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V. Product Spaces 
 

A.  Fundamental Properties 
 
 Definition.  For sets X and Y, recall that YX denotes the set of all functions from 
X to Y.  The Cartesian product  of an indexed collection of sets { Xγ : γ ∈ Γ }, denoted  
∏γ ∈ Γ Xγ, is the set the set of all functions x : Γ → ∪γ ∈ Γ Xγ such that x(γ) ∈ Xγ for every γ 
∈ Γ.  Thus, ∏γ ∈ Γ Xγ ⊂ ( ∪γ ∈ Γ Xγ )Γ.  An element x of ∏γ ∈ Γ Xγ can be thought of as a  
“Γ-tuple” or a “Γ-indexed sequence” (xγ)γ ∈ Γ where xγ = x(γ) for each γ ∈ Γ. 
 
 We make two observations about the notation for Cartesian products. 
1)  To define the Cartesian product of a collection of sets, it is not necessary that the 
collection be indexed.  Indeed, we can define the Cartesian product of an unindexed 
collection of sets A by letting A itself play the role of the index set.  Specifically, if A is  
an unindexed collection of sets, then we define the Cartesian product of A to be the set   

∏A  =  { x ∈ ( ∪A         ) A : x(A) ∈ A for every A ∈ A  }.   

2)  If X and Y are sets, then YX is a Cartesian product.  Indeed, if we set Yx = Y for every 
x ∈ X, then YX = ∏x ∈ X Yx. 
 
 Definition.  Let { Xγ : γ ∈ Γ } be a collection of topological spaces.  An open box 
in ∏γ ∈ Γ Xγ is a subset of ∏γ ∈ Γ Xγ of the form ∏γ ∈ Γ Uγ  where Uγ is an open subset of Xγ 
for each γ ∈ Γ.  An open box ∏γ ∈ Γ Uγ is restricted if Uγ = Xγ for all but finitely many γ ∈ Γ.   
 
 Lemma V.1.  Let { Xγ : γ ∈ Γ } be a collection of topological spaces, let O denote 
the collection of all open boxes in ∏γ ∈ Γ Xγ, and let Or denote the collection of all 
restricted open boxes in ∏γ ∈ Γ Xγ.  Then both O and Or are bases for topologies on  
∏γ ∈ Γ Xγ. 
 
 Proof.  According to the Corollary to Theorem I.2, it suffices to prove that each of 
O and Or covers ∏γ ∈ Γ Xγ and is closed under the formation of finite intersections.  Since 
∏γ ∈ Γ Xγ is an element of both O and Or, then both of these collections cover ∏γ ∈ Γ Xγ.  
Next suppose A = ∏γ ∈ Γ Uγ and B = ∏γ ∈ Γ Vγ ∈ O.  Since A ∩ B = ∏γ ∈ Γ ( Uγ ∩ Vγ ), then 
clearly A ∩ B ∈ O.  Finally suppose A = ∏γ ∈ Γ Uγ and B = ∏γ ∈ Γ Vγ are elements of Or.  
Then the sets F = { γ ∈ Γ :  Uγ ≠ Xγ } and G = { γ ∈ Γ :  Vγ ≠ Xγ } are finite.  Observe that 
the set { γ ∈ Γ :  Uγ ∩ Vγ ≠ Xγ } is equal to F ∪ G.  Hence, { γ ∈ Γ :  Uγ ∩ Vγ ≠ Xγ } is a finite 
set.  Since A ∩ B =  ∏γ ∈ Γ ( Uγ ∩ Vγ ), then it follows that A ∩ B ∈ Or. This proves that 
both O and Or are closed under the formation of finite intersections.  Consequently, both 
O and Or are bases for topologies on ∏γ ∈ Γ Xγ.  



   154  

 
 
 

 

 Definition.  Let { Xγ : γ ∈ Γ } be a collection of topological spaces.  The set of all 
restricted open boxes in ∏γ ∈ Γ Xγ is a basis for a topology on ∏γ ∈ Γ Xγ called the product 
topology.  The set of all open boxes (restricted and unrestricted) in ∏γ ∈ Γ Xγ is a basis for 
a topology on ∏γ ∈ Γ Xγ called the box topology. 
 
 Convention.  From now on, if { Xγ : γ ∈ Γ } is a collection of topological spaces, 
then the Cartesian product ∏γ ∈ Γ Xγ  will be assigned the product topology, unless 
otherwise specified.   
 

