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C.  Continua and Discontinua 
 
 Definition.  A compact connected Hausdorff space is called a continuum.  If X is 
a continuum which is a subspace of a topological space Y, then X is called a 
subcontinuum of Y.  If X is a subset of a space Y such that Y – X is connected, then X is 
called a non-separating subset of Y. 
 
 The following simply stated longstanding conjecture about continua is currently 
unresolved. 
 
 The Planar Fixed Point Conjecture.  Every non-separating subcontinnum of R2 
has the fixed point property. 
 
 Observe that the topologist’s sine wave (Example IV.1) is a non-separating 
subcontinuum of R2. 
 
 Problem IV.7.  Prove that the topologist’s sine wave has the fixed point property. 
 
 Recall that a collection of sets N  is called a nest if for all C, D ∈ N, either C ⊂ D 
or D ⊂ C. 
 
 Theorem IV.18.  If N is a nest of non-empty continua in a Hausdorff space X, 
then ∩ N is a non-empty continuum. 
 
 Proof.  Let C = ∩  N.  Corollary III.5 and Theorem III.10 imply that C is non-empty 
and compact.  It remains to prove that C is connected. 
 

Assume C is not connected.  Then, according to Theorem IV.1, C = D ∪ E where 
D and E are non-empty disjoint relatively closed subsets of C.  Theorem III.2 implies 
that D and E are compact.  Hence, Theorem III.3 implies that D and E have disjoint 
neighborhoods U and V in X.  Therefore, U ∪ V is a neighborhood of C in X.  Corollary 
III.11 implies that there is a K ∈ N such that K ⊂ U ∪ V.  Since D and E are non-empty 
sets such that D = C ∩ U ⊂ K ∩ U and E = C ∩ V ⊂ K ∩ V, then K ∩ U and K ∩ V are 
non-empty.  Hence, { K ∩ U, K ∩ V } is a separation of K.  However, since K ∈ N, then 
K is connected.  We have reached a contradiction.  We must conclude that C is 
connected.  Thus, C is a non-empty continuum.  
 
 The following theorem is a fundamental and useful criterion for the existence of 
separations of a space.  It’s proof is substantial. 
 
 Theorem IV.19.  Let A and B be non-empty disjoint closed subsets of a compact 
Hausdorff space X.  Then there is a separation { U, V } of X such that A ⊂ U and B ⊂ V 
if and only if no subcontinuum of X intersects both A and B. 
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 Proof.  First, suppose there is a separation { U, V } of X such that A ⊂ U and B ⊂ 
V.  Then Theorem IV.2 implies that every subcontinuum of X is contained in either U or 
V. Hence, no subcontinuum of X can intersect both A and B.  This proves one direction 
of this theorem.  So we focus our attention on proving the converse direction. 
 
 Case 1:  A and B are one-point sets.  Suppose A = { a } and B = { b }.  We will 
establish the assertion – if no subcontinuum contains a and b, then there is a separation 
of { U, V } of X such that a ∈ U and b ∈ V – by proving its contrapositive.  To this end, 
assume there is no separation of { U, V } of X such that a ∈ U and b ∈ V.  We will 
construct a subcontinuum of X that contains both a and b. 
 
 Let C denote the collection of all closed subsets Y of X with the property that         
{ a , b } ⊂ Y and there is no separation { U, V } of Y such that a ∈ U and b ∈ V. C is  
non-empty because X ∈ C.  We regard C as partially ordered by inclusion.  We will 
invoke Zorn’s Lemma to produce a minimal element of C.  We will then argue that any 
minimal element of C is a continuum joining a to b.  To establish the hypothesis of 
Zorn’s Lemma, we must show that every nest in C has a lower bound in C. 
 
 Let N be a nest in C; thus, if Y, Z ∈ N, then either Y ⊂ Z or Z ⊂ Y.  We must 
produce an element of C which is a subset of every element of N.  Let C = ∩ N.  Then 
C is a subset of every element of N.  It remains to show that C ∈ C.  Assume C ∉ C.   
Since N ⊂ C, then every element of N is a closed subset of X that contains a and b. 
Since intersection preserves these properties, then C is also a closed subset of X that 
contains a and b.  Since C ∉ C, then there is a separation { D, E } of C such that a ∈ D 
and b ∈ E.  Then D and E are disjoint relatively closed subsets of C and, hence, of X.  
Since X is a normal space by Corollary III.6. then D and E have disjoint neighborhoods 
U and V in X.  Therefore, U ∪ V is a neighborhood of C in X.  Corollary III.11 implies 
that U ∪ V contains an element Y of N.  Then Y ∈ C, a ∈ D = C ∩ U ⊂ Y ∩ U and b ∈ E 
= C ∩ V ⊂ Y ∩ V.  Thus, { Y ∩ U, Y ∩ V } is a separation of C with the property that a ∈ 
Y ∩ U and b ∈ Y ∩ V.  This contradicts the fact that Y ∈ C.  We conclude that C ∈ C.  
We have now shown that the hypothesis of Zorn’s Lemma is satisfied  

