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C. Continuous Functions on Normal Spaces

One of the surprising properties of normal spaces is that they possess lots of
continuous functions.  In fact, normality can be characterized in terms of the exisence of
sufficiently many continuous functions.  Our first result – Urysohn's Lemma - establishes
a direct link between normality and the existence of continuous functions.  Urysohn's
Lemma is an important and valuable tool.  Furthermore, its proof is a piece of
topological magic which appears to fabricate a continuous function from thin air.

Theorem II.12: Urysohn's Lemma.  If A and B are disjoint closed subsets of a
normal space X, then there is a map f : X → [ 0, 1 ] such that f(A) = { 0} and f(B) = { 1 }.

Remark.  In the special case that X is a metric space, the proof of Urysohn's
Lemma is much simpler than in the general case because the metric can be used to
construct the function f.  Moreover, in the metric case, a version of Urysohn's Lemma
can be proved that is apparently stronger than Theorem II.12.  Indeed, when A and B
are disjoint closed subsets of a metric space X, then there is a map f : X → [ 0, 1 ]
satisfying f–1( { 0 } ) = A  and  f–1`( { 1 } ) = B.  (The problem of constructing such a map
was assigned in Problem II.2.c.)  The conditions f–1( { 0 } ) = A  and  f–1`( { 1 } ) = B imply
the conclusion of Theorem II.12; indeed, f(A) = f(f–1( { 0 } )) ⊂ { 0 }  and  f(B) =
f(f–1( { 1 } ))  ⊂ { 1 }.  In fact, the conditions f–1( { 0 } ) = A  and  f–1( { 1 } ) = B are strictly
stronger than the conclusion of Theorem II.12, and these conditions can't necessarily be
achieved in the general case that X is a normal space.  (See Problem II.15.)

Motivation for the proof of Urysohn's Lemma.  Suppose f : X → [ 0, 1 ] is a
continuous function.  Let D be any dense subset of [ 0, 1 ].  For each t ∈ D, let Ct  =
f–1( [ 0, t ] ).  Then { Ct : t ∈ D } is a collection of closed subsets of X with the property:

      If s and t ∈ D and s < t, then Cs ⊂ int(Ct).           . . . (i)

Proof of (i):  If s and t ∈ D and s < t, then

Cs  =  f–1( [ 0, s ] )  ⊂  f–1( [ 0, t ) )  ⊂  f–1( [ 0, t ] )  =  Ct.

Since f–1( [ 0, t ) )is an open subset of X, then it follows that Cs ⊂ int(Ct). 

The function f : X → [ 0, 1 ] determines the collection of closed sets { Ct : t ∈ D }.
Conversely, the collection of closed sets { Ct : t ∈ D } can be used to reconstruct the
function f : X → [0,1].  Indeed, f is determined from { Ct : t ∈ D } by the formula

f(x)  =  inf ( { t ∈ D : x ∈ Ct } ∪ { 1 } )          . . . (ii)

Proof of (ii):  For each x ∈ X, let D(x) = { t ∈ D : x ∈ Ct } ∪ { 1 }, and define the function
g : X → [ 0, 1 ] by g(x) = inf D(x).  We must prove that f = g.  Assume f(x) ≠ g(x) for some
x ∈ X.  Then either f(x) < g(x) or g(x) < f(x).
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• If f(x) < g(x), then there is an s ∈ D such that f(x) < s < g(x).  In this case:
f(x) < s  ⇒  x ∈ f–1( [ 0, s ] ) = Cs  ⇒  s ∈ D(x)  ⇒  g(x) ≤ s, a contradiction.

• If g(x) < f(x), then there is an s ∈ D such that g(x) < s < f(x).  In this case,
s < f(x)  ⇒  x ∉ f–1( [ 0, r ] ) = Cr for all r ≤ s  ⇒  [ 0, s ] ∩ D(x) = ∅  ⇒  D(x) ⊂ (s,1]  ⇒
g(x) ≥ s, a contradiction.
We conclude that f = g.  Therefore, f is determined by the formula (i). 

The fact that the function f can be reconstructed from the collection of closed sets
{ Ct : t ∈ D } suggests the following question.  Given a collection of closed sets
{ Ct : t ∈ D } satisfying the condition (i)  but which may not originally arise from a
continuous function, might it never the less be possible to construct a continuous
function f from the sets { Ct : t ∈ D } by the formula (ii)?  The answer is "yes", and this
fact is the key idea in the proof of Urysohn's Lemma.

