all i ≥ n, then ρ(xi,y) ≤ diam(Cn) < ε for all i ≥ n.  We conclude that { xn } 
converges to y.  We have proved that every Cauchy sequence in X converges to a point 
of X.  Thus ( X, ρ ) is a complete metric space.  
 
 Recall that a point x in a topological space X is isolated if { x } is an open subset 
of X.  Furthermore recall the result of Problem III.2: if X is a non-empty compact 
Hausdorff space with no isolated points, then X   

! 

f  R (i.e., there is a one-to-one function 
from R into X).  The similarity between compactness and completeness illustrated by 
the Cantor Intersection Theorem is extended by the following analogue of Problem III.2. 
 
 Problem VI.1.  Prove that if X is a non-empty complete metric space with no 
isolated points, then X   

! 

f  R. 
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Theorem VI.6.  Suppose ( X, ρ ) is a metric space and C is a subset of X. 

a)  If ρ is a complete metric on X and C is a closed subset of X, then ρ restricts to a  
complete metric on C. 
b)  If ρ restricts to a complete metric on C, then C is a closed subset of X. 
 
 Proof of a).  Assume ρ is a complete metric on X and C is a closed subset of X.  
Let { xn } be a Cauchy sequence in C.  Then { xn } converges to a point y ∈ X.  In this 
situation, Corollary I.22.a implies y ∈ C.  This proves ρ restricts to a complete metric on 
C.  
 
 Proof of b).  Assume ρ restricts to a complete metric on C.  Since the metric 
space X is first countable, then according to Corollary I.22.b, to prove that C is a closed 
subset of X, it suffices to prove that if { xn } is a sequence in C that converges to a point 
y ∈ X, then y ∈ C.  So assume { xn } is a sequence in C that converges to a point y ∈ X.  
Then { xn } is a Cauchy sequence by Lemma VI.1.  Since ρ restricts to a complete metric 
on C, then it follows that { xn } converges to a point z ∈ C.  We assert that y = z.  For 
suppose y ≠ z.  Since the metric space X is Hausdorff by Theorem I.25, then there are 
disjoint neighborhoods U and V of y and z, respectively, in X.  Since { xn } converges to 
y, then there is an m ≥ 1 such that xi ∈ U for all i ≥ m; and since { xn } converges to z, 
then there is an n ≥ 1 such that xi ∈ V for all i ≥ n.  Let i = max { m, n }.  Then xi ∈ U ∩ V.  
Since U and V are disjoint, we have reached a contradiction.  We conclude that y = z.  
Therefore, y ∈ C.  It now follows from Corollary I.22.b that C is a closed subset of X.  
 
 Recall that a metric space ( X, ρ ) is totally bounded if for every ε > 0, a finite 
subset of { N(x,ε) : x ∈ X } covers X. 
 
 Theorem VI.7.  A metric space is compact if and only if it is complete and totally 
bounded. 
 
 Problem VI.2.  Prove Theorem VI.7. 
 
 Recall that if ρ : X × X → [ 0. ∞ ) is a metric on a set X, then according to 
Theorem I.12, an equivalent metric 

! 

" : X × X → [ 0. ∞ ) is defined by the equation 

! 

"(x,y) 
= min { ρ(x,y), 1 } for all x, y ∈ X. 
 
 Theorem VI.8.  If ( X, ρ ) is a metric space, then ρ is complete if and only if 

! 

" is 
complete. 
 
 Proof.  Since 

! 

"(x,y) ≤ ρ(x,y) for all x, y ∈ X, then every sequence in X which is 
Cauchy with respect to ρ is also Cauchy with respect to 

! 

".  Also if { xn } is a sequence in 
X that is Cauchy with respect to 

! 

", then for every ε > 0, there is an n ≥ 1 such that  
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! 

"(xi,xj) < min { ε, 1 } whenever i, j ≥ n.  Then ρ(xi,xj) = 

! 