 Zorn’s Lemma provides a minimal element C0 of C.  We wish to show that C0 is a 
subcontinuum of X that contains a and b.  To accomplish this, it suffices to prove that C0 
is connected.  Assume C0 is not connected.  Then C0 has a separation { D, E }.  Since 
C0 ∈ C, then we can’t have a ∈ D and b ∈ E or vice versa.  So we can assume without 
loss of generality that a, b ∈ D.  Since D is a proper subset of C0 and C0 is a minimal 
element of C, then D ∉ C.  Hence, there must be a separation { F, G } of D such that a ∈ 
F and b ∈ G.  But then { F, G ∪ E } is a separation of C0 such that a ∈ F and b ∈ G ∪ E.  
This contradicts the fact that C0 ∈ C.  We conclude that C0 is connected.  Thus, C0 is a 
subcontinuum of X that contains a and b. 
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 Case 2: A is a one-point set and B is a closed set.  Say A = { a }.  Assume 
there is no subcontinuum of X that contains a and intersects B.  We will construct a 
separation { U, V } of X such that a ∈ U and B ⊂ V. 
 
 For each b ∈ B, there is no subcontinuum of X that contains a and b.  Hence, the 
assertion proved in Case 1 implies there is a separation { Ub, Vb } of X with a ∈ Ub and b 
∈ Vb.  Hence, { Vb : b ∈ B } is a cover of B by open subsets of X.  Since B is a closed 
subset of the compact space X, then (by Theorem III.2) B is compact .  Hence, there is 
a finite subset F of B such that { Vb : b ∈ F } covers B.  Set U = ∩b ∈ F Ub and V =  
∪b ∈ F Vb.  Then { U, V } is a separation of X such that a ∈ U and B ⊂ V.  (Verify!) 
 
 Case 3: A and B are disjoint closed sets.  Assume there is no subcontinuum 
of X that intersects both A and B.  We will construct a separation { U, V } of X such that 
A ⊂ U and B ⊂ V. 
 
 For each a ∈ A, there is no subcontinuum of X contains a and intersects B.  
Hence, the assertion proved in Case 2 implies there is a separation { Ua, Va } of X with a 
∈ Ub and B ⊂ Vb.  Hence, { Ua : a ∈ A } is a cover of A by open subsets of X.  Since A is 
a closed subset of the compact space X, then A is compact.  Hence, there is a finite 
subset F of A such that { Ua : a ∈ F } covers A.  Set U = ∪a ∈ F Ua and V = ∩a ∈ F Va.  
Then { U, V } is a separation of X such that A ⊂ U and B ⊂ V.  (Verify!)  
 
 Theorem IV.19 can be used to prove the following proposition. 
 
 Theorem IV.20.  Let X be a continuum. 

a)  If C is a proper closed subset of X, then every component of C intersects fr(C). 
b)  If U is a proper open subset of X, then the closure (in X) of every component of U 
intersects fr(U). 
 
 Proof of a).  Assume that C is a proper closed subset of X and that C has a 
component D that is disjoint from fr(C).  Then C itself is a compact Hausdorff space by 
Theorems I.27.d and III.2, and D is a closed subset of C by Theorem IV.12.  Hence, D 
and fr(C) are disjoint closed subsets of C.  We assert that no subcontinuum of C 
intersects both D and fr(C).  For suppose there exists a subcontinuum E of C that 
intersected both D and fr(C).  Then D ∪ E is a connected subset of C by Theorem IV.10, 
because any two points of D ∪ E are joined by a chain of connected sets of length 1 or 
2.  Also D is a proper subset of D ∪ E because E interests fr(C) but D does not.  Since 
D is a component and, hence, a maximal connected subset of C, we have reached a 
contradiction.  We are forced to conclude that no subcontinuum of C intersects both D 
and fr(C).  We now invoke Theorem IV.19 to obtain a separation  
{ F, G } of C such that D ⊂ F and fr(C) ⊂ G.  Since F and G are relatively closed subsets 
of C, they are closed subsets of X.  Since fr(C) ⊂ G, then F ⊂  C – fr(C) = int(C).  Thus,  
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F is disjoint from the closed set X – int(C).  It follows that { F, G ∪ ( X – int(C) ) } is a 
separation of X.  (Verify!)  However, X, being a continuum, is connected.  We have 
reached a contradiction.  We conclude that every component of C intersects fr(C).  
 
