
Math 752 161 Spring 2011 

B.  The Tychonoff Theorem 
 
 The Tychonoff Theorem says that the Cartesian product of every collection of 
compact spaces is compact.  It is one of most important results of set theoretic topology.  
There are many approaches to the proof, all of which rely on some form of the Axiom of 
Choice.  (In fact, the Tychonoff Theorem is equivalent to the Axiom of Choice.)  We will 
take an approach that invokes Zermelo’s Well Ordering Principle.   
 

Before attacking the proof of the Tychonoff Theorem, we establish a useful 
lemma. 

 
Lemma V.16.  Let B be a basis for a topological space X.  Then X is compact if 

and only if every cover of X by elements of B has a finite subcover. 
 
Proof.  Clearly, if X is compact, then every cover of X by elements of B has a 

finite subcover. 
 
Assume every cover of X by elements of B has a finite subcover.  Let U be any 

open cover of X.  We will prove that U has a finite subcover.  Let  

C  =  { B ∈ B : B is contained in an element of U }. 
 
We assert that C covers X.  For suppose that x ∈ X.  Since U covers X, there is a 

U ∈ U such that x ∈ U.  Then, since B is a basis for X, there is a B ∈ B such that x ∈ B 
⊂ U.  Thus, x ∈ B ∈ C.  Hence, C covers X.   

 
Since C is an cover of X by elements of B, then, by hypothesis, there is a finite 

subset { B1, B2, … , Bn } of C that covers X.  For 1 ≤ i ≤ n, since Bi ∈ C, then it is possible 
to choose Ui ∈ U such that Bi ⊂ Ui. Then { U1, U2, … , Un } is a finite subset of U that 
covers X.  We conclude that U has a finite subcover.  Thus, X is compact.  
 

Theorem V.17: The Tychonoff Theorem.  The Cartesian product of every 
collection of compact spaces is compact. 

 
The concept underlying our proof of the Tychonoff Theorem is a generalization of 

the idea we used to prove that the Cartesian product of finitely many compact spaces is 
compact.  (See the proof of Theorem III.13.)  There are other proofs of this theorem 
based on markedly different ideas.  We outline one of these proofs in an Additional 
Problem.  

 
Proof.  Let { Xγ : γ ∈ Γ } be a collection of compact spaces.  We will prove that  

∏γ ∈ Γ Xγ is compact.  Since the collection of all restricted open boxes is a basis for the 
product topology on ∏γ ∈ Γ Xγ, then Lemma V.16 implies that it suffices to prove that  



   162  

 
 
 

 
 

every cover of ∏γ ∈ Γ Xγ by restricted open boxes has a finite subcover.  We will proceed 
by contradiction.  Assume that U is a cover of ∏γ ∈ Γ Xγ by restricted open boxes that has 
no finite subcover. 
 

We introduce a simple idea which is useful for working with Cartesian products 
called the Subproduct Membership Principle which will be used three times in this proof.   
If Aγ ⊂ Xγ for each γ ∈ Γ, then we call the set ∏γ ∈ Γ Aγ a subproduct of ∏γ ∈ Γ Xγ.  Hence, a 
subset A of ∏γ ∈ Γ Xγ is a subproduct of ∏γ ∈ Γ Xγ if and only if A = ∏γ ∈ Γ πγ(A).  (Verify!)  
Observe that every open box in ∏γ ∈ Γ Xγ  is a subproduct of ∏γ ∈ Γ Xγ.  In proving the 
compactness of ∏γ ∈ Γ Xγ, we choose to work with a cover consisting of restricted open 
boxes rather than arbitrary open sets because open boxes, being subproducts, have a 
simple structure not found in arbitrary open sets.  Now we state: 
 
 The Subproduct Membership Principle.  Let A be a subproduct of ∏γ ∈ Γ Xγ and 
let x ∈ ∏γ ∈ Γ Xγ.  Then x ∈ A if the following condition holds.  There is an x´ ∈ A and a Δ 
⊂ Γ such that x | Δ = x´ | Δ and x(γ) ∈ πγ(A) for each γ ∈ Γ – Δ. 
 