Proof of Urysohn's Lemma.  Let A and B be disjoint closed subsets of a normal
space X.  Let D be a countable dense subset of [ 0, 1 ] that contains the points 0 and 1.

Step 1.  We exploit the normality of X to construct a collection { Ct : t ∈ D } of
closed subset of X such that

      A ⊂ C0, C1 ⊂ X – B, and Cs ⊂ int(Ct) whenever s and t ∈ D and s < t. . . . (iii)

We will construct the sets { Ct : t ∈ D } by induction.  First we enumerate D as D =
{ t1, t2, t3, ... } where t1 = 0, t2 = 1 and ti ≠ tj for i ≠ j.

We begin the inductive construction of the Ct's by setting C0 = A.  For the second
step in our inductive construction of the Ct's: since X is normal and since the closed set
C0 is contained in the open set X – B, then Theorem I.23.c implies there is a closed
subset C1 of X such that C0 ⊂ int(C1) ⊂ C1 ⊂ X – B.  Now let n ≥ 2, and assume we have
constructed closed sets Ct1, Ct2, ... , Ctn so that if i and j are integers between 1 and n
and ti < tj, then Cti ⊂ int(Ctj).  Now consider tn+1  (the (n+1)st element of D).  There are
integers i and j between 1 and n such that ti < tn+1 < tj, and no element of { t1, t2, ... , tn }
lies strictly between ti and tj.  Since X is normal and since the closed set Cti is contained
in the open set int(Ctj), then Theorem I.23.c implies there is a closed set Ctn+1 such that
Cti ⊂ int(Ctn+1) ⊂ Ctn+1 ⊂ int(Ctj).  Given this choice of Ctn+1, it is now easily verified that the
closed sets Ct1, Ct2, ... , Ctn satisfy Cti ⊂ int(Ctj) whenever i and j are integers between 1
and n+1 such that ti < tj.  It follows by induction that we can choose an infinite sequence
of closed sets Ct1, Ct2, Ct3, ... such that Cti ⊂ int(Ctj) whenever i and j are positive integers
such that ti < tj.  This completes Step 1.



93

         B

        Cr        Cs        Ct   C1
  A = C0

0 < r < s < t < 1

Step 2.  For each x ∈ X, let D(x) = { t ∈ D : x ∈ Ct } ∪ {1}.  Now we define the
function f : X → [ 0, 1 ] by

f(x)  =  inf D(x)             . . . (iv)

We must prove that f(A) = { 0 }, f(B) = { 1 } and that f is continous.

To prove f(A) = { 0 }, assume x ∈ A = C0.  Then 0 ∈ D(x) ⊂ [0,1].  Hence, f(x) = 0.

To prove f(B) = { 1 }, assume x ∈ B.  Since C1  ⊂  X – B, then x ∉ C1.  Hence,
t ∈ D  ⇒  t ≤ 1  ⇒  Ct  ⊂  C1  ⇒  x ∉ Ct.  Therefore, D(x) = { 1 }.  Hence, f(x) = 1.

Next we make two observations that will help us to prove the continuity of f.
First:  x ∈ Ct  ⇒  t ∈ D(x)  ⇒  f(x) ≤ t.

Second:  x ∉ Ct  ⇒  x ∉ Cs for all s ∈ D such that s ≤ t (because s ≤ t implies Cs ⊂ Ct)
⇒  D(x) ∩ [ 0, t ] = ∅  ⇒  D(x)  ⊂ ( t, 1 ]  ⇒  f(x) ≥ t.

To summarize:  x ∈ Ct  ⇒  f(x) ≤ t,  and  x ∉ Ct  ⇒  f(x) ≥ t.                . . . (v)

Passing to contrapositives, we obtain:
f(x) > t  ⇒  x ∉ Ct,  and  f(x) < t  ⇒  x ∈ Ct.         . . . (vi)
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To prove the continuity of f, let x ∈ X and let U be a neighborhood of f(x) in
[ 0, 1 ].  We consider three cases: 0 < f(x) < 1, f(x) = 0 and f(x) = 1.

Case 1: 0 < f(x) < 1.  Since D is a dense subset of [ 0, 1 ], then there are elements r,
s and t of D such that r < f(x) < s < t and [ r, t ] ⊂ U.  Then (vi) implies  x ∈ Cs ⊂ int(Ct)
and x ∉ Cr.  Hence, int(Ct) – Cr is a neighborhood of x in X.  Furthermore, (v) implies:
y ∈ int(Ct) – Cr  ⇒  f(y) ≤ t and f(y) ≥ r  ⇒  f(y) ∈ [ r, t ] ⊂ U.  Hence, f(int(Ct) – Cr)  ⊂  U.