 Problem IV.8.  Prove Theorem IV.20.b. 
 
 Defintion.  A topological space X is totally disconnected if the only non-empty 
connected subsets of X are single points.  Thus, a space is totally disconnected if and 
only if all of its components are single point sets. 
 
 Definition.  A topological space X is zero dimensional if for every point x of X 
and every neighborhood U of x in X, there is a closed and open subset V of X such that 
x ∈ V ⊂ U.  A subset of a space that is both closed and open is called a clopen set.  
Thus, a space is zero dimensional if and only if it has a basis of clopen sets. 
 
 We make three simple observations about the concepts of total  
disconnectedness and zero dimensionality. 
a)  Every zero dimensional space is regular. 
Indeed, if X is a zero dimensional space, x ∈ X and U is a neighborhood of x in X, then 
there is a clopen set V such that x ∈ V ⊂ U.  Since V is clopen, then cl(V) = V.  So x ∈ V  
⊂ cl(V) ⊂ U.  Thus, X is regular. 

b)  Every zero dimensional T1 space is totally disconnected. 
Let X be a zero dimensional T1 space, and let C be a subset of X containing more than 
one point.  Let x and y be distinct points of C.  Since { y } is a closed set, then there is a 
clopen subset V of X such that x ∈ V ⊂ X – { y }.  Hence, { C ∩ V, C ∩ ( X – V ) } is a  
separation of C.  Thus, C is not connected.  This proves that X is totally disconnected. 

c)  R is not zero dimensional but that its subspaces Q and R  – Q are zero dimensional. 

If R were zero dimensional, then there would be a clopen subset V of R such that 0 ∈ V 
⊂ (–1,1).  Then { V, R – V } would be a separation of R.  However, R is connected by  
Theorem IV.4.  We have reached a contradiction.  Hence, R is not zero dimensional. 

To prove that Q is zero dimensional, let x ∈ Q and let V be a neighborhood of x in Q.  
Then there is an open subset U of R such that U ∩ Q = V.  There are irrational numbers 
a < b such that x ∈ (a,b) ⊂ U.  Hence, x ∈ (a,b) ∩ Q ⊂ U ∩ Q = V.  Furthermore,  
(a,b) ∩ Q  = [a,b] ∩ Q.  Hence, (a,b) ∩ Q is a clopen subset of Q. 

The proof that R  – Q is zero dimensional is similar.  In the preceding argument, replace 
Q by R  – Q and choose a and b to be rational numbers. 
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 Remark.  Although zero dimensional T1 spaces are totally disconnected, totally 
disconnected spaces need not be zero dimensional.  Below we will present an example 
of a subspace of R2 that is totally disconnected but not zero dimensional.  On the other 
hand, for compact Hausdorff spaces, the notions of total disconnectedness and zero 
dimensionality coincide, as the next theorem asserts. 
 
 Definition.  If U and V are collections of sets such that every element of V is a 
subset of some element of U, then we call V a refinement of U, and we say that V 
refines U and that U is refined by V. 
 
 Theorem IV.21.  If X is a compact Hausdorff space, then the following  
statements are equivalent. 
a)  X is totally disconnected. 
b)  For any two disjoint closed subsets A and B of X, there is a separation { U, V } of X  
such that A ⊂ U and B ⊂ V. 

c)  X is zero dimensional. 
d)  Every open cover of X is refined by a pairwise disjoint open cover of X. 
 
 Problem IV.9.  Prove Theorem IV.21.  
 
 The concept of zero dimensionality and the various parts of Theorem IV.21 
motivate the following remarks about dimension theory.  The definition of “zero 
dimensional” given previously is just the first step in an inductive procedure for 
assigning a dimension to every topological space.  Moreover, statements b), c) and d) of 
Theorem IV.21 contain ideas that give rise to three competing definitions of dimension.  
Each of these methods for defining dimension produces the same values on separable 
metric spaces.  Furthermore, they each assign a dimension of n to the space Rn, and 
thus coincide with our intuitive expectations for a notion of dimension. 
 