If the collection of sets { Xγ : γ ∈ Γ } is finite, then the product and box topologies 
on ∏γ ∈ Γ Xγ coincide.  However, if { Xγ : γ ∈ Γ } is an infinite collection, then the product 
and box topologies are different, and the box topology is, in general, less well behaved 
than the product topology.  This is illustrated by some of the Additional Problems.  For 
example, the Cartesian product of any collection of connected spaces with the product 
topology is connected, while the Cartesian product of an infinite collection of connected 
spaces with the box topology might not be connected.  For this reason, the box topology 
is not commonly used for Cartesian products of infinite collections of topological spaces 
except to construct exotic examples, and it will not be employed in the remainder of 
these lessons unless otherwise specified. 
 
 Definition.  Let { Xγ : γ ∈ Γ }  be a collection of topological spaces.  For each β ∈ 
Γ, a function πβ : ∏γ ∈ Γ Xγ → Xβ, called the βth projection, is defined by πβ(x) = x(β) for x ∈ 
∏γ ∈ Γ Xγ. 
 
 Theorem V.2.  If { Xγ : γ ∈ Γ } is a collection of topological spaces. then for each 
β ∈ Γ, the projection πβ : ∏γ ∈ Γ Xγ → Xβ is a continuous and open map. 
 
 Proof.  Let β ∈ Γ.   
 

To prove the continuity of πβ, let U be an open subset of Xβ.  Then, πβ–1(U) =  
∏γ ∈ Γ Vγ where Vβ = U and Vγ = Xγ for all γ ∈ Γ – { β }.  Thus, πβ–1(U) is a restricted open 
box in ∏γ ∈ Γ Xγ.  Therefore, πβ–1(U) is an open set.  This proves πβ is continuous. 
 
 To prove that πβ is an open map, let V be an open subset of ∏γ ∈ Γ Xγ and let y ∈ 
πβ(V).  Then y = πβ(x) for some x ∈ V.  Since x ∈ V and V is an open subset of ∏γ ∈ Γ Xγ, 
then there is a restricted open box ∏γ ∈ Γ Uγ in ∏γ ∈ Γ Xγ such that x ∈ ∏γ ∈ Γ Uγ ⊂ V.  
Hence, πβ(x) ∈ πβ( ∏γ ∈ Γ Uγ ) ⊂ πβ(V).  Since πβ(x) = y and πβ( ∏γ ∈ Γ Uγ ) = Uβ, then y ∈ Uβ 
⊂ πβ(V).  We have proved that every element y of πβ(V) is contained in an open subset 
Uβ of Xβ such that Uβ ⊂ πβ(V).  It follows that πβ(V) is an open subset of Xβ.  This proves 
πβ : ∏γ ∈ Γ Xγ → Xβ is an open map.  
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Lemma V.3.  Let { Xγ : γ ∈ Γ } be a collection of topological spaces.  If Aγ ⊂ Xγ for  
each γ ∈ Γ, and if F = { γ ∈ Γ : Aγ ≠ Xγ }, then  

∏γ ∈ Γ Aγ  =  ∩ γ ∈ F πγ–1(Aγ). 

Hence, every restricted open box in ∏γ ∈ Γ Xγ is of the form ∩ γ ∈ F πγ–1(Uγ) where F is a 
finite subset of Γ and Uγ is an open subset of Xγ for each γ ∈ Γ. 
 
 Proof.  Proving the equation ∏γ ∈ Γ Aγ = ∩ γ ∈ F πγ–1(Aγ) is a set theoretic exercise 
which we leave to the student.  The final sentence of this lemma is an immediate 
consequence of this equation.  
 
 Theorem V.4.  If { Xγ : γ ∈ Γ } is a collection of topological spaces. then the 
product topology on ∏γ ∈ Γ Xγ is the smallest topology on ∏γ ∈ Γ Xγ with the property that 
for every β ∈ Γ, πβ : ∏γ ∈ Γ Xγ → Xβ continuous. 
 
 Proof.  Let T be a topology on ∏γ ∈ Γ Xγ with the property that if ∏γ ∈ Γ Xγ is given 
the topology T, then πβ : ∏γ ∈ Γ Xγ → Xβ is continuous for every β ∈ Γ.  We must prove 
that T contains the product topology on ∏γ ∈ Γ Xγ.   
 