Case 2: f(x) = 0.  Since D is a dense subset of [ 0, 1 ], there are elements s and
t of D such that f(x) = 0 < s < t and [ 0, t ] ⊂ U.  As before, (vi) implies x ∈ Cs ⊂ int(Ct).
Thus, int(Ct) is a neighborhood of x in X.  Also, as before, (v) implies:  y ∈ int(Ct)  ⇒
f(y) ≤ t  ⇒  f(y) ∈ [ 0, t ] ⊂ U.  Therefore, f(int(Ct))  ⊂  U.

Case 3: f(x) = 1.  Since D is a dense subset of [ 0, 1 ], there is an element r of D
such that  r < f(x) = 1 and [ r, 1 ] ⊂ U.  As before, (vi) implies x ∉ Cr.  Hence, X – Cr is a
neighborhood of x in X.  Also, as before, (v) implies:  y ∈ X – Cr  ⇒  f(y) ≥ r  ⇒
f(y) ∈ [ r, 1 ] ⊂ U.  Thus, f(X – Cr) ⊂ U.

Therefore, in each case, there is a neighborhood V of x in X such that f(V) ⊂ U.  We
conclude that f : X → [ 0, 1 ] is continuous. 

We remarked earlier that normality can be characterized in terms of the
existence of sufficiently many continuous functions.  Urysohn's Lemma yields such a
characterization.

Corollary II.13.  A topological space X is normal if and only if for any two disjoint
closed subsets A and B of X, there is a map f : X → [ 0, 1 ] such that f(A) = { 0 } and f(B)
= { 1 }.

Proof.  Urysohn's Lemma clearly implies the forward direction of this result.

To prove the converse direction assume that the space X has the property that
for any two disjoint closed subsets A and B of X, there is a map f : X → [ 0, 1 ] such that
f(A) = { 0 } and f(B) = { 1 }.  To prove X is normal, let A and B be disjoint closed subsets
of X.  Then there is a map f : X → [ 0, 1 ] such that f(A) = { 0 } and f(B) = { 1 }.  Hence, A
⊂ f–1({ 0 }) ⊂ f–1([ 0, 1/2 )), B ⊂ f–1({ 1 }) ⊂ f–1(( 1/2, 1 ]) and f–1([ 0, 1/2 )) ∩ f–1(( 1/2, 1 ])  =
f–1([ 0, 1/2 ) ∩ ( 1/2, 1 ]) = f–1(∅) = ∅.  Thus, f–1([ 0, 1/2 )) and f–1(( 1/2, 1 ]) are disjoint
neighborhoods of A and B, respectively.  It follows that X is normal. 

 The next problem illustrates that the strong form of Urysohn's Lemma that holds
for metric spaces is not, in general, valid in normal spaces.
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Problem II.15.  Recall the space  Ω+ = Ω ∪ { ω+ } which was defined in Example
I.11.  Ω+ is normal and in section I.F, we discussed several approaches to a proof that
Ω+ is normal.  Prove there is no continuous function f : Ω+ → [ 0, 1 ] such that  f–1({ 0 })  =
{ ω+ }.  It follows that if x is any point of Ω, then there is no continuous function f : Ω+ →
[ 0, 1 ] such that f–1({ 0 }) =  { ω+ } and f–1({ 1 })  =  { x }, even though { ω+ } and { x } are
disjoint closed subsets of Ω+.  Thus, the strong form of Urysohn's Lemma that holds for
metric spaces is not valid in the normal space Ω+.

Hint:  Assume there is a continuous function f : Ω+ → [ 0, 1 ] such that f–1({ 0 })  =
{ ω+ }.  Prove that { ω+ } equals the intersection of the countable collection of open sets
{ f–1([ 0, 1/n )) : n ∈ N }.  Contradict this statement by proving that { ω+ } can't be
expressed as the intersection of a countable collection of open sets.

As we remarked above, Urysohn's Lemma is a valuable tool with many important
consequences.  For instance, it plays a crucial role in the proof of Urysohn's Metrization
Theorem which states that every second countable regular T1 space is metrizable.
Urysohn's Metrization Theorem will be proved in a later chapter.  In this chapter, we
prove the following important consequence of Urysohn's Lemma.

Theorem II.14: The Tietze Extension Theorem.  If X is a normal space, then
every map from a closed subset of X to [ 0, 1 ] extends to a map from X to [ 0, 1 ].

