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B.  Local and Path Connectedness 
 
 Definition.  A topological space X is locally connected if for each point x ∈ X, 
each neighborhood of x contains a connected neighborhood of x. 
 
 Observe that Rn is locally connected for each n ≥ 1.  Indeed, each point of Rn has 
arbitrarily small neighborhoods that are products of open intervals.  Open intervals are 
connected by Theorem IV.4.  Hence, products of open intervals are connected by 
Theorem IV.11. 
 
 Theorem VI.13.  A topological space X is locally connected if and only if every 
component of every open subset of X is open. 
 
 Proof.  First assume that X is locally connected.  Let C be a component of an 
open subset U of X.  Let x ∈ C.  Since X is locally connected and x ∈ U, then there is a 
connected neighborhood V of x such that V ⊂ U.  Observe that C ∪ V is connected by 
Theorem IV.10 because each pair of points of C ∪ V is joined by a chain of connected 
subsets of C ∪ V of length one or two.  Since C is the maximal connected subset of U, 
then C ∪ V = C.  Hence, V ⊂ C.  Thus, C contains a neighborhood of x.  This proves C 
is an open set. 
 
 Now assume every component of every open subset of X is open.  Let U be a 
neighborhood of a point x ∈ X.  Let C be the component of U that contains x.  (C exists 
by Theorem IV.12.)  By hypothesis, C is an open set.  Thus, C is a connected 
neighborhood of x and C ⊂ U.  This proves X is locally connected.  
 
 Observe that if C is a component of a locally connected space X, then  
{ C, X – C } is a separation of X.  Indeed, since the components of X are open sets, then 
X – C is a union of open sets.  Hence, C and X – C are open sets. 
 
 Example IV.1.  The topologist’s sine wave is the subspace of R2: 

S  =  ( { 0 } × [ –1, 1 ] ) ∪ { (x,sin(1/x)) : 0 < x ≤ 1/π }. 
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We now prove that the topologist’s sine wave S is connected but not locally  
connected.   
 

A simple way to prove that S is connected is to define the map g : (0,1/π] → R2 by 
g(x) = (x,sin(1/x)).  (0,1/π] is connected by Theorem IV.4.  Since g is continuous, then 
g((0,1/π]) is connected by Theorem IV.6.  Since S = cl(g((0,1/π])), then S is connected by  
Theorem IV.3. 
 

To prove that S is not locally connected, we will show that no neighborhood of 
(0,0) in S which is a subset of ( [ 0, 1/π ) × ( –1, 1 ) ) ∩ S is connected.  Let U be such a 

neighborhood.  Since 
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 is a sequence in S that converges to (0,0), then there 

is an n ≥ 1 such that 
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! 

1

2n+ 1
2( )"

,1

# 

$ 

% 
% 

& 

' 

( 
( 
, and this point doesn’t 

belong to U because U ⊂ [ 0, 1/π ) × ( –1, 1 ).  Hence, L  ∩ S = ∅.  Therefore, if we let V 

= { (x,y) ∈ U : x < 
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 } and we let W = { (x,y) ∈ U : x > 
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(  ∈ W and { V, W } is a separation of U. 

 
 Definition.  A map from [ 0, 1 ] to a space X is called a path in X.  (The image of 
such a map may also be called a path in X.)  If f : [ 0, 1 ] → X is a path in the space X 
such that f(0) = x and f(1) = y, then the path f is said to join the points x and y.  If every 
pair of points of a space X is joined by a path in X, then X is said to be path connected. 
 
 Theorem IV.14.  Every path connected space is connected. 
 
 Proof.  Let x and y be points of a path connected space X.  Then there is a path  
f : [ 0, 1 ] → X that joins x to y.  Since [ 0, 1 ] is connected by Theorem IV.4, then 
Theorem IV.6 implies that f([ 0, 1 ]) is a connected set that contains x and y.  We have 
proved that every pair of points of X is joined by a chain of connected subsets of X of 
length 1.  Hence, X is connected by Theorem IV.10.  
 
 Problem IV.3.  Prove that the topologist’s sine wave S is not path connected. 
 
 Definition.  A topological space X is locally path connected if for each point x ∈ 
X, each neighborhood of x contains a path connected neighborhood of x. 
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 Since a path connected neighborhood of a point is connected by Theorem IV.14, 
then every locally path connected space is locally connected. 
 
 Theorem IV.15.  If a topological space is connected and locally path connected, 
then it is path connected. 
 
 Proof.  Let X be a topological space which is connected and locally path 
connected.  Let U be the set of all path connected open subsets of X.  Since X is locally 
path connected, then U is an open cover of X. 
 