First we prove that T contains all the restricted open boxes in ∏γ ∈ Γ Xγ.  Let  
∏γ ∈ Γ Uγ be a restricted open box in ∏γ ∈ Γ Xγ.  Let F = { γ ∈ Γ : Uγ ≠ Xγ }.  Then F is a finite 
subset of Γ and ∏γ ∈ Γ Uγ = ∩ γ ∈ F πγ–1(Uγ) (by Lemma V.3).  For each γ ∈ F, since πγ is 
continuous with respect to T , then πγ–1(Uγ) ∈ T.  Since T, being a topology, is closed 
under the formation of finite intersections, then ∏γ ∈ Γ Uγ = ∩ γ ∈ F πγ–1(Uγ) ∈ T.  Thus, T 
contains all restricted open boxes.   
 

Now let V be any element of the product topology on ∏γ ∈ Γ Xγ.  Since the 
restricted open boxes form a basis for the product topology, then V is a union of 
restricted open boxes.  Since T contains all restricted open boxes and is closed under 
the formation of arbitrary unions, then V ∈ T.  Thus, T contains the product topology on 
∏γ ∈ Γ Xγ.  
 
 The following theorem gives us a useful criterion for the continuity of a map into a 
Cartesian product ∏γ ∈ Γ Yγ (with the product topology).  The function f : X → ∏γ ∈ Γ Yγ is 
continuous if and only if for each γ ∈ Γ, the component function πγºf : X → Yγ is 
continuous. 
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Theorem V.5.  Let X be a topological space, and let { Yγ : γ ∈ Γ } be a collection 
of topological spaces.  Then a function f : X → ∏γ ∈ Γ Yγ is continuous if and only if  
πγºf : X → Yγ is continuous for every γ ∈ Γ. 
 

Proof.  Clearly, if f : X → ∏γ ∈ Γ Yγ is continuous, then πγºf : X → Yγ is continuous 
for every γ ∈ Γ.   

 
Now assume πγºf : X → Yγ is continuous for every γ ∈ Γ.  To prove that  

f : X → ∏γ ∈ Γ Yγ is continuous, let x ∈ X and let U be a neighborhood of f(x) in ∏γ ∈ Γ Yγ.  
Then there is a restricted open box ∏γ ∈ Γ Vγ in ∏γ ∈ Γ Yγ such that f(x) ∈ ∏γ ∈ Γ Vγ ⊂ U.  Let 
W = f–1( ∏γ ∈ Γ Vγ ).  Hence, x ∈ W and f(W) ⊂ ∏γ ∈ Γ Vγ ⊂ U.  Let F = { γ ∈ Γ : Vγ ≠ Yγ }.  
Then F is a finite subset of Γ and ∏γ ∈ Γ Vγ = ∩ γ ∈ F πγ–1(Vγ) (by Lemma V.3).  Hence, W =  
f–1( ∏γ ∈ Γ Vγ ) = f–1( ∩ γ ∈ F πγ–1(Vγ) ) = ∩ γ ∈ F f–1(πγ–1(Vγ)) = ∩ γ ∈ F (πγºf)–1(Vγ).  For each γ ∈ F, 
since πγºf is continuous, then (πγºf)–1(Vγ) is an open subset of X.  Since F is a finite set, it 
follows that ∩ γ ∈ F (πγºf)–1(Uγ) is an open subset of X.  Thus, W is an open subset of X 
such that x ∈ W and f(W) ⊂ U.  This proves the continuity of f : X → ∏γ ∈ Γ Yγ.  
 
 Theorem V.6.  Let X be a topological space, and let { Yγ : γ ∈ Γ } be a collection 
of topological spaces.  Then a function f : X → ∏γ ∈ Γ Yγ is continuous if and only if  
πγºf : X → Yγ is continuous for every γ ∈ Γ. 
 

Proof.  Clearly, if f : X → ∏γ ∈ Γ Yγ is continuous, then πγºf : X → Yγ is continuous 
for every γ ∈ Γ.   

 
Assume πγºf : X → Yγ is continuous for every γ ∈ Γ.  To prove that f : X → ∏γ ∈ Γ Yγ 