In other words, every normal space X has the following property.  If f : A →
[ 0, 1 ] is a map from a closed subset A of X to [ 0, 1 ], then there is a map g : X →
[ 0, 1 ] such that g | A = f.  In our proof, the map g : X → [ 0, 1 ] will be obtained as the
limit of a sequence of "approximate extensions" of f : A → [0,1].  The construction of
these approximate extensions is the goal of the following two lemmas.

Lemma II.15: The First Approximate Extension Lemma.  Let X be a normal
space, and let f : A → [ a, b ] be a map from a closed subset A of X to a closed interval
[ a, b ] in R.  Then for every δ > 0, there is a map g : X → [ a, b ] such that  | f(x) – g(x) |
≤ δ for every x ∈ A.

Proof.  Let δ > 0.  Choose n ∈ N so that 

€ 

b – a
n

 ≤ δ.  For 0 ≤ i ≤ n, let ci =

a + i

€ 

b – a
n

 

 
 

 

 
 .  Then  a = c0 < c1 < … < cn = b  and  ci – ci–1  =  

€ 

b – a
n

 ≤ δ  for 1 ≤ i ≤ n.

For 1 ≤ i ≤ n, f–1( [ a, ci–1 ] ) and f–1( [ ci, b ] ) are disjoint closed subsets of A.
Hence, they are disjoint closed subsets of X by Theorem I.26.g.  Therefore, Urysohn’s
Lemma provides a map λi : X → [ 0, 1 ] such that λi( f–1( [ a, ci–1 ] ) ) = { 0 }  and
λi( f–1( [ ci, b ] ) ) = { 1 }.
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Now define the function g : X → R by g(x)  =  a +  

€ 

b – a
n

 

 
 

 

 
 

€ 

λi(x)i=1

n
∑   for x ∈ X.

Since g is a sum of constant multiples of continuous functions, then the continuity
of g follows from Theorem II.3.

Since b – a
n

 > 0 and 0 ≤ λi(x) ≤ 1 for x ∈ X, then

a  ≤  g(x)  ≤  a + 

€ 

b – a
n

 

 
 

 

 
 n  =  b

for each x ∈ X.  Hence, g(X) ⊂ [ a, b ].

To prove that | f(x) – g(x) | ≤ δ for every x ∈ A, let x ∈ A.  Since f(x) ∈ [ a, b ] and
a = c0 < c1 < … < cn = b, then there is an integer k between 1 and n such that f(x) ∈
[ ck–1, ck ].  Observe that  1 ≤ i ≤ k–1  ⇒  ci ≤ ck–1 ≤ f(x)  ⇒   x ∈ f–1( [ ci, b ] )  ⇒  λi(x) = 1,
and that  k+1 ≤ i ≤ n  ⇒  f(x) ≤ ck ≤ ci–1  ⇒  x ∈ f–1( [ a, ci–1 ] )  ⇒   λi(x) = 0.   Hence,

g(x)  =  a + 
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n
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 1
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 λi(x)  =  ck–1 + 
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 λi(x).

Therefore, ck–1  ≤  g(x)  ≤  ck–1 + 

€ 

b – a
n

 

 
 

 

 
 1  =  ck.  So g(x) ∈ [ ck–1, ck ].  Since both f(x) and

g(x) lie in [ ck–1, ck ], then | f(x) – g(x) |  ≤  ck – ck–1  =  

€ 

b – a
n

  ≤  δ. 

Given a map f : A → [ 0, 1 ], the First Approximate Extension Lemma provides a
map g : X → [ 0, 1 ] such that g | A closely approximates f.  Repeated use of the First
Approximation Lemma would provide us with a sequence of maps gn : X → [ 0, 1 ] (n ≥
1) such that { gn | A } converges to f in C(A).  This does not complete the proof of the
Tietze Extension Theorem because we have not controlled the behavior of the gn’s at
points of X – A.  So we have no guarantee that { gn } converges to a function that is
defined at points of X – A.  The purpose of the Second Approximate Extension Lemma
is to produce a sequence of maps from X to [ 0, 1 ] whose restrictions to A converge to f
while their restrictions to X – A exhibit enough control insure that they converge to a
continuous function.  Specifically, given a map f : A → [ 0, 1 ], an ε > 0 and a map
g : X → [ 0, 1 ] such that g | A is ε-close to f, then the Second Approximate Extension
Lemma provides a map h : X → [0,1] that simultaneously achieves two objectives:
(i) h|A approximates f arbitrarily closely, and (ii) h is ε-close to g.  The Second
Approximate Extension Lemma is proved by a clever use of the First Approximate
Extension Lemma.
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Lemma II.16: The Second Approximate Extension Lemma.  Let X be a normal
space, and let f : A → [ 0, 1 ] be a map from a closed subset A of X to [ 0, 1 ].  Suppose
ε > 0 and g : X → [ 0, 1 ] is a map such that | f(x) – g(x) | ≤ ε for every x ∈ A.  Then for
every δ > 0, there is a map h : X → [ 0, 1] such that | f(x) – h(x) | ≤ δ for every x ∈ A and
| g(x) – h(x) | ≤ ε for every x ∈ X.