 The definition of “zero dimensional” given above is part of a scheme for defining 
a dimension function known as small inductive dimension.  The small inductive 
dimension of a topololgical space X is denoted ind(X).  For each topological space X, 
ind(X) is an element of the set { –1, 0, 1, 2, … } ∪ { ∞ } which is defined inductively as 
follows.  ind(X) = –1 if and only if X = ∅.  Next let n ≥ 0 be an integer and assume that 
the statement ind(X) ≤ n – 1 is defined for every topological space X (in the sense that 
for every space X, we can in principle decide whether the statement ind(X) ≤ n – 1 is 
true).   For a topological space X, we define the statement ind(X) ≤ n to hold if for every 
point x ∈ X and every neighborhood U of x in X, there is a neighborhood V of x in X 
such that cl(V) ⊂ U and ind(fr(V)) ≤ n – 1.  Now for a topological space X, we define the 
statement ind(X) = n to hold if ind(X) ≤ n is true but ind(X) ≤ n – 1 is false.  Finally, for a 
topological space X, we define the statement ind(X) = ∞ to hold if ind(X) = n is false for  
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every integer n ≥ –1.  Observe that a space X is zero dimensional in the sense defined 
previously if and only if ind(X) = 0.   

 
Statement b) of Theorem IV.21 is part of different definition of dimension known 

as large inductive dimension.  The large inductive dimension of a space X is denoted 
Ind(X) and is also an element of the set { –1, 0, 1, 2, … } ∪ { ∞ }.  Before defining large 
inductive dimension, we must introduce another concept: if A and B are disjoint subsets 
of a space X, then a separator of A and B in X is a closed subset S of X such that there 
is a separation { U, V } of X – S in which A ⊂ U and B ⊂ V.  The large inductive 
dimension Ind(X) of a topological space X is defined inductively as follows.  Again Ind(X) 
= –1 if and only if X = ∅.  Next let n ≥ 0 be an integer and assume that the statement 
Ind(X) ≤ n – 1 is defined for every topological space X.   For a topological space X, we 
define the statement Ind(X) ≤ n to hold if for any two disjoint closed subsets A and B of 
X, there is a separator S of A and B in X such that Ind(S) ≤ n – 1. Now for a topological 
space X, we define the statement Ind(X) = n to hold if Ind(X) ≤ n is true but Ind(X) ≤ n – 
1 is false.  Finally, for a topological space X, we define the statement Ind(X) = ∞ to hold 
if Ind(X) = n if false for every integer n ≥ –1.  Observe that if X is a T1 space, then ind(X) 
≤ Ind(X). 
 
 Statement d) of Theorem IV.21 is part of third definition of dimension known as 
covering dimension.  The covering dimension of a space X is denoted dim(X) and it, too, 
is an element of the set { –1, 0, 1, 2, … } ∪ { ∞ }.  Before defining covering dimension, 
we must introduce the following concept: for an integer n ≥ 1, the order of a collection C 
of sets is ≤ n if every element of ∪ C belongs to at most n elements of C.  Thus, a 
collection of sets is order ≤ 1 if and only if it is pairwise disjoint.  The covering dimension 
dim(X) of a topological space X is defined (non-inductively) as follows.  Again  
dim(∅) = –1.  For any non-empty topological space X and any integer n ≥ 0, define 
dim(X) ≤ n if for every open cover of X is refined by an open cover of X of order ≤ n + 1.  
Now for a topological space X, define dim(X) = n if dim(X) ≤ n is true but dim(X) ≤ n – 1 
is false.  Finally, for a topological space X, define dim(X) = ∞ if dim(X) = n is false for 
every integer n ≥ –1. 
  
 If X is a separable metric space, then ind(X), Ind(X) and dim(X) coincide and 
provide a very satisfactory theory of dimension.  If X is a non-separable metric space, 
then Ind(X) and dim(X) coincide, but there are examples showing that ind(X) < Ind(X) is 
possible.  Specifically, there is non-separable metric space X such that ind(X) = 0 and 
Ind(X) = 1.  For general (separable and non-separable) metric spaces, the dimension 
functions Ind and dim agree and provide a satisfactory dimension theory.  For larger 
classes of spaces (for example, normal spaces), the dimension functions ind, Ind and 
dim may all disagree and they give rise to strange dimension theories.  For example 
there is a compact Hausdorff space with covering dimension 0 that contains a subspace 
of covering dimension 1. 
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 Next we define discontinua.  These spaces are in a sense the extreme opposites 
of continua. 
 
 Definition.  A non-empty compact totally disconnected Hausdorff space without 
isolated points is called a discontinuum.  A metrizable discontinuum is called a metric 
discontinuum. 
 