is continuous, let x ∈ X and let U be a neighborhood of f(x) in ∏γ ∈ Γ Yγ.  Then there is a 
restricted open box ∏γ ∈ Γ Vγ in ∏γ ∈ Γ Yγ such that f(x) ∈ ∏γ ∈ Γ Vγ ⊂ U.  Let W =  
f–1( ∏γ ∈ Γ Vγ ).  Hence, x ∈ W and f(W) ⊂ ∏γ ∈ Γ Vγ ⊂ U.  Let F = { γ ∈ Γ : Vγ ≠ Yγ }.  Then F 
is a finite subset of Γ and ∏γ ∈ Γ Vγ = ∩ γ ∈ F πγ–1(Vγ) (by Lemma V.3.a).  Hence, W =  
f–1( ∩ γ ∈ F πγ–1(Vγ) ) = ∩ γ ∈ F f–1(πγ–1(Vγ)) = ∩ γ ∈ F (πγºf)–1(Vγ).  For each γ ∈ F, since πγºf is 
continuous, then (πγºf)–1(Vγ) is an open subset of X.  Since F is a finite set, it follows that 
∩ γ ∈ F (πγºf)–1(Uγ) is an open subset of X.  Thus, W is an open subset of X such that x ∈ 
W and f(W) ⊂ U.  This proves the continuity of f : X → ∏γ ∈ Γ Yγ.  
 
 Theorem V.7.  Let { Xγ : γ ∈ Γ }  be a collection of topological spaces.  Then a 
sequence { xn } in ∏γ ∈ Γ Xγ converges to a point y ∈ ∏γ ∈ Γ Xγ  if and only if for every γ ∈ Γ, 
the sequence { xn(γ) } converges to y(γ) in Xγ. 
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 Proof.  First assume that the sequence { xn } in ∏γ ∈ Γ Xγ converges to the point y 
∈ ∏γ ∈ Γ Xγ.  Let β ∈ Γ.  Since πβ : ∏γ ∈ Γ Xγ → Xβ is continuous, and continuous functions 
preserve sequential convergence (by Theorem II.7), then { πβ(xn) } converges to πβ(y).  
Since πβ(xn) = xn(β) for n ≥ 1 and πβ(y) = y(β), then it follows that { xn(β) } converges to 
y(β). 
 
 Second assume that { xn } is a sequence in ∏γ ∈ Γ Xγ and y ∈ ∏γ ∈ Γ Xγ such that  
{ xn(γ) } converges to y(γ) in Xγ for every γ ∈ Γ.  To prove that { xn } converges to y in  
∏γ ∈ Γ Xγ, let U be a neighborhood of y in ∏γ ∈ Γ Xγ.  Then there is a restricted open box  
∏γ ∈ Γ Vγ in ∏γ ∈ Γ Xγ such that y ∈ ∏γ ∈ Γ Vγ ⊂ U.  Let F = { γ ∈ Γ : Vγ ≠ Yγ }.  Then F is a 
finite subset of Γ and ∏γ ∈ Γ Vγ = ∩ γ ∈ F πγ–1(Vγ) (by Lemma V.3.a).  Thus, y ∈ ∩ γ ∈ F πγ–1(Vγ) 
⊂ U.  Let γ ∈ F. Then y ∈ πγ–1(Vγ).  Therefore, y(γ) = πγ(y) ∈ Vγ.  Since { xn(γ) } converges 
to y(γ) in Xγ, then there is an Nγ ≥ 1 such that xn(γ) ∈ Vγ for each n ≥ Nγ.  Since πγ(xn) = 
xn(γ) for n ≥ 1, then πγ(xn) ∈ Vγ for each n ≥ Nγ.  Hence, xn ∈ πγ–1(Vγ) for each n ≥ Nγ.  Let 
N = max { Nγ : γ ∈ F }.  Then for each γ ∈ F, xn ∈ πγ–1(Vγ) for each n ≥ N.  Thus, xn ∈  

∩ γ ∈ F πγ–1(Vγ) for each n ≥ N.  Since ∩ γ ∈ F πγ–1(Vγ) = ∏γ ∈ Γ Vγ ⊂ U, then xn ∈ U for each n ≥ 
N.  This proves { xn } converges to y in ∏γ ∈ Γ Xγ.  
 
 Observe that Theorem V.7 implies that if X is a set and Y is a topological space, 
then a sequence { fn } in YX converges g ∈ YX if and only the sequence { fn(x) } 
converges to g(x) in Y for every x ∈ X.  This reveals why the product topology is also 
called the "topology of pointwise convergence". 
 
 Lemma V.8.  If { Xγ : γ ∈ Γ } is a collection of topological spaces, and if Cγ is a 
closed subset of Xγ for each γ ∈ Γ, then ∏γ ∈ Γ Cγ is a closed subset of ∏γ ∈ Γ Xγ. 
 