 Proof of the Subproduct Membership Principle.  Suppose there is an x´ ∈ A 
and a Δ ⊂ Γ such that x | Δ = x´ | Δ and x(γ) ∈ πγ(A) for each γ ∈ Γ – Δ.  Since x´ ∈ A, 
then for every γ ∈ Δ, x(γ) = x´(γ) = πγ(x´) ∈ πγ(A).  Hence, x(γ) ∈ πγ(A) for every γ ∈ Γ.  
Therefore, x ∈ ∏γ ∈ Γ πγ(A) = A.  

 
Next we define a family of subsets of ∏γ ∈ Γ Xγ that plays an essential role in this 

proof.  Suppose Δ ⊂ Γ and x ∈ ∏γ ∈ Δ Xγ.  (Thus, x is a function with domain Δ.)  Define 

∏(x)  =  { y ∈ ∏γ ∈ Γ Xγ : y | Δ = x }. 

Thus, ∏(x) is the subset of ∏γ ∈ Γ Xγ consisting of all y ∈ ∏γ ∈ Γ Xγ such that y(γ) = x(γ) for 
all γ ∈ Δ and y(γ) ranges freely throughout Xγ for all γ ∈ Γ – Δ.  Observe that there is a 
natural identification between ∏(x) and the Cartesian product { x } × ∏γ ∈ Γ – Δ Xγ.  
Furthermore, if we define Aγ = { x(γ) } for every γ ∈ Δ and Aγ = Xγ for every γ ∈ Γ – Δ, 
then ∏(x) equals the subproduct ∏γ ∈ Γ Aγ of ∏γ ∈ Γ Xγ. 
 

We must consider what this notation means in the degenerate case that Δ = ∅ 
and x ∈ ∏γ ∈ Δ Xγ.  In this situation, x = ∅ because ∅ is the one and only set that satisfies 
the definition of a function with empty domain. In this case, every element y of ∏γ ∈ Γ Xγ 
satisfies the vacuous restriction y | Δ = x.  So, in this case, ∏(x) = ∏γ ∈ Γ Xγ. 
 
 We now invoke Zermelo’s Well Ordering Principle to obtain a well ordering < of Γ. 
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 The goal of the remainder of the proof is the construction of an element z of  
∏γ ∈ Γ Xγ with the property that for each β ∈ Γ, no finite subset of U covers ∏(z | (–∞,β]).  
Once we have constructed z, we will obtain a contradiction as follows.  z lies in an 
element U of U.  We will show that it is possible to choose β ∈ Γ so large that  
∏(z | (–∞,β]) is contained in U.  Thus a single element of U covers ∏(z | (–∞,β]), yielding 
a contradiction. 
 
 We will construct z by “transfinite induction” as follows.  For each β ∈ Γ, we will 
construct zβ ∈ ∏γ ∈ (–∞,β] Xγ so that no finite subset of U covers ∏(zβ), and so that if α and  
β ∈ Γ and α < β, then zβ | (–∞,α] = zα.  Then we will define z ∈ ∏γ ∈ Γ Xγ by letting z(γ) = 
zγ(γ) for each γ ∈ Γ. 
 
 To begin this inductive construction, let β ∈ Γ and assume that for each α ∈  
(–∞,β), we have already obtained zα ∈ ∏γ ∈ (–∞,α] Xγ so that no finite subset of U covers 
∏(zα), and so that if α and γ ∈ (–∞,β) and α < γ, then zγ | (–∞,α] = zα.  Since any two zα’s 
(for α ∈ (–∞,β)) agree on the intersection of their domains, then we can define an 
element y of ∏γ ∈ (–∞,β) Xγ by y(α) = zα(α) for each α ∈ (–∞,β).  It follows that for each α ∈ 
(–∞,β), y | (–∞,α] = zα.  Therefore, y has the property that for each α ∈ (–∞,β), no finite 
subset of U covers ∏(y | (–∞,α]).  (In the case that β = min(Γ), y = ∅ and this paragraph 
simply reaffirms the fact that no finite subset of U covers ∏(∅) = ∏γ ∈ Γ Xγ.) 
 