 Observe that Theorem IV.21 implies that each discontinuum is zero dimensional.  
Also note that the theorem stated in Problem III.2 implies that if X is a discontinuum, 
then X   

! 

f  R. 
 
 Problem IV.10.  Prove that every uncountable compact metric space contains a 
metric discontinuum. 
 
 We now describe a well known metric discontinuum – the Cantor set. 
 
 Example IV.3.  We now describe the subspace of R known as the standard  
deleted middle thirds Cantor set.  For each integer n ≥ 0, let In denote the collection 
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Thus, In is a cover of [0,1] by closed intervals of length 1/3n.  We inductively define a 
nested sequence C0 ⊃ C1 ⊃ C2 ⊃  … of closed subsets of [0,1] as follows.  Let C0 =  
[0,1].  For each integer n ≥ 1, assume Cn–1 is already defined and define 

Cn  =  Cn–1 – ( ∪ { int(J) : J ∈ In and J ⊂ int(Cn–1) } ). 

The standard deleted middle thirds Cantor set is the subspace 
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succinctly, the standard deleted middle thirds Cantor set is the subspace 
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of R. 
 
 Exercise.  Verify that the standard deleted middle thirds Cantor set is a metric 
discontinuum. 
 
 Definition.  Any topological space that is homeomorphic to the standard deleted 
middle thirds Cantor set is called a Cantor set. 
 
 The following theorem gives a strikingly simple topological characterization of the 
Cantor set. 
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 Theorem IV.22.  A topological space is a Cantor set if and only if it is a metric 
discontinuum. 
 
 Problem IV.11.  Prove Theorem IV.22. 
 
 According to Theorem IV.21, every totally disconnected compact Hausdorff 
space is zero dimensional.  The following example shows, among other things, that 
without the hypothesis of compactness, a totally disconnected subspace of R2 need not 
be zero dimensional. 
 
 Example IV.4.  We construct a subspace Z of R2 with the following properties. 

a)  Z is connected. 
b)  There is a point v in Z such that Z – { v } is totally disconnected.  (The point v is  
called an explosion point of Z.) 
c)  Z – { v }  is not zero dimensional. 
 
 Before starting this construction, we need to show that every well ordered set can 
be given an optimal well ordering called a best well ordering.  Suppose < is a well 
ordering of a set X.  We call < a best well ordering of X if for every x ∈ X, (–∞,x)   

! 

p  X.  
(Recall that for sets A and B, A   

! 

p  B means there is an injective function from A to B but 
there is no bijective function from A to B.)  Observe that the well ordering on Ω is a best 
well ordering.   
 

Lemma IV.23.  Every well ordered set has a best well ordering.   
 
Proof.  Let (X,<) be a well ordered set.  Observe that for each x ∈ X, since (–∞,x) 

⊂ X, then either (–∞,x)   

! 

p  X or (–∞,x) ≈ X.  If (–∞,x)   

! 

p  X for every x ∈ X, then the given 
well ordering is a best well ordering, and we’re done.  So assume there is an x ∈ X for 
which (–∞,x) ≈ X.  Let A = { x ∈ X : (–∞,x) ≈ X }.  Then A is non-empty.  Hence, A has a 
least element x0.  Thus, (–∞,x0) ≈ X and (–∞,x)   

! 

p  X for each x ∈ (–∞,x0).  Since (–∞,x0) ≈ 
X, then there is a bijection f : X → (–∞,x0).  Use f to “pull back” the well ordering on  
(–∞,x0) to obtain a new well ordering on X.  In other words, define a relation <2 on X by 
declaring x <2 y if and only if f(x) < f(y).  Then f is an order preserving bijections from 
(X,<2) to ((–∞,x0),<).  Since < restricts to a well ordering on (–∞,x0), then it follows that <2 
is a well ordering of X.  For each x ∈ X, let (–∞,x)2 = { y ∈ X : y <2 x }.  Then for each x ∈ 
X, f restricts to a bijection from (–∞,x)2 to (–∞,f(x)).  Furthermore, for each x ∈ X, since 
f(x) ∈ (–∞,x0), then (–∞,f(x))   

! 

p  X.  Consequently, (–∞,x)2   

! 

p  X for each x ∈ X.  Hence, <2 
is a best well ordering of X.  
 
 We now begin the construction of Example IV.4.  Let C denote the standard 
deleted middle thirds Cantor set.  Then C ⊂ [0,1].  Let v = (1/2,1) ∈ R2.  For any two  
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points p and q of R2, let p∗q denote the line segment  { (1 – t)p + tq : 0 ≤ t ≤ 1 }  joining 
p to q.  Let K = ∪x ∈ C v∗(x,0).  Then K is the cone over the Cantor set C × { 0 } with 
vertex v.   
 