 Proof.  We assert that ( ∏γ ∈ Γ Xγ ) – ( ∏γ ∈ Γ Cγ ) = ∪ γ ∈ Γ πγ–1( Xγ – Cγ ).  Indeed, if  
x ∈ ( ∏γ ∈ Γ Xγ ) – ( ∏γ ∈ Γ Cγ ), then x(β) ∉ Cβ for some β ∈ Γ.  Then πβ(x) = x(β) ∈ Xβ – Cβ.  
So x ∈ πβ–1( Xβ – Cβ ) ⊂ ∪ γ ∈ Γ πγ–1( Xγ – Cγ ).  This proves ( ∏γ ∈ Γ Xγ ) – ( ∏γ ∈ Γ Cγ ) ⊂  
∪ γ ∈ F πγ–1( Xγ – Cγ ).  On the other hand, if x ∈ ∪ γ ∈ F πγ–1( Xγ – Cγ ), then x ∈ πβ–1( Xβ – Cβ ) 
for some β ∈ Γ.  So πβ(x) ∈ Xβ – Cβ.  Therefore, πβ(x) ∉ Cβ = πβ( ∏γ ∈ Γ Cγ ).  Hence, x ∉ 
∏γ ∈ Γ Cγ.  Thus, x ∈ ( ∏γ ∈ Γ Xγ ) – ( ∏γ ∈ Γ Cγ ).  This proves ∪ γ ∈ F πγ–1( Xγ – Cγ ) ⊂  
( ∏γ ∈ Γ Xγ ) – ( ∏γ ∈ Γ Cγ ).  Our assertion follows. 
 
 Since each πγ is continuous, then each πγ–1( Xγ – Cγ ) is an open subset of  
∏γ ∈ Γ Xγ.  Hence, ∪ γ ∈ Γ πγ–1( Xγ – Cγ ) is an open subset of ∏γ ∈ Γ Xγ.  Thus, the assertion 
in the preceding paragraph implies ( ∏γ ∈ Γ Xγ ) – ( ∏γ ∈ Γ Cγ ) is an open subset of  
∏γ ∈ Γ Xγ.   Consequently, ∏γ ∈ Γ Cγ is a closed subset of ∏γ ∈ Γ Xγ.  
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 Definition.  Let { Xγ : γ ∈ Γ } be a collection of topological spaces.  For each a ∈ 
∏γ ∈ Γ Xγ and each β ∈ Γ, a function ea,β : Xβ → ∏γ ∈ Γ Xγ, called a βth injection function, is 
defined as follows.  For each x ∈ Xβ, we determine the point ea,β(x) ∈ ∏γ ∈ Γ Xγ by  
specifying its coordinates by the conditions: 

(ea,β(x))(β) = x     and     (ea,β(x))(γ) = a(γ) for every γ ∈ Γ – { β }. 
 
 Theorem V.9.  Let { Xγ : γ ∈ Γ } be a collection of topological spaces.  Then for 
each a ∈ ∏γ ∈ Γ Xγ and each β ∈ Γ, πβºea,β = idXβ and ea,β : Xβ → ∏γ ∈ Γ Xγ is an embedding. 
 
 Problem V.1.  Prove Theorem V.9. 
 
 Theorem V.10.  Let { Xγ : γ ∈ Γ } be a collection of topological spaces.  Then: 

a)  ∏γ ∈ Γ Xγ is T1 if and only if each Xγ is T1. 

b)  ∏γ ∈ Γ Xγ is Hausdorff if and only if each Xγ is Hausdorff. 

c)  ∏γ ∈ Γ Xγ is regular if and only if each Xγ is regular. 

d)  If ∏γ ∈ Γ Xγ is normal, then each Xγ is normal. 
 
 Problem V.2.  Prove Theorem V.10. 
 
 The converse of Theorem V.10.d is false.  Indeed, recall the results of Problems 
I.15(7) and I.22: Rbad is normal, but Rbad × Rbad is not. 
 
 The Cartesian product of countably many second countable spaces is second 
countable.  Similary, the Cartesian product of countably many first countable spaces is 
first countable, and the Cartesian product of countably many separable spaces is 
separable.  The following lemma can be used as a tool to proves these results. 
 
 Lemma V.11.  Let { Xγ : γ ∈ Γ } be a collection of topological spaces. 

a)  For each γ ∈ Γ, suppose Bγ is a basis for Xγ.  For each finite subset F of Γ, let  

BF =  { ∩ γ ∈ F πγ–1(Bγ) : Bγ ∈ Bγ for each γ ∈ F }, 

and let  
B = ∪ { BF : F is a finite subset of Γ }. 