 We assert that no finite subset of U covers ∏(y).  (In the case that β = min(Γ) and 
y = ∅, there is nothing to prove.)   For suppose that a finite subset { U1, U2, … , Un } of U 
covers ∏(y).  For 1 ≤ i ≤ n, since Ui is a restricted open box, then there is a finite subset 
Fi of Γ such that πγ(Ui) = Xγ for each γ ∈ Γ – Fi.  Let α be the maximal element of the 
finite set ( F1 ∪ F2 ∪ … ∪ Fn ) ∩ (–∞,β).  Thus, if γ ∈ (α,β), then  πγ(Ui) = Xγ for 1 ≤ i ≤ n.   
We will now argue that { U1, U2, … , Un } covers ∏(y | (–∞,α]), which contradicts the 
conclusion of the preceding paragraph.  To show that { U1, U2, … , Un } covers  
∏(y | (–∞,α]), let x ∈ ∏(y | (–∞,α]).  Then x | (–∞,α] = y | (–∞,α].  Define x´ ∈ ∏γ ∈ Γ Xγ by 
changing the coordinates x(γ) of x so that they agree with y(γ) for γ ∈ (α,β).  In other 
words, define x´ ∈ ∏γ ∈ Γ Xγ as follows: 

x´ | (–∞,α] ∪ [β,∞)  =  x | (–∞,α] ∪ [β,∞)   and    

x´ | (α,β)  =  y | (α,β). 

Since x´ | (–∞,α] = x | (–∞,α] = y | (–∞,α] and x´ | (α,β)  =  y | (α,β), then x´ | (–∞,β)  =  y.  
Thus, x´ ∈ ∏(y).  Therefore, x´ ∈ Ui for some i between 1 and n.  To summarize the  
situation:  

• Ui is a subproduct of ∏γ ∈ Γ Xγ because it is an open box,  

• x´ ∈ Ui,  
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• x | (–∞,α] ∪ [β,∞) = x´ | (–∞,α] ∪ [β,∞)  and   

• x(γ) ∈ πγ(Ui) for each γ ∈ (α,β) because πγ(Ui) = Xγ for each γ ∈ (α,β). 

Hence, the subproduct membership principle implies x ∈ Ui.  This proves  
{ U1, U2, … , Un } covers ∏(y | (–∞,α]).  As we noted earlier, we have now reached a 
contradiction.  We are forced to conclude that no finite subset of U covers ∏(y). 
 
 Next we assert that there is an element zβ of ∏γ ∈ (–∞,β] Xγ such that zβ | (–∞,β) = y 
and no finite subset of U covers ∏(zβ).  Assume that this assertions is false.  For each  
p ∈ Xβ, define the element wp of ∏γ ∈ (–∞,β] Xγ by wp | (–∞,β) = y and wp(β) = p.  Since we 
have assumed that our assertion is false, then it follows that for every p ∈ Xβ, a finite 
subset of U covers ∏(wp).  Let p ∈ Xβ and let { U1, U2, … , Un } be a finite subset of U 
that covers ∏(wp).  If one of the Ui’s is disjoint from ∏(wp), then we can delete it from the 
set { U1, U2, … , Un }.  So we may assume that each Ui intersects ∏(wp).  Thus, if 1 ≤ i ≤ 
n, then there is an x ∈ ∏(wp) ∩ Ui which implies that p = wp(β) = x(β) = πβ(x) ∈ πβ(Ui).  
Let Vp = πβ(U1) ∩ πβ(U2) ∩ … ∩ πβ(Un).  Then Vp is a neighborhood of p in Xβ.  We will 
now prove that { U1, U2, … , Un } covers { x ∈ ∏(y) : x(β) ∈ Vp }.  To this end, suppose x 
∈ ∏(y) and x(β) ∈ Vp.  Define x´ ∈ ∏γ ∈ Γ Xγ as follows: 

x´ | (–∞,β) ∪ (β,∞)  =  x | (–∞,β) ∪ (β,∞) 

x´(β)  =  p. 