Proof.  Let δ > 0.  Since | f(x) – g(x) | ≤ ε for every x ∈ A, then  f – g | A  maps A
into [ –ε, ε ].  We apply the First Approximate Extension Lemma to the map  f – g | A : A
→ [ –ε, ε ]  to obtain a map  d : X → [ –ε, ε ]  such that  | ( f(x) – g(x) ) – d(x) | ≤ δ for
every x ∈ A.  Next define the map h0 : X → R by  h0(x)  =  g(x) + d(x)  for x ∈ X.  Then
clearly:
• | f(x) – h0(x) |  =  | f(x) – g(x) – d(x) |  ≤  δ  for x ∈ A, and

• | g(x) – h0(x) |  =  | –d(x) |  ≤  ε  for x ∈ X

The only reason we are not finished with the proof at this point is that h0(X) may not be
a subset of [ 0, 1 ].  To remedy this flaw, define the function h : X → [ 0, 1 ] by

h(x)  =  

€ 

0

h0(x)

1

 

 

 
  

 

 
 
 

    if x ∈  h0
–1( ( –∞, 0 ] )

    if x ∈  h0
–1( [ 0, 1 ] )

    if x ∈  h0
–1( [ 1, ∞ ) )

.

h : X → [ 0, 1 ] is well defined and continuous by Theorem II.5.b.  It remains to show
that | f(x) – h(x) | ≤ δ for every x ∈ A and | g(x) – h(x) | ≤ ε for every x ∈ X.

Let x ∈ A.  Then f(x) ∈ [ 0, 1 ].  If x ∈ h0
–1( [ 0, 1 ] ), then  | f(x) – h(x) |  =

| f(x) – h0(x) |  ≤  δ.  If x ∈ h0
–1( ( –∞, 0 ] ), then h0(x) ≤ 0 = h(x) ≤ f(x).  So | f(x) – h(x) | ≤

| f(x) – h0(x) | ≤ δ.  If x ∈ h0
–1( [ 1, ∞ ) ), then h0(x) ≥ 1 = h(x) ≥ f(x).  So | f(x) – h(x) | ≤

| f(x) – h0(x) | ≤ δ.  This proves | f(x) – h(x) | ≤ δ for all x ∈ A.

Let x ∈ X.  Then g(x) ∈ [ 0, 1 ].  If x ∈ h0
–1( [ 0, 1 ] ), then | g(x) – h(x) | =

| g(x) – h0(x) | ≤ ε.  If x ∈ h0
–1( ( –∞, 0 ] ), then h0(x) ≤ 0 = h(x) ≤ g(x).  So | g(x) – h(x) | ≤

| g(x) – h0(x) | ≤ ε.  If x ∈ h0
–1( [ 1, ∞ ) ), then h0(x) ≥ 1 = h(x) ≥ g(x).  So | g(x) – h(x) | ≤

| g(x) – h0(x) | ≤ ε.  This proves | g(x) – h(x) | ≤ ε for all x ∈ A. 

We now turn to the proof of the Tietze Extension Theorem.  Given a map f : A →
[ 0, 1 ] from a closed subset A of a normal space X to [0,1], we will use the two
approximate extension lemmas to construct a sequence of maps gn : X → [ 0, 1 ] (n ≥ 1)
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that converge to a map g : X → [0,1] such that the sequence { gn | A } converges to f.  It
will then follow that g | A = f.