"(xi,xj) < ε whenever i, j ≥ n.  Thus, 
{ xn } is Cauchy with respect to ρ.  We conclude that every sequence in X which is 
Cauchy with respect to 

! 

" is also Cauchy with respect to ρ.  
 
 Now assume ρ is a complete metric on X.  Let { xn } be a sequence in X that is 
Cauchy with respect to 

! 

".  Then { xn } is Cauchy with respect to ρ.  Hence, { xn } 
converges with respect to ρ.  Since ρ and 

! 

" are equivalent metrics on X, then { xn } 
converges with respect to 

! 

".  It follows that 

! 

" is a complete metric on X. 
 
 We simply interchange the roles of ρ and 

! 

" in the preceding paragraph to obtain 
a proof that if 

! 

" is a complete metric on X, then so is ρ.  
 
 Theorem VI.9.  Let ( X1, ρ1 ), ( X2, ρ2 ), … , ( Xn, ρn ) be metric spaces.  Define the  
three metrics σ1, σ2 and σ∞ on X1 × X2 × … × Xn by the formulas: 

σ1(x,y)  =  

! 

" i (xi,yi)i=1

n

# , 

σ2(x,y)  =  

! 

" i (xi,yi)( )
2

i=1

n

#$ % & 
' 
( 
) 

1
2, 

σ∞(x,y)  =  max { ρi(xi,yi) : 1 ≤ i ≤ n } 

for x = ( x1, x2, … , xn ) and y = ( y1, y2, … , yn ) ∈ X1 × X2 × … × Xn.  (Theorem I.32 
implies that σ1, σ2 and σ∞ are equivalent metrics that induce the product topology on  
X1 × X2 × … × Xn.)   Then σ1, σ2 and σ∞ are complete metrics on X1 × X2 × … × Xn if and 
only if ρi is a complete metric on Xi for 1 ≤ i ≤ n. 
 
 Proof.  For 1 ≤ i ≤ n, let πi : X1 × X2 × … × Xn → Xi denote the ith projection map; 
thus, πi(x) = xi for x = ( x1, x2, … , xn ) ∈ X1 × X2 × … × Xn.  For a = ( a1, a2, … , an ) ∈  
X1 × X2 × … × Xn and 1 ≤ i ≤ n, let ea,i : Xi → X1 × X2 × … × Xn denote the ith injection map; 
thus, ea,i(x) = ( a1, … , ai – 1, x, ai + 1, ... , an ) for x ∈ Xi.   
 
 We make two observations: 
i)  For 1 ≤ i ≤ n and r ∈ { 1, 2, ∞ }, ρi(πi(x),πi(y)) ≤ σr(x,y) for x and y ∈ X1 × X2 × … × Xn. 

ii)  For a ∈ X1 × X2 × … × Xn, 1 ≤ i ≤ n and r ∈ { 1, 2, ∞ }, σr(ea,i(x),ea,i(y)) = ρi(x,y) for x 
and y ∈ Xi. 
 
 First assume ρi is a complete metric on Xi for 1 ≤ i ≤ n.  Let r ∈ { 1, 2, ∞ }. 
Suppose { xk } is a Cauchy sequence in ( X1 × X2 × … × Xn, σr ).  Then observation i) 
above implies that { πi(xk) } is a Cauchy sequence in ( Xi, ρi ) for 1 ≤ i ≤ n.  For 1 ≤ i ≤ n, 
since ( Xi, ρi ) is a complete metric space, then { πi(xk) } converges in Xi to a point yi ∈ Xi.   
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Let y = ( y1, y2, … , yn ) ∈ X1 × X2 × … × Xn.  Then Theorem V.7 implies { xk } converges 
to y in X1 × X2 × … × Xn.  Hence, σr is a complete metric on X1 × X2 × … × Xn. 
 