Then x´ | (–∞,β) = x | (–∞,β) = y = wp | (–∞,β) and x´(β)  =  p  =  wp(β).  Hence, x´ | (–∞,β] 
= wp.  Therefore, x´ ∈ ∏(wp).  Hence, x´ ∈ Ui for some i between 1 and n.  To  
summarized the situation: 

• Ui is a subproduct of ∏γ ∈ Γ Xγ because it is an open box,  

• x´ ∈ Ui,  

• x | (–∞,β) ∪ (β,∞) = x´ | (–∞,β) ∪ (β,∞)  and   

• x(β) ∈ Vp ⊂ πβ (Ui). 

Hence, the subproduct membership principle implies x ∈ Ui.  We have proved that  
{ U1, U2, … , Un } covers { x ∈ ∏(y) : x(β) ∈ Vp }.  Hence, for each p ∈ Xβ, a finite subset 
of U covers { x ∈ ∏(y) : x(β) ∈ Vp }.  Since Xβ is compact and { Vp : p ∈ Xβ } is an open 
cover of Xβ, then there is a finite subset { p(1), p(2), … , p(m) } of Xβ such that  
{ Vp(1), Vp(2), … , Vp(m) } covers Xβ.  Since a finite subset of U covers  
{ x ∈ ∏(y) : x(β) ∈ Vp(i) } for 1 ≤ i ≤ m, then a finite subset of U covers  
∪1 ≤ i ≤ m { x ∈ ∏(y) : x(β) ∈ Vp(i) }.  Since { Vp(1), Vp(2), … , Vp(m) } covers Xβ, then for each x  
∈ ∏(y), x(β) ∈ Vp(i) for some i between 1 and m.  Hence,  

∏(y)  =  ∪1 ≤ i ≤ m { x ∈ ∏(y) : x(β) ∈ Vp(i) }. 
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Consequently, some finite subset of U covers ∏(y).  This contradicts the conclusion of 
the previous paragraph. It follows that there is an element zβ of ∏γ ∈ (–∞,β] Xγ such that  
zβ | (–∞,β) = y and no finite subset of U covers ∏(zβ). 
 
 Since zβ | (–∞,β) = y and y | (–∞,α] = zα for each α ∈ (–∞,β), then zβ | (–∞,α] = zα 
for each α ∈ (–∞,β).  Thus, we have accomplished our goal of performing a 
(transfinitely) inductive construction of elements zβ ∈ ∏γ ∈ (–∞,β] Xγ for each β ∈ Γ with the  
following properties: 
• no finite subset of U covers ∏(zβ), and 

• if α and β ∈ Γ and α < β, then zβ | (–∞,α] = zα. 
 
 Finally define z ∈ ∏γ ∈ Γ Xγ by z(β) = zβ(β) for each β ∈ Γ.  Then for each β ∈ Γ,  
z | (–∞,β] = zβ and, hence, no finite subset of U covers ∏(z | (–∞,β]).  Since U covers  
∏γ ∈ Γ Xγ, then z lies in some element U of U.  Since U is a restricted open box, then 
there is a finite subset F of Γ such that πγ(U) = Xγ for each γ ∈ Γ – F.  Let β = max(F).   
Then πγ(U) = Xγ for each γ ∈ (β,∞).  We now argue that ∏(z | (–∞,β]) ⊂ U.  To  
accomplish this, let x ∈ ∏(z | (–∞,β]).  Then:  

• U is a subproduct of ∏γ ∈ Γ Xγ because it is an open box,  

• z ∈ U,  

• x | (–∞,β] = z | (–∞,β]  and   

• x(γ) ∈ πγ(U) for each γ ∈ (β,∞) because πγ(U) = Xγ for each γ ∈ (β,∞). 

Hence, the Subproduct Membership Principle implies x ∈ U.  We have proved that  
∏(z | (–∞,β]) ⊂ U.  Thus, a one-element subset of U covers ∏(z | (–∞,β]).  We have 
reached our final contradiction.  We conclude that a finite subset of U covers ∏γ ∈ Γ Xγ.  
In other words, U has a finite subcover.  Since U is an arbitrary cover of ∏γ ∈ Γ Xγ by 
restricted open boxes, then it follows by Lemma V.16 that ∏γ ∈ Γ Xγ must be compact.  
 