Proof of Theorem II.14: The Tietze Extension Theorem.  Let X be a normal
space and let f : A → [ 0, 1 ] be a map from a closed subset A of X to [ 0, 1 ].  We begin
by applying the First Approximate Extension Lemma to obtain a map g1 : X → [ 0, 1 ]
such that | f(x) – g1(x) | ≤ 2–1 for x ∈ A.  Next we repeatedly apply the Second
Approximate Extension Lemma to obtain a sequence of maps gn : X → [ 0, 1 ] (n ≥ 2)
such that for each n ≥ 1: | f(x) – gn(x) | ≤ 2–n for each x ∈ A and | gn(x) – gn+1(x) | ≤ 2–n for
each x ∈ X.  (If we have already obtained the map gn : X → [ 0, 1 ] such that
| f(x) – gn(x) | ≤ 2–n for each x ∈ A, then the Second Approximate Extension Lemma
provides a map gn1 : X → [ 0, 1 ] such that | f(x) – gn+1(x) | ≤ 2–(n+1) for each x ∈ A and
| gn(x) – gn+1(x) | ≤ 2–n for each x ∈ X.)

Our next step is to show that for each x ∈ X, then sequence { gn(x) } converges to
a point in [ 0, 1 ].  Let x ∈ X.  For each n ≥ 1, let

Jn(x)  =  [ gn(x) – 2–(n–1), gn(x) + 2–(n–1) ] ∩ [ 0, 1 ].

Then for each n ≥ 1, Jn(x) is a closed interval in [ 0, 1 ].  Furthermore, Jn+1(x) ⊂ Jn(x) for
each n ≥ 1.  To see this, let t ∈ Jn+1(x).  Then t ∈ [ 0, 1 ] and | t – gn+1(x) | ≤ 2–n.  Hence,

| t – gn(x) |  ≤  | t – gn+1(x) | + | gn+1(x) – gn(x) |  ≤  2–n + 2–n =  2–(n–1).

Therefore, t ∈ Jn(x).  It follows that J1(x) ⊃ J2(x) ⊃ J3(x) ⊃ ....  Since ( R, < ) is a complete
linearly ordered set, then ∩n ∈ N Jn(x) ≠ ∅ (according to Problems I.4).  Choose a point in
∩n ∈ N Jn(x) and call it g(x).  For each n ≥ 1, since g(x) ∈ Jn(x), then g(x) ∈ [ 0, 1 ] and
| gn(x) – g(x) | ≤ 2–(n–1).  Thus, { gn(x) } converges to the point g(x) ∈ [ 0, 1 ].

By choosing the point g(x) ∈ [ 0, 1 ] for each x ∈ X, we have defined a function
g : X → [ 0, 1 ].  Furthermore, we have seen that our choice of g(x) satisfies the
condition: | gn(x) – g(x) | ≤ 2–(n–1) for each x ∈ X.

To prove g | A = f, let x ∈ A.  Then for each n ≥ 1,

| f(x) – g(x) |  ≤  | f(x) – gn(x) | + | gn(x) – g(x) |  ≤  2–n + 2–(n–1)  ≤ 2–(n–2).

If follows that g(x) = f(x).  This prove g | A = f.

Finally we must prove that g : X → [ 0, 1 ] is continuous.  Recall that B(X)
denotes the set of all bounded functions from X to R.  Let σ denote the supremum
metric on B(X).  (See Example I.15.)  Recall that C(X) denotes the set of all bounded
continuous functions from X to [ 0, 1 ], and that C(X) is a closed subset of B(X) by
Theorem II.7.  For each n ≥ 1, since gn is continuous and gn(X) ⊂ [ 0, 1 ], then gn ∈ C(X).
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Since g(X) ⊂ [ 0, 1 ], then g ∈ B(X).  For n ≥ 1, since | gn(x) – g(x) | ≤ 2–(n–1) for each x ∈
X, then σ(gn,g) ≤ 2–(n–1).  Hence, { gn } converges to g in B(X).  Since { gn } lies in C(X)
and C(X) is a closed subset of B(X), it follows that g ∈ C(X). Thus, g is continuous. 

Remark.  The last paragraph of the proof of the Tietze Extension Theorem
reveals a characteristically twentieth century approach.  The continuity of the function g
is proved by appealing to properties of the function spaces B(X) and C(X), rather than
working only with properties of the individual functions g and { gn }.  This point of view
asserts that there is an advantage to considering a topological space comprising the
totality of objects (in this case, functions) rather than focusing solely on the individual
objects.  The argument for this point of view is that there may be easily and clearly
formulated "global" properties of a space of objects that become more complex when
translated into statements about individual objects of the space.  For example, the
statement "C(X) is a closed subset of B(X)" is shorter and simpler than the equivalent
statement "a bounded function is continuous if it is the uniform limit of a sequence of
continuous functions".  For another example, the statement "C(X) is a vector space" is
briefer than "a linear combination of two continuous functions is continuous".  The
argument for the global perspective further asserts that the simplicity of the global
formulation leads to the discovery of new results and proofs that would be obscured and
possibly overlooked by an approach that was restricted to considering only individual
objects.  There is a lot of evidence supporting the global perspective.  Twentieth century
topology and analysis are replete with powerful arguments and theorems formulated in
terms of spaces of functions and other complex objects.