 Second let r ∈ { 1, 2, ∞ } and assume σr is a complete metric on X1 × X2 × … × Xn.  
Let 1 ≤ i ≤ n.  Suppose { xk } is a Cauchy sequence in Xi.  Let a ∈ X1 × X2 × … × Xn.  
Then observation ii) above implies that { ea,i(xk) } is a Cauchy sequence in  
( X1 × X2 × … × Xn, σr ).  Since ( X1 × X2 × … × Xn, σr ) is a complete metric space, then  
{ ea,i(xk) } converges in X1 × X2 × … × Xn to a point y ∈ X1 × X2 × … × Xn.  Since πi is 
continuous, then Theorem II.7 implies that { πi(ea,i(xk)) } converges to πi(y) in Xi.  Since 
πi(ea,i(xk)) = xk for k ≥ 1, then we conclude that { xk } converges in Xi.  Hence, ρi is a 
complete metric on Xi.  
 
 Corollary VI.10.  For n ≥ 2, Rn with the taxicab metric and Rn with the supremum 
metric are complete metric spaces. 
 
 Theorem VI.11.  Let { (Xn,ρn) : n ∈ N } be a countable collection of metric spaces.  
For each n ∈ N, define the metric 

! 

"n : Xn × Xn → [0,∞) by 

! 

"n(x,y) = min { ρn(x,y), 1 } for x, 
y ∈ Xn.  (Theorem I.12 implies that 

! 

"n is equivalent to ρn and 

! 

"n ≤ 1.)  Define the  
three metrics σ1, σ2 and σ∞ on ∏n ∈ N Xn by the formulas:   

a)  σ1(x,y)  =  ∑n ∈ N 2–n

! 

"n( x(n), y(n) ), 

b)  σ2(x,y)  =  ( ∑n ∈ N ( 2–n

! 

"n( x(n), y(n) ) )2 )1/2,  and 

c)  σ∞(x,y)  =  sup { 2–n

! 

"n( x(n), y(n) ) : n ∈ N }. 

(Theorem V.14 implies that σ1, σ2 and σ∞ are equivalent metrics that induce the product 
topology on ∏n ∈ N Xn.)  Then σ1, σ2 and σ∞ are complete metrics on ∏n ∈ N Xn if and only if 
ρn is a complete metric on Xn for each n ∈ N. 
 
 Proof.  For each m ∈ N, let πm : ∏n ∈ N Xn → Xm denote the mth projection map; 
thus, πm(x) = x(m) for x ∈ ∏n ∈ N Xn.  For a ∈ ∏n ∈ N Xn and m ∈ N, let ea,m : Xm → ∏n ∈ N Xn 
denote the the mth injection map; thus, ea,m(x)(i) = x if i = m and ea,m(x)(i) = a(i) if i ≠ m for 
x ∈ Xm.   
 
 We make two observations: 

i)  For m ∈ N and r ∈ { 1, 2, ∞ }, 2–m

! 

"m(πm(x),πm(y)) ≤ σr(x,y) for x and y ∈ ∏n ∈ N Xn. 

ii)  For a ∈ ∏n ∈ N Xn, m ∈ N, and r ∈ { 1, 2, ∞ }, σr(ea,m(x),ea,m(y)) = 2–m

! 

"m(x,y) for x and y 
∈ Xm. 
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 First assume ρn is a complete metric on Xn for each n ∈ N.  Then Theorem VI.8 
implies that 

! 

"n is a complete metric on Xn for each n ∈ N.  Let r ∈ { 1, 2, ∞ }.  Suppose  
{ xk } is a Cauchy sequence in ( ∏n ∈ N Xn, σr ).  Let m ∈ N.  We assert that { πm(xk) } is a 
Cauchy sequence in ( Xm, 

! 

"m ).  Let ε > 0.  Then there is an k ≥ 1 such that σr(xi,xj) <  2–

mε whenever i, j ≥ k.  Then observation i) above implies that 

! 