 Problem III.6 Revisited.  In Problem III.6, we let Σ = { 0, 1 }N, the set of all 
functions from N to { 0, 1 }, and we defined a topology on the space { 0, 1 }Σ of all 
functions from Σ to { 0, 1 }.  This topology is determined by specifying a basis B which 
consists of all sets of the form  

N(f,A)  =  { g ∈ { 0, 1 }Σ : g|A = f|A } 

where f ∈ { 0, 1 }Σ and A is a finite subset of Σ.  In the statement of Problem III.6, we 
asserted that this topology makes { 0, 1 }Σ compact.  We now justify this assertion by 
using the Tychonoff Theorem.   
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Proof.  We will show that { 0, 1 }Σ is a Cartesian product and B is the collection 
of all restricted open boxes in this Cartesian product.  It will then follow that the topology 
we have assigned to { 0, 1 }Σ is simply the product topology.   

 
To begin, let Xσ = { 0, 1 } for each σ ∈ Σ.  Then clearly { 0, 1 }Σ = ∏σ ∈ Σ Xσ.   

 
Next consider an N(f,A) ∈ B where f ∈ { 0, 1 }Σ and A is a finite subset of Σ.  

Then N(f,A) is clearly equal to the restricted open box ∏σ ∈ Σ Uσ where Uσ = { f(σ) } if σ ∈ 
A and Uσ = Xσ if σ ∈ Σ – A. (Verify!)  Thus, every element of B is a restricted open box.   

 
Now consider a restricted open box ∏σ ∈ Σ Uσ in ∏σ ∈ Σ Xσ = { 0, 1 }Σ.  Then the set 

A = { σ ∈ Σ : Uσ ≠ Xσ } is finite, and Uσ is a one-point subset of Xσ = { 0, 1 } for each σ ∈ 
A.  Thus, we can define function f ∈ { 0, 1 }Σ by specifying that f(σ) ∈ Uσ for each σ ∈ A 
and f(σ) = 0 for each σ ∈ Σ – A.  Then clearly ∏σ ∈ Σ Uσ = N(f,A). (Verify!)  Hence, every 
restricted open box in { 0, 1 }Σ is an element of B.  

 
We have shown that the basis B for the topology on { 0, 1 }Σ is precisely the 

collection of all restricted open boxes in { 0, 1 }Σ.  Consequently, the topology we have 
defined on the Cartesian product { 0, 1 }Σ is the product topology.  Since each factor Xσ = 
{ 0, 1 } of this Cartesian product is compact, then the Tychonoff Theorem implies that  
{ 0, 1 }Σ is compact.  This completes our justification of the assertion made in the 
statement of Problem III.6.  
 
 Definition.  For each n ∈ N, let Xn be a topological space and let fn : Xn+1 → Xn be 
a map.  Then the countable collection { ( Xn, fn ) : n ∈ N } is called an inverse sequence 
of topological spaces and maps.  This collection is usually denoted more briefly as  
{ Xn, fn : n ∈ N }.  The inverse limit of { Xn, fn : n ∈ N } is the subspace of the Cartesian 
the Cartesian product ∏n ∈ N Xn (with the product topology) defined by 

! 

Lim

"
 { Xn, fn }  =  { x ∈ ∏n ∈ N Xn : fn(x(n+1)) = x(n) for every n ∈ N }. 

 
 Problem V.9. a)  Suppose { Xn, fn : n ∈ N } is an inverse sequence such that 
each fn : Xn+1 → Xn is a homeomorphism.  Prove: 

! 

Lim

"
 { Xn, fn } is homeomorphic to X1. 

b)  For each n ∈ N, let Yn = [0,∞) and define the map gn : Yn+1 → Yn by gn(y) = y + 1 for  
each x ∈ Yn+1.  Prove: 

! 

Lim

"
 { Yn, gn } is homeomorphic to a familiar space. 

c)  Prove: if { Xn, fn : n ∈ N } is an inverse sequence of non-empty compact Hausdorff 
spaces and maps, then 

! 

Lim

"
 { Xn, fn } is a non-empty compact Hausdorff space. 