Remark.  Surveying the proofs of the two approximate extension lemmas and
the Tietze Extension Theorem, we observe that the normality of the domain space X is
used in these proofs only to invoke Urysohn's Lemma.  In other words, we have proved
that Urysohn's Lemma implies the Tietze Extension Theorem.  Observe conversely that
the Tietze Extension Theorem implies Urysohn's Lemma.  For suppose that the Tietze
Extension Theorem holds and that A and B are disjoint closed subsets of a normal
space X.  Then a continuous function f : A ∪ B → [ 0, 1 ] is defined by specifying that
f(A) = { 0 } and f(B) = { 1 }.  Hence, the Tietze Extension Theorem provides a map g : X
→ [ 0, 1 ] such that g | (A ∪ B) = f.  Thus, g(A) = { 0 } and g(B) = { 1 }.  This gives us the
conclusion of Urysohn's Lemma.

Because the Tietze Extension Theorem implies Urysohn's Lemma (and vice
versa), then from Corollary II.13, we get a characterization of normality inspired by the
Tietze Extension Theorem.

Corollary II.17.  A topological space X is normal if and only every map from a
closed subset of X to [ 0, 1 ] extends to a map from X to [ 0, 1 ].

From one point of view, the Tietze Extension Theorem reveals of a property of
normal spaces.  However, the Tietze Extension Theorem can also be regarded as



100

revealing a property of the unit interval [ 0, 1 ]: maps from closed subsets of a normal
spaces into [ 0, 1 ] extend to the entire normal space.  Spaces which share this property
with the unit interval are called "absolute extensors" and have been studied in their own
right.

Definition.  A space Y is an absolute extensor (for the class of all normal
spaces) if for every normal space X, every map from a closed subset of X to Y extends
to a map from X to Y.

In other words, the space Y is an absolute extensor if and only if for every normal
space X and every map f : A → Y where A is a closed subset of X, there is a map g : X
→ Y such that g | A = f.

X
                    g

∪ Y
        closed

                     f
A

Then the Tietze Extension Theorem can be restated in the form

Corollary II.18.  [ 0, 1 ] is an absolute extensor.

Remark.  Being an absolute extensor is a topological property.  In other words, if
X is an absolute extensor and X is homeomorphic to Y, then Y is an absolute extensor.

Exercise.  Verify the preceding remark.

Theorem II.19.  R is an absolute extensor.

Proof.  We will prove that ( 0, 1 ) is an absolute extensor.  Since R is
homeomorphic to ( 0, 1 ), it will then follow that R is an absolute extensor.

To prove that ( 0, 1 ) is an absolute extensor, suppose X is a normal space, A is
a closed subset of X and f : A → ( 0, 1 ) is a map.  Then f is also a map from A to [ 0, 1 ],
and we can invoke the Tietze Extension Theorem to obtain a map g : X → [ 0, 1 ] such
that g | A = f.  To finish the proof we must modify g so that its image lies in ( 0, 1 ).
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Let B = g–1( { 0, 1 } ).  Since g(A) = f(A) ⊂ ( 0, 1 ), then g(A) ∩ g(B) ⊂ 
{ 0, 1 } ∩ ( 0, 1 ) = ∅.  Hence, A ∩ B = ∅.   Thus, A and B are disjoint closed subsets of
X.  Hence, Urysohn's Lemma provides a map λ : X → [ 0, 1 ] such that λ(A) = { 0 } and
λ(B) = { 1 }.  We now use the map λ to "squeeze" the image of g towards 1/2 without
change g | A.

Define the map h : X → R by h(x) = ( 1 – λ(x) )g(x) + λ(x)(1/2).  We assert that
h | A = f and h(X) ⊂ ( 0, 1 ).  To prove that h | A = f, observe that

x ∈ A   ⇒   λ(x) = 0   ⇒   h(x) = g(x) = f(x).

To prove that h(X) ⊂ ( 0, 1 ), let x ∈ X.  Since g(x) ∈ [ 0, 1 ], we can break the argument
into the following three cases.