Then B is a basis for the product topology on ∏γ ∈ Γ Xγ. 
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b)  Let x ∈ ∏γ ∈ Γ Xγ.  For each γ ∈ Γ, suppose Bγ is a basis for Xγ as x(γ).  For each finite  
subset F of Γ, let  

BF =  { ∩ γ ∈ F πγ–1(Bγ) : Bγ ∈ Bγ for each γ ∈ F }, 

and let  
B = ∪ { BF : F is a finite subset of Γ }. 

Then B is a basis for the product topology on ∏γ ∈ Γ Xγ at x. 

c)  For each γ ∈ Γ, suppose Dγ is a dense subset of Xγ.  Let x ∈ ∏γ ∈ Γ Xγ.  For each finite  
subset F of Γ, let 

DF  =  { y ∈ ∏γ ∈ Γ Xγ : y(γ) ∈ Dγ for each γ ∈ F, and y(γ) = x(γ) for each γ ∈ Γ – F }. 

Let 
D = ∪ { DF : F is a finite subset of Γ }. 

Then D is a dense subset of ∏γ ∈ Γ Xγ. 
 
 Problem V.3.  Prove Lemma V.11. 
 
 Theorem V.12.  Let { Xn : n ∈ N  } be a countable collection of topological  
spaces.  Then: 

a)  ∏n ∈ N Xn is second countable if and only if each Xn is second countable. 

b)  ∏n ∈ N Xn is first countable if and only if each Xn is first countable. 

c)  ∏n ∈ N Xn is separable if and only if each Xn is separable. 
 
 Problem V.4.  Prove Theorem V.12. 
 
 Cartesian products of uncountable collections are generally not first countable 
anywhere and, therefore, are not second countable.   
 
 Definition.  A set is non-degenerate  if it has more than one point. 
 
 Theorem V.13.  If { Xγ : γ ∈ Γ } is an uncountable collection of non-degenerate T1 
spaces, then ∏γ ∈ Γ Xγ fails to be first countable at each of its points. 
 
 Problem V.5.  Prove Theorem V.13.  
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 Surprisingly, separability, unlike first and second countability, can persist in 
Cartesian products of uncountable collections.  One of the Additional Problems asks for 
a proof that if { Xγ : γ ∈ Γ } is a collection of separable spaces such that Γ   

! 

p  R, then  
∏γ ∈ Γ Xγ is separable.  The Problem also ask for a proof of a converse which asserts that 
if { Xγ : γ ∈ Γ } is a collection of Hausdorff spaces such that ∏γ ∈ Γ Xγ is separable, then  
Γ   

! 

p  R. 
 
 Next we consider the question of whether Cartesian products of metrizable 
spaces are metrizable.  Since Cartesian products of uncountable collections are not first 
countable and, hence, not metrizable, we consider only Cartesian products of countable 
collections of metrizable spaces. 
 
 Theorem V.14.  Let { (Xn,ρn) : n ∈ N } be a countable collection of metric spaces.  
For each n ∈ N, define 

! 

"n : Xn × Xn → [0,∞) by 

! 

"n(x,y) = min { ρn(x,y), 1 } for x, y ∈ Xn, 
and recall that 

! 

"n is a metric on Xn which is equivalent to ρn such that 

! 

"n ≤ 1.  (See 
Theorem I.12.)  Then three metrics σ1, σ2 and σ∞ on ∏n ∈ N Xn are defined by the  
following formulas.  For x, y ∈ ∏n ∈ N Xn, let 

a)  σ1(x,y)  =  ∑n ∈ N 2–n

! 

"n( x(n), y(n) ), 

b)  σ2(x,y)  =  ( ∑n ∈ N ( 2–n

! 

"n( x(n), y(n) ) )2 )1/2,  and 

c)  σ∞(x,y)  =  sup { 2–n

! 

"n( x(n), y(n) ) : n ∈ N }. 

Furthermore, σ1, σ2 and σ∞ are equivalent metrics on ∏n ∈ N Xn which induce the product 
topology on ∏n ∈ N Xn. 
 
 Problem V.6.  Prove Theorem V.14. 
 
 Theorem V.15.  The Cartesian product of every collection of connected spaces 
is connected. 
 
 Problem V.7.  Prove Theorem V.15. 
 
 Hint.  Recall the equivalence of statements a) and c) of Theorem IV.10: a 
topological space X is connected if and only if every pair of non-empty open subsets of 
X is joined by a chain of connected subsets of X. 
 
 Problem V.8. a)  Prove that [ 0, 1 ]N with the box topology is not connected.  

b)  Let x ∈ [ 0, 1 ]N.  Characterize the component containing x in [ 0, 1 ]N with the box 
topology. 