 Let x and y ∈ X.  Since X is connected, then Theorem IV.10 implies there is a 
chain U1, U2, … , Un of elements of U that joins x to y.  Then for 1 ≤ i < n, we can choose 
a point zi ∈ Ui ∩ Ui+1.  Let z0 = x and zn = y.  For 1 ≤ i ≤ n, since zi–1 and zi ∈ Ui and since 
Ui is path connected, then there is a path fi : [ 0, 1 ] → Ui joining zi–1 to zi.  Now define a  
map g : [ 0, 1 ] → X by  

g(t)  =  fi(nt – ( i – 1)) 
for t ∈ [ (i–1)/n, i/n ] for 1 ≤ i ≤ n.  g is well defined because fi(1) = zi = fi+1(0) for 1 ≤ i < n.  
Since g(0) = f1(0) = z0 = x and g(1) = fn(1) = zn = y, then g is a path in X joining x to y.  
This proves X is path connected.  
 
 The following example illustrates that a path connected space need not be locally 
path connected. 
 
 Example IV.2.  The Warsaw circle is the subspace  

S ∪ α([ 0, 1 ]) 

of R2, where S is the topologist’s sine wave and α : [ 0, 1 ] → R2 is a embedding such 
that α(0) = (0,–1), α(1) = (1/π,0) and α(( 0, 1 )) ∩ ( [ 0, 1/π ] × [ –1, 1 ] ) = ∅. 
 

 
 
                                           α([ 0, 1 ]) 
                                                                                                         
 

S 
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 We observe that the Warsaw circle is not locally connected for the same reason 
that the topologist’s sine wave S is not locally connected.  Hence, the Warsaw circle is 
not locally path connected.  However, the Warsaw circle is path connected.  For 
instance, any point of the “limit segment” { 0 } × [ –1, 1 ] ) can be joined to any point of 
the “tail” { (x,sin(1/x)) : 0 < x ≤ 1/π } via a path that includes α([ 0, 1 ]). 
 

The following theorem is a substantial improvement of Theorem IV.15 in the 
context of locally compact metric spaces.     

 
Theorem IV.16.  Every connected, locally connected, locally compact metric 

space is path connected. 
 
Proof.  Let X be a connected, locally connected, locally compact metric space.  

Let x, y ∈ X.  We will construct a path in X joining x to y.   
 
This construction is somewhat involved.  The first step is to construct, for each  

i ∈ N,  a chain Ui,1, Ui,2, … , Ui,n(i) joining x to y with the following properties. 

a) For each i ∈ N, for 1 ≤ j ≤ n(i), Ui,j is a connected open subset of X of diameter < 1/i  
with compact closure. 
b)  For each i ≥ 2, there is a sequence of positive integers m(i,1), m(i,2), … , m(i,n(i–1)) 
such that m(i,1) + m(i,2) + … + m(i,n(i–1)) = n(i) and so that for 1 ≤ j ≤ n(i–1), cl(Ui,k) ⊂ 
Ui–1,j whenever m(i,1) + … + m(i,j–1) < k ≤ m(i,1) + … + m(i,j–1) + m(i,j). 
 
 To begin the construction of these chains, observe that since X is a locally 
connected, locally compact metric space, there is an open cover U1 of X by connected 
open sets of diameter < 1 with compact closures.  Since X is connected, then Theorem 
IV.10 implies there is a chain U1,1, U1,2, … , U1,n(1) of elements of U1 joining x to y. 
 
 We continue the construction of the chains inductively.  Let i ∈ N such that i ≥ 2 
and assume that we have already constructed the chain Ui–1,1, Ui–1,2, … , Ui–1,n(i–1) joining 
x to y and satisfying conditions a) and b).  To construct the ith chain, let z0 = x, let zn(i–1) = 
y and choose zj ∈ Ui–1,j ∩ Ui–1,j+1 for 0 < j < n(i–1).  For 1 ≤ j ≤ n(i–1), since Ui–1,j is a 
locally connected, locally compact metric space, there is an open cover �Vj of Ui–1,j by 
connected open sets of diameter < 1/i whose closures are compact subsets of Ui–1,j.  For 
1 ≤ j ≤ n(i–1), since Ui–1,j is connected, then Theorem IV.10 implies there is a chain  
Vj,1, Vj,2, … , Vj,m(i,j) of elements of Vj joining zj–1 to zj.  Let n(i) =  
m(i,1) + m(i,2) + … + m(i,n(i–1)).  We “concatenate” the chains Vj,1, Vj,2, … , Vj,m(i,j) for 1 ≤ 
j ≤ n(i–1) to obtain a chain Ui,1, Ui,2, … , Ui,n(i).  Specifically, for 1 ≤ r ≤ n(i), there is a j 
such that 1 ≤ j ≤ n(i–1) and m(i,1) + … + m(i,j–1) < r ≤ m(i,1) + … + m(i,j–1) + m(i,j); then 
let k = r – ( m(i,1) + … + m(i,j–1) ) and let Ui,r = Vj,k.  It follows that the chain  
Ui,1, Ui,2, … , Ui,n(i) satisfies conditions a) and b). 
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        Ui–1,j–1        Ui–1,j              Ui–1,j+1 
                                zj–1              zi  
 