"m(πi(xi),πi(xj)) < ε whenever 
i, j ≥ k.  This proves our assertion: { πm(xk) } is a Cauchy sequence in  
( Xm, 

! 

"m ).  Since ( Xm, 

! 

"m ) is a complete metric space, then { πm(xk) } converges in Xm to 
a point ym ∈ Xm.  Define the point y ∈ ∏n ∈ N Xn by y(m) = ym for each m ∈ N.  Then  
{ πm(xk) } converges to πi(y) = ym for each m ∈ N.  Therefore Theorem V.7 implies { xk } 
converges to y in ∏n ∈ N Xn.  This proves that σr is a complete metric on ∏n ∈ N Xn. 
 
 Second let r ∈ { 1, 2, ∞ } and assume σr is a complete metric on ∏n ∈ N Xn.  Let m 
∈ N.  Suppose { xk } is a Cauchy sequence in ( Xm, 

! 

"m ).  Let a ∈ ∏n ∈ N Xn.  Observation 
ii) above implies that σr(ea,m(x),ea,m(y)) ≤ 

! 

"m(x,y) for x, y ∈ Xm.  Consequently, { ea,m(xk) } 
is a Cauchy sequence in ( ∏n ∈ N Xn, σr ).  Since ( ∏n ∈ N Xn, σr ) is a complete metric 
space, then { ea,m(xk) } converges in ∏n ∈ N Xn to a point y ∈ ∏n ∈ N Xn.  Since πm is 
continuous, then Theorem II.7 implies that { πm(ea,m(xk)) } converges to πm(y) in Xi.  Since 
πm(ea,m(xk)) = xk for k ≥ 1, then we conclude that { xk } converges in Xm.  Hence, 

! 

"m is a 
complete metric on Xm.   It follows via Theorem VI.8 that ρm is a complete metric on Xm. 
 
 
 Definition.  Let X be a set and let ( Y, ρ ) be a metric space.  A function f : X → Y 
is bounded if diam(f(X)) < ∞.  Let B(X,Y) denote the set of all bounded functions from X 
to Y.  Furthermore, if X is a topological space, let C(X,Y) denote the set of all continuous 
bounded functions from X to Y; thus, C(X,Y) ⊂ B(X,Y). 
 
 Theorem VI.12.  Let X be a set and let ( Y, ρ ) be a metric space.  Define the 
function σ : B(X,Y) × B(X,Y) → [0,∞) by σ(f,g) = sup { ρ(f(x),g(x)) : x ∈ X }.  Then σ is a 
metric on B(X,Y) which is called the supremum metric on B(X,Y).  Furthermore, σ is a 
complete metric on B(X,Y) if and only if ρ is a complete metric on Y. 
 
 Proof.  First we show that the function σ : B(X,Y) × B(X,Y) → [0,∞) is well defined 
by proving that σ(f,g) < ∞ for all f, g ∈ B(X.Y).  Let f, g ∈ B(X.Y).  Then diam(f(X)) < ∞ 
and diam(g(X)) < ∞.  Choose x0 ∈ X.  Then for each x ∈ X, ρ(f(x),g(x)) ≤  
ρ(f(x),f(x0)) + ρ(f(x0),g(x0)) + ρ(g(x0),g(x)) ≤ diam(f(X)) + ρ(f(x0),g(x0)) + diam(g(X)).  Thus, 
σ(f,g) ≤ diam(f(X)) + ρ(f(x0),g(x0)) + diam(g(X)) < ∞. 
 
 To verify that σ is a metric, let f, g and h ∈ B(X.Y).   
• Clearly:  f = g  ⇔  f(x) = g(x) for every x ∈ X  ⇔  ρ(f(x),g(x)) = 0 for every x ∈ X  ⇔  

σ(f,g) = 0.   
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• Since ρ(f(x),g(x)) = ρ(g(x),f(x)) for every x ∈ X, then σ(f,g) = σ(g,f). 