Case 1: g(x) ∈ { 0, 1 }.  In this case, x ∈ B.  So λ(x) = 1.  Therefore, h(x) = 1/2 ∈
( 0, 1 ).

Case 2: g(x) ∈ ( 0, 1/2 ].  In this case,

g(x)  =  ( 1 – λ(x) )g(x) + λ(x)g(x)  ≤  h(x)  ≤  ( 1 – λ(x) )(1/2) + λ(x)(1/2)  =  1/2.

Therefore, h(x) ∈ [ g(x), 1/2 ] ⊂ ( 0, 1/2 ] ⊂ ( 0, 1 ).

Case 3: g(x) ∈ [ 1/2, 1 ).  In this case,
1/2  =  ( 1 – λ(x) )(1/2) + λ(x)(1/2)  ≤  h(x)  ≤  ( 1 – λ(x) )g(x) + λ(x)g(x)  =  g(x).

Therefore, h(x) ∈ [ 1/2 , g(x) ] ⊂ [ 1/2, 1 ) ⊂ ( 0, 1 ).

We conclude that h(x) ∈ ( 0, 1 ) in all three cases.  Thus, h maps X into ( 0, 1 )
and h | A = f.  This completes the proof that ( 0, 1 ) is an absolute extensor. 

Theorem II.20.  [ 0, 1 ) and ( 0, 1 ] are absolute extensors.

Exercise.  Prove Theorem II.20 by modifying the proof of Theorem II.19.

Theorem II.21.  If the spaces X1, X2, … , Xn are absolute extensors, then their
Cartesian product X1 × X2 × … × Xn (with the product topology) is also an absolute
extensor.

Problem II.16.  Prove Theorem II.21.

Corollary II.22.  For n ∈ R, [ 0, 1 ]n and Rn are absolute extensors.

We now introduce the notion of a retract.  This concept is very useful in
conjunction with the notion of absolute extensor.
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Definition.  Let X be a subset of a topological space Y.  X is a retract of Y if X is
a closed subset of Y and there is a map r : Y → X such that r | X = idX.  In this situation,
the map r : Y → X is called a retraction  of Y onto X.

The following two theorems link the notions of retract and absolute extensor.

Theorem II.23.  Every retract of an absolute extensor is an absolute extensor.

Proof.  Suppose Y is an absolute extensor and Z is a retract of Y.  Then there is
a map r : Y → Z such that r | Z = idZ.

To prove that Z is an absolute extensor, assume A is a closed subset of a normal
space X and f : A → Z is a map.  We must extend f to a map from X to Z.

Since f also maps A into Y and Y is an absolute extensor, then there is a map
g : X → Y such that g | A = f.  Then r°g maps X into Z.  Furthermore, since f(A) ⊂ Z and
r | Z = idZ, then r°g | A = r°f | A = idZ°f = f.  So r°g extends f.  We conclude that Z is an
absolute extensor. 

As an application of Theorem II.23, we have:

An Alternative Proof of Theorem II.20.  Since R is an absolute extensor by
Theorem II.19, and ( –1, 1 ) and ( 0, 2 ) are homeomorphic to R, then ( –1, 1 ) and
( 0, 2 ) are absolute extensors.  [ 0, 1 ) is a retract of ( –1, 1 ), and ( 0, 1 ] is a retract of
( 0, 2 ).  (Exercise: Verify this.)  Hence, [ 0, 1 ) and ( 0, 1 ] are absolute retracts by
Theorem II.23. 

Problem II.17.  Let T be the a topological space homeomorphic to the letter "T".
Thus, T is homeomorphic to the subspace ( { 0 } × [ 0, 1 ] ) ∪ ( [ –1, 1 ] × {1} ) of R2.  (T
is also homeomorphic to the letter "Y".)  Prove T is an absolute extensor.

Hint.  Show that T is a retract of an absolute extensor and invoke Theorem II.23.

The second theorem linking the notions of absolute extensor and retract is:

Theorem II.24.  If X is an absolute extensor and X is a closed subset of a normal
space Y, then X is a retract of Y.

Proof.  Since X is a closed subset of the normal space Y, and X is an absolute
extensor the the map idX : X → X extends to a map r : Y → X.  Thus, X is a retract of Y.

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 Problem II.18. a)  If A is a knotted arc inside a cube C (A ≅ [ 0, 1 ], C ≅ [ 0, 1 ]3)
as shown in the following figure, then A is a retract of C.
b)  If K is a knotted simple closed curve inside the solid torus T (K ≅ S1, T ≅ S1 × B2) as
shown in the following figure, then K is a retract of T.
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