 
 
 
 
 
 

        
     Vj,1   Vj,2  Vj.3    …   Vj.m(i,j)–1  Vj.m(i,j) 

 
 
The second step of the proof is to construct for each i ∈ N,  a partition  

0 = wi,0 < wi,1 < … < wi,n(i) = 1 of the closed interval [ 0, 1 ] so that if i ≥ 2, 1 ≤ j ≤ n(i–1),  
r = m(i,1) + m(i,2) + … + m(i,j–1) and s = r + m(i,j), then  

wi–1,j–1 = wi,r < wi,r+1 < … < wi,s = wi–1,j. 
Clearly, it is possible to construct such a sequence of partitions of [ 0, 1 ]. 
 
 Observe that the following relationship holds between the intervals [ wi,j–1, wi,j ]  
and the chain elements Ui,j.  For i ≥ 2, 1 ≤ j ≤ n(i–1) and 1 ≤ k ≤ n(i):  
 [ wi,k–1, wi,k ] ⊂ [ wi–1,j–1, wi–1,j ]  

implies 
 m(i,1) + m(i,2) + … + m(i,j–1) < k ≤ m(i,1) + m(i,2) + … + m(i,j–1) + m(i,j) 
which implies 
 cl(Ui,k) ⊂ Ui–1,j. 
 

The third and final step of the proof is to construct a map f : [ 0, 1 ] → X such that 
f(0) = x and f(1) = y.  Let t ∈ [ 0, 1 ].  For each i ∈ N, choose j(t,i) ∈ { 1, 2, … , n(i) } so  
that we obtain a sequence of nested intervals 
c)    [ w1,j(t,1)–1, w1,j(t,1) ] ⊃ [ w2,j(t,2)–1, w2,j(t,2) ] ⊃ [ w3,j(t,3)–1, w3,j(t,3) ] ⊃ … 

each of which contains t.  Specifically, if t = 0, choose j(t,i) = 1 for all i ∈ N.  On the other 
hand, if 0 < t ≤ 1, then for each i ∈ N, choose j(t,i) to be the unique element of  
{ 1, 2, … , n(i) } so that the interval ( wi,j(t,i)–1, wi,j(t,i) ] contains t for each i ∈ N.  It is not 
hard to see that this prescription insures that the intervals satisfy the nesting condition 
c).  As we observed earlier, this nesting condition implies a corresponding nesting of  
chain elements: 
             cl(U1,j(t,1)) ⊃ cl(U2,j(t,2)) ⊃ cl(U3,j(t,3)) ⊃ … 
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Thus, { cl(Ui,j(t,i)) } is a nested sequence of compact subsets of X.  Therefore, Theorem 
III.10 implies that 
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 Since j(0,i) = 1 for each i ∈ N, then 
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I .  Hence, f(0) = x.   
 

Clearly, j(1,i) = n(i) for each i ∈ N.  Therefore, 
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cl(Ui,n(i))i=1

"

I  = { f(1) }.  Since Ui,n(i) 

contains the point y for each i ∈ N, then y ∈ 
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cl(Ui,n(i))i=1

"

I .  Hence, f(1) = y. 
 
Finally, we begin the proof of the continuity of f by observing that the definition of 

f implies that f has the following two properties: 

• For i ∈ N, since j(t,i) = 1 for every t ∈ [ wi,0, wi,1 ], then f maps the entire interval  
[ wi,0, wi,1 ] into the set cl(Ui,1). 

• For i ∈ N and 2 ≤ j ≤ n(i), since j(t,i) = j for every t ∈ ( wi,j–1, wi,j ], then f maps the  
entire interval ( wi,j–1, wi,j ] into the set cl(Ui,j).   

Consequently:  

• for i ∈ N and 1 ≤ j ≤ n(i) – 1, f maps ( wi,j–1, wi,j+1 ] into the set cl(Ui,j) ∪ cl(Ui,j+1).   