Let D denote the collection of all closed subsets D of R2 with the property that v ∉ 
D and { x ∈ C : D ∩ (v∗(x,0)) ≠ ∅ } ≈ R.  Thus, D ∈ D if and only if v ∉ D and D 
intersects R–many different line segments joining v to points of C × { 0 }.  We assert that 
D ≈ R.  Here is a proof.  Let T denote the standard topology on R2.  Since R2 is a 
second countable space, then T has a countable basis B.  Since B is countable, then 
P(B) ≈ R (by Theorems 0.13, 0.20 and 0.22).  Since B is a basis for T, then the 
function U   

! 

a ∪  U : P(B) → T is surjective. Therefore, T   

! 

p  P(B).  Let C denote the 
collections of all closed subsets of R2.  Since the function C   

! 

a R2 – C : C → T is a 
bijection, then C ≈ T.  Since D ⊂ C, then D   

! 

p  C.  Combining these observations, we 
have D   

! 

p  C   ≈ T   

! 

p  P(B) ≈ R.  Thus, D   

! 

p  R.  On the other hand, for each t ∈ [0,1), the 
horizontal line R × { t } intersects every line segment joining v to a point of C × { 0 }.  It is 
well known that C ≈ R.  Hence, for each t ∈ [0,1), R × { t } ∈ D.  Moreover, the function  
t   

! 

a R × { t } : [0,1) → D is clearly injective.  Hence, [0,1)   

! 

p  D.  Since R ≈ [0,1), then we 
have R   

! 

p  D.  We have shown that D   

! 

p  R and R   

! 

p  D.  The Schroder-Bernstein 
Theorem 0.15 now implies our assertion: D ≈ R. 

 
Zermelo’s Well Ordering Principle (or equivalently the Axiom of Choice) together 

with Lemma IV.23 imply that D has a best well order <.  Guided by this best well order, 
we inductively choose points xD ∈ C and pD ∈ D ∩ (v∗(xD,0)) for each D ∈ D so that xD ∉ 
{ xE : E ∈ D and E < D }.  We explain why these choices are possible.  For each D ∈ D, 
the fact that < is a best well ordering insures that { E ∈ D : E < D }   

! 

p  D.  Since   
{ xE : E ∈ D and E < D }   

! 

p  { E ∈ D : E < D }, then { xE : E ∈ D and E < D }   

! 

p  D ≈ R.  On 
the other hand, since D ∈ D, then { x ∈ C : D ∩ (v∗(x,0)) ≠ ∅ } ≈ R.  Therefore, the set  
{ x ∈ C : D ∩ (v∗(x,0)) ≠ ∅ } – { xE : E ∈ D and E < D } is never empty.  Thus, it is always 
possible to choose xD ∈ C so that D ∩ (v∗(x,0)) ≠ ∅ and xD ∉ { xE : E ∈ D and E < D }. 
Now let Z = { pD : D ∈ D } ∪ { v }. 
 
 To proceed further, we need to introduce another concept and prove a lemma 
about it.  We say that a space X is completely normal if every pair of subsets A and B of 
X that satisfy A ∩ cl(B) = ∅ =  cl(A) ∩ B have disjoint neighborhoods. 
 
 Lemma IV.24.  Every metric space is completely normal. 
 
 Proof.  Let A and B be subsets of a metric space X such that A ∩ cl(B) = ∅ =  
cl(A) ∩ B.  For each x ∈ A, since x ∉ cl(B), then there is a δx > 0 such that N(x,2δx) ∩ B 
= ∅.  Similarly, for each y ∈ B, since y ∉ cl(A), then there is an εy > 0 such that  
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N(y,2εy) ∩ A = ∅.  Let U = ∪x ∈ AN(x,δx) and let V = ∪y ∈ BN(y,εy).  Then U is a 
neighborhood of A and V is a neighborhood of B.  We assert that U ∩ V = ∅.  For 
assume U ∩ V ≠ ∅.  Let z ∈ U ∩ V.  Then there are points x ∈ A and y ∈ B such that z 
∈ N(x,δx) ∩ N(y,εy).  We may assume without loss of generality that δx ≤ εy.  Then d(x,y) 
≤ d(x,z) + d(z,y) ≤ δx + εy ≤ 2εy.  Therefore, x ∈ N(y,2εy) ∩ A.  We have reached a 
contradiction.  We must conclude that U ∩ V = ∅.  
 