• Since for every x ∈ X, ρ(f(x),h(x)) ≤ ρ(f(x),g(x)) + ρ(g(x),h(x)) ≤ σ(f,g) + σ(g,h), then  
σ(f,h) ≤ σ(f,g) + σ(g,h). 

This completes the proof that σ is a metric on B(X,Y). 
 
 Now assume that ρ is a complete metric on Y.  Let { fn } be a Cauchy sequence in 
( B(X,Y), σ ).  Let x ∈ X.  Since ρ(fi(x),fj(x)) ≤ σ(fi,fj) for i, j ≥ 1, then { fn(x) } is a Cauchy 
sequence in Y.  Therefore, { fn(x) } converges to a point g(x) in Y.  This defines a 
function g : X → Y.  We will prove that g ∈ B(X,Y) and { fn } converges to g in  
( B(X,Y), σ ).   
 

Since { fn } is a Cauchy sequence in ( B(X,Y), σ ), then there is a k ≥ 1 such that 
σ(fi,fj) < 1 whenever i, j ≥ k.  Let x, x´ ∈ X.  Since { fn(x) } converges to g(x) in Y, there is 
an m ≥ 1 such that ρ(fi(x),g(x)) < 1 whenever i ≥ m.  Similarly, since { fn(x´) } converges 
to g(x´) in Y, there is an m´ ≥ 1 such that ρ(fi(x´),g(x´)) < 1 whenever i ≥ m´.  Let i = max  
{ k, m, m´ }.  Then   
  ρ(g(x),g(x´))  ≤  ρ(g(x),fi(x)) + ρ(fi(x),fk(x)) + ρ(fk(x),fk(x´)) + ρ(fk(x´),fi(x´)) + ρ(fi(x´),g(x´))  ≤  

  ρ(g(x),fi(x)) + σ(fi,fk) + diam(fk(X)) + σ(fk,fi) + ρ(fi(x´),g(x´))  <  4 + diam(fk(X)).   

Thus, diam(g(X)) ≤ 4 + diam(fk(X)) < ∞.  Consequently, g ∈ B(X,Y).   
 

To prove that { fn } converges to g, let ε > 0.  Since { fn } is a Cauchy sequence in 
( B(X,Y), σ ), then there is a k ≥ 1 such that σ(fi,fj) < ε/3 whenever i, j ≥ k.  We will prove 
that σ(fi,g) < ε whenever i ≥ k.  Let x ∈ X. Since { fn(x) } converges to g(x) in Y, there is 
an m ≥ 1 such that ρ(fi(x),g(x)) < ε/3 whenever i ≥ m.  Let i ≥ k and let j = max { k, m }.   
Then  

ρ(fi(x),g(x))  ≤  ρ(fi(x),fj(x)) + ρ(fj(x),g(x))  ≤  σ(fi,fj) + ρ(fj(x),g(x))  <  2ε/3. 

Since the choice of k ≥ 1 is independent of the choice of x ∈ X, then ρ(fi(x),g(x)) < 2ε/3 for 
every x ∈ X whenever i ≥ k.  Thus, σ(fi,g) ≤ 2ε/3 < ε whenever i ≥ k.  This proves { fn } 
converges to g in ( B(X,Y), σ ).  We conclude that σ is a complete metric on B(X,Y). 
 