For i ∈ N and 1 ≤ j ≤ n(i), we know diam(cl(Ui,j)) < 1/i.  Furthermore, for i ∈ N and 1 ≤ j ≤  
n(i) – 1, since Ui,j ∩ Ui,j+1 ≠ ∅, then diam( cl(Ui,j) ∪ cl(Ui,j+1) ) < 2/i.  Thus, we conclude  
that for i ∈ N:  

• diam( f( [ wi,0, wi,1 ] ) ) < 1/i, diam( f( [ wi,n(i)–1, wi,n(i) ] ) ) < 1/i and  
diam( f( ( wi,j–1, wi,j+1 ] ) ) < 2/i for 1 ≤ j ≤ n(i) – 1. 

To finish the proof of the continuity of f, let t ∈ [ 0, 1 ] and let ε > 0.  Choose i ∈ N such 
that 2/i < ε.  Then one of the intervals [ 0, wi,1 ), ( wi,n(i)–1, 1 ] or ( wi,j–1, wi,j+1 ) where 1 ≤ j ≤ 
n(i) – 1 is a neighborhood of t in [ 0, 1 ] and f maps each of these intervals to a subset of 
X of diameter < 2/i < ε.  Thus, f is continuous.  
 

Definition.  An embedding of [ 0, 1 ] in a space X is called an arc in X.  (The 
image of such an embedding may also be called a arc in X.)  If f : [ 0, 1 ] → X is an arc 
in the space X such that f(0) = x and f(1) = y, then the arc f is said to join the points x 
and y.  If every pair of distinct points of a space X is joined by an arc in X, then X is said 
to be arc connected. 
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 Theorem IV.17.  Every connected, locally connected, locally compact metric 
space is arc connected. 
 
 Problem IV.4.  Prove Theorem IV.17 by solving the problems stated in a) 
through d) below. 
 
 Definition.  Suppose A1, A2, … , An is a chain of sets of length n.  We call  
A1, A2, … , An a simple chain if Ai ∩ Aj = ∅ whenever | i – j | > 1. 
 
 a)  Prove that if X is a connected space, then for every open cover U of X, every 
pair of points in X is joined by a simple chain of elements of U. 
 
 We now outline how to modify the proof of Theorem IV.16 to change the map f 
constructed there into an embedding, thereby proving Theorem IV.17. 
 
 b)  Show that in the first step of the proof of Theorem IV.16 , each chain  
Ui,1, Ui,2, … , Ui,n(i) can be constructed so that it is a simple chain and so that n(1) ≥ 2 and 
so that for each i ≥ 2 and 1 ≤ j ≤ n(i–1), m(i,j) ≥ 2. 
 

c)  Show that in the second step of the proof of Theorem IV.16, for each i ∈ N,  
the partition 0 = wi,0 < wi,1 < … < wi,n(i) = 1 can be chosen so that wi,j – wi,j–1 ≤ 2–i for 1 ≤ j ≤ 
n(i). 
 
 d)  Show that, once the changes described in parts b) and c) of this problem are 
made, then the map f : [ 0,1 ] → X constructed in the third step of the proof of Theorem 
IV.16 must be an embedding. 
 

There are several interesting examples which show that the hypotheses in  
Theorems IV.16 and IV.17 can’t be omitted.  Since the topologists sine wave is a 
connected compact metric space which is not locally connected and not path 
connected, then the “local connectedness” hypothesis in Theorem IV.16 can’t be 
omitted. 

 
Problem IV.5.  Prove that [ 0, 1 ]2 with the lexicographic order topology is a 

connected, locally connected, compact Hausdorff space that is not metrizable and not 
path connected.  Thus, the “metric” hypothesis in Theorem IV.16, the can’t be 
weakened to “compact Hausdorff”. 

 
It turns out that in Theorem IV.16, the “locally compact metric” hypothesis can be 

replaced by “complete metric” with essentially the same proof.  However, if “locally 
compact metric” is simply reduced to “metric” (not assuming “complete metric”), then 
Theorem IV.16 becomes false.  We illustrate this in an Additional Problem. 
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In the Additional Problems, we outline a proof that every path connected 
Hausdorff space is arc connected.  Observe that this result, combined with Theorem 
IV.16, yield a very quick alternative proof of Theorem IV.17.  The following problem 
illustrates why the “Hausdorff” hypothesis is needed for this result. 

 
Problem IV.6.  Prove that [ 0, 1 ] with the finite complement topology is a 

compact non-Hausdorff space that is path connected but not arc connected. 