 We now turn to the proof that Z is connected.  This is the most difficult aspect of 
this example.  Assume Z is not connected.  Then Z has a separation { A, B }.  We may 
assume without loss of generality that v ∈ B.  Since A and B are relatively open subsets 
of X, then there are open subsets G and H of R2 such that G ∩ Z = A and H ∩ Z = B.  
Since A and B are disjoint subsets of Z, then it follows that G ∩ B = ∅ = H ∩ A.  Hence, 
G is a neighborhood in R2 of each point of A such that G ∩ B = ∅, and H is a 
neighborhood in R2 of each point of B such that H ∩ A = ∅.  Therefore, A ∩ cl(B) = ∅ =  
cl(A) ∩ B (where “cl” indicates closure in R2).  Since R2 is metrizable, then Lemma IV.24 
implies that A and B have disjoint neighborhood U and V in R2. 
 
 Let E = R2 – ( U ∪ V ).  Then E is a closed subset of R2.  We assert that E ∈ D.  
Note that since v ∈ B, then v ∈ V.  Therefore, v ∉ E.  Hence, to prove that E ∈ D, it 
remains to prove that { x ∈ C : E ∩ (v∗(x,0)) ≠ ∅ } ≈ R.   Since A is non-empty subset of 
Z, there is a D ∈ D such that pD ∈ A.  Then pD ∈ U.  The description of Z guarantees 
that there is a point xD ∈ C such that pD ∈ D ∩ (v∗(xD,0)).  Hence there is a tD ∈ [0,1) 
such that  

pD  =  (1 – tD)(xD,0) + tDv. 
(Since pD ∈ D and v ∉ D, then pD ≠ v.  Hence, t ≠ 1.)  Since the function  

x   
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a (1 – tD)(x,0) + tDv : R → R2 

is continuous and U is neighborhood of pD in R2, then there is a δ > 0 such that  
(1 – tD)(x,0) + tDv ∈ U for all x ∈ (xD – δ,xD + δ).  Choose an integer n ≥ 1 such that 1/3n < 

δ.  Since xD ∈ C, then there is a closed interval J in [0,1] of the form 
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 (where 1 ≤ 

i ≤ 3n) such that xD ∈ J and int(J) contains points of C.  (Thus, J is one of the non-
deleted intervals of length 1/3n used in the construction of C.)  Let CJ = J ∩ C.  Then xD 
∈ CJ.  Furthermore, CJ is a “small copy” of C; in fact, there is a homeomorphism from CJ 
onto C that stretches distances by a factor of 3n.  Thus, CJ ≈ C ≈ R.  Since xD ∈ CJ ⊂ J 
and 1/3n < δ, then CJ ⊂ (xD – δ,xD + δ).  Thus, (1 – tD)(x,0) + tDv ∈ U for every x ∈ CJ.  
Since v ∈ V, then the line segment v∗(x,0) intersects both U and V for every x ∈ CJ.  
Hence, for each x ∈ CJ, if v∗(x,0) were a subset of U ∪ V, then  
{ (v∗(x,0)) ∩ U, (v∗(x,0)) ∩ V } would be a separation of v∗(x,0).  Since each line  
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segment v∗(x,0) is connected, it has no separation.  We conclude that v∗(x,0) must 
intersect R2 – ( U ∪ V ) = E for each x ∈ CJ.  Thus, CJ ⊂ { x ∈ C : E ∩ (v∗(x,0)) ≠ ∅ }.  It 
follows that { x ∈ C : E ∩ (v∗(x,0)) ≠ ∅ } ≈ R.  This proves our assertion: E ∈ D. 
 
 Since E ∈ D, then pE ∈ Z ∩ E.  Hence, Z ∩ E ≠ ∅.  However, since Z = A ∪ B ⊂ 
U ∪ V and E = R2 – ( U ∪ V ), then Z ∩ E = ∅.  We have reached a contradiction from 
which we are forced to conclude that Z must be connected. 
 