 Next assume σ is a complete metric on B(X,Y).  To prove that ρ is a complete 
metric on Y, let { yn } be a Cauchy sequence in Y.  For each n ≥ 1, define the function  
fn : X → Y by fn(x) = yn for all x ∈ X.  Then for each n ≥ 1, diam(fn(X)) = diam( { yn } ) = 0.  
Hence, fn ∈ B(X,Y) for every n ≥ 1.  For i, j ≥ 1 and for each x ∈ X, ρ(fi(x),fj(x)) = ρ(yi,yj).  
Thus, σ(fi,fj) = ρ(yi,yj) for i, j ≥ 1.  Therefore, the fact that { yn } is a Cauchy sequence in  
( Y, ρ ) implies that { fn } is a Cauchy sequence in ( B(X,Y), σ ).  Since σ is a complete 
metric on B(X,Y), then there is a g ∈ B(X,Y) such that { fn } converges g in ( B(X,Y), σ ).  
Let x0 ∈ X.  Then  ρ(yn,g(x0))  =  ρ(fn(x0),g(x0))  ≤  σ(fn,g).  Since { fn } converges g with  
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respect to σ, then it follows that { yn } converges to g(x0).  We conclude that ρ is a 
complete metric on Y.   
 

Definition.  Let X be a topological space and let ( Y, ρ ) be a metric space.  Let 
C(X,Y) denote the set of all continuous bounded functions from X to Y.  Thus, C(X,Y) ⊂ 
B(X,Y).  We restrict the supremum metric σ on B(X,Y) to C(X,Y) to obtain a metric on 
C(X,Y) which is called the supremum metric on C(X,Y). 
 
 Theorem VI.13.  Let X be a topological space, let ( Y, ρ ) be a metric space, and 
assign B(X,Y) the supremum metric σ.  Then C(X,Y) is a closed subset of B(X,Y). 
Furthermore, σ restricts to a complete metric on C(X,Y) if and only if ρ is a complete 
metric on Y. 
 
 Proof.  To prove that C(X,Y) is a closed subset of B(X,Y), let f ∈   
B(X,Y) – C(X,Y).  Then f fails to be continuous at some point x0 ∈ X.  Hence, there is an 
ε > 0 such that for every neighborhood U of x0 in X, there is an x ∈ U such that 
ρ(f(x0),f(x)) ≥ ε.  Let V denote the ε/3–neighborhood of f in ( B(X,Y), σ ).  Thus, V is a 
neighborhood of f in B(X,Y) such that g ∈ V if and only if σ(f,g) < ε/3. 
  
 We assert that V ∩ C(X,Y) = ∅.  Let g ∈ V.  Let U be a neighborhood of x0 in X.   
Then there is an x ∈ U such that ρ(f(x0),f(x)) ≥ ε.  Therefore,  

ε  ≤  ρ(f(x0),f(x))  ≤  ρ(f(x0),g(x0)) + ρ(g(x0),g(x)) + ρ(g(x),f(x))  ≤   

σ(f,g) + ρ(g(x0),g(x)) + σ(f,g)  <  2ε/3 + ρ(g(x0),g(x)). 

Therefore, ρ(g(x0),g(x)) > ε/3.  Hence, there is no neighborhood U of x0 in X such that 
ρ(g(x0),g(x)) < ε/3 for all x ∈ U.  Thus, g is discontinuous at x0.  Therefore, g ∉ C(X,Y).  
This proves our assertion: V ∩ C(X,Y) = ∅. 
 
 Since every f ∈  B(X,Y) – C(X,Y) has a neighborhood which is disjoint from 
C(X,Y), then C(X,Y) is a closed subset of B(X,Y).   
 
 If ρ is a complete metric on Y, then Theorem VI.12 implies that σ is a complete 
metric on B(X,Y).  Since C(X,Y) is a closed subset of B(X,Y), then Theorem VI.6.a 
implies that σ restricts to a complete metric on C(X,Y). 
 
 If σ restricts to a complete metric on C(X,Y), then the argument given in the final 
paragraph of the proof of Theorem VI.12 applies here to prove that ρ is a complete 
metric on Y.  Beginning with a Cauchy sequence { yn } in Y, we define the constant 
maps fn : X → { yn }.  Since these functions are continuous, { fn } is a Cauchy sequence 
in C(X,Y).  Therefore, { fn } converges to some g ∈ C(X,Y).  It then follows as before that 
{ yn } converges to g(x0) for any x0 ∈ X.  This proves ρ is a complete metric on Y.  