 Next we prove that Z – { v } is totally disconnected by showing that no connected 
subset of Z – { v } contains two distinct points.  To this end, consider any two distinct 
points pD and pE of Z – { v }.  Then D and E are distinct elements of D, and xD and xE are 
distinct elements of C such that pD ∈ v∗(xD,0) and pE ∈ v∗(xE,0).  We may assume xD < 
xE.  Because C is totally disconnected, it doesn’t contain the interval (xD,xE).  Hence, 
there is a point y ∈ (xD,xE) – C.  Let L be the line in R2 that passes through v and (y,0).  
Then L intersects the cone on the Cantor set K = ∪x ∈ C v∗(x,0) only in the point v.  Since 
Z ⊂ K, then it follows that ( Z – { v } ) ∩ L = ∅.  Also, since xD < y < xE, then the line 
segment joining pD to pE crosses L.  Hence, pD and pE lie on opposite sides of L.  
Therefore, R2 – L is the union of two disjoint open sets U and V such that Z – { v }  ⊂  
U ∪ V, pD ∈ U and pE ∈ V.  Therefore, { ( Z – { v } ) ∩ U, ( Z – { v } ) ∩ V } is a 
separation of Z – { v } such that pD ∈ ( Z – { v } ) ∩ U and pE ∈ ( Z – { v } ) ∩ V.  
Theorem IV.2 tells us that every connected subset of Z – { v } must lie in either  
( Z – { v } ) ∩ U or ( Z – { v } ) ∩ V.  It follows that no connected subset of Z – { v } can 
contain both pD and pE.  We have proved that no connected subset of Z – { v } contains 
two distinct points.  We conclude that Z – { v } is totally disconnected. 
 
 Finally we prove that Z – { v } is not zero dimensional.  Assume Z – { v } is zero 
dimensional.  We will argue that this assumption implies that Z is not connected, 
contradicting a previously proved assertion.  Let pD be a point of Z – { v }.  Then pD and 
v have disjoint neighborhoods ND and Nv in R2.  Therefore, ND ∩ ( Z – { v } ) is a relative 
neighborhood of pD in Z – { v }.  Our hypothesis that Z – { v } is zero dimensional implies 
that there is a relatively clopen subset U of Z – { v } such that pD  ∈  U  ⊂                      
ND ∩ ( Z – { v } ).  Let V = ( Z – { v } ) – U.  Since U is a relatively clopen subset of  
Z – { v }, so is V.  Therefore, { U, V } is a separation of Z – { v }.  Since { v } is a 
relatively closed subset of Z, then Z – { v } is a relatively open subset of Z.  Hence, 
according to Theorem I.26.f, U and V are relatively open sets in Z.  Let W = Nv ∩ Z.  
Then W is a relatively open subset of Z such that v ∈ W.  Since U ⊂ ND and W ⊂ Nv, 
then U ∩ W = ∅.  It follows that { U, V ∪ W } is a separation of Z.  We have contradicted 
the previously proven fact that Z is connected.  We must conclude that Z – { v } is not 
zero dimensional. 
 
  We conclude our discussion of Example IV.4 with the following remark.  The 
construction of this example relies essentially on Zermelo’s Well Ordering Principle and,  
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hence, on the Axiom of Choice.  There is a way to construct a subset Z´ of R2 with 
properties similar to Z without using the Axiom of Choice.  Like Z, Z´ is connected and 
contains a point v´ such that Z´ – { v´ } is totally disconnected but not zero dimensional.  
The description of Z´ is relatively straightforward, but the proof that it has the desired 
properties is more complicated than the proof we have just given and depends on 
topological ideas we have not yet encountered. 
 
 Definition.  A continuum is decomposable if it is the union of two proper 
subcontinua.  (Recall that a subset S of a set X is called a proper subset if S ≠ X.)  A 
continuum is indecomposable if it is not decomposable. 
 
 Clearly, [0,1] is decomposable continuum since it is the union of the proper 
subcontinua [0,1/2] and [1/2,1].  Remarkably, indecomposable continua exist.  We now 
describe one. 
 
 Example IV.5.  The Knaster continuum (also known as the horseshoe and the 
buckethandle) is a subcontinuum of R2 which we now describe.  For each integer n ≥ 0,  
let Sn denote the collection 
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of 9n squares of side 1/3n covering [0,1]2.  For each integer n ≥ 1, let  

An  =  
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Then An ∈ Sn.  We inductively define a nested sequence K0 ⊃ K1 ⊃ K1 ⊃ … of continua in 
[0,1]2 as follows.  Let K0 = [0,1]2.  For each integer n ≥ 1, assume that Kn–1 is already  
defined, let  

Ln = An ∪ ( ∪ { S ∈ Sn : S ⊂ int(Kn–1) } )  and let  Kn = cl( Kn–1 – Ln ). 

 
 
 
 
 
      K0            K1        K2        K3 

The Knaster continuum is the subcontinuum 
  

! 

K
nn = 0

   !

I  of R2. 
 
 Theorem IV.25.  The Knaster continuum is an indecomposable continuum. 
 
 Problem IV.12.  Prove Theorem IV.25. 


