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B. Homeomorphisms and Embeddings 
 
 Definition.  A function h : X → Y between topological spaces is a 
homeomorphism if  h : X → Y is a bijection and both h : X → Y and h–1 : Y → X are 
continuous.  Hence,  if h : X → Y is a bijection between topological spaces, then the  
following are equivalent: 
• h : X → Y is a homeomorphism, 

• h : X → Y is continuous and open, and 

• h : X → Y is continuous and closed. 

If there is a homeomorphism from X to Y, then we say that X is homeomorphic to Y and 
we write X ≅ Y.  Homeomorphism is the fundamental equivalence relation of topology.  
 
 Example II.5.  R is homeomorphic to ( –1, 1 ).  Indeed a homeomorphism  
h : R → ( –1, 1 ) is defined by the formula 

h(x)  =  

! 

x

| x | + 1
. 

A simple way to prove that h is a homeomorphism is to exhibit its inverse.  To this end,  
define the function k : ( –1, 1 ) → R by the formula 

k(x)  =  

! 

x

1 – | x |
. 

The continuity of h and k follows from Example II.1.a and Theorem II.3.  Also, it is easy 
to check that k°h = idR and h°k = id( –1, 1 ).  So h : R → ( –1, 1 ) is a bijection and h and  
h–1 = k are continuous.  Thus, h : R → ( –1, 1 ) is a homeomorphism. 
 
 A continuous bijection need not be a homeomorphism, as the following example 
illustrates.  
 
 Example II.6.  A continuous bijection need not be a homeomorphism.  Let N 
have the discrete topology, let Y = { 0 } ∪ { 1/n : n ∈ N – { 1 } }, and topologize Y by 
regarding it as a subspace of R.  Define f : N → Y by f(1) = 0 and f(n) = 1/n for n > 1. 
Then f is a continuous bijection which is not a homeomorphism.  Proof:  Since every 
subset of N is open, then for each open subset U of Y, f–1(U) is an open subset of N.  So 
f is continuous.  f : N → Y is clearly a bijection.  Since { 1 } is an open subset of N, but  
f( { 1 } ) = { 0 } is not an open subset of Y, then f : N → Y is not an open map.  Thus, f is 
not a homeomorphism. 
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 Definition.  A topological property or a topological invariant is a property of a 
topological space which is preserved by homeomorphisms; i.e., it is a property which is 
possessed by a space if and only if it is possessed by all homeomorphic spaces.   
 
 Broadly speaking, topology is the study of topological invariants.  In other words, 
topology is the study of those properties of topological spaces that are preserved by 
homeomorphism. 
 
 The properties of topological spaces that were defined in the previous chapter 
are all instances of topological properties, including second countable, first countable, 
separable, metrizable, T1, Hausdorff, regular and normal.  We illustrate how this is 
proved in one case.  The other cases are similar. 
 
 Proof that normality is a topological property.  Let h : X → Y be a 
homeomorphism between topological spaces and assume that X is normal.  Let A and B 
be disjoint closed subsets of Y.  Then h–1(A) and h–1(B) are disjoint closed subsets of X.  
So there are disjoint open subsets U and V of X such that h–1(A) ⊂ U and h–1(B) ⊂ V.  
Then h(U) and h(V) are disjoint open subsets of Y and A ⊂ h(U) and B ⊂ h(V).  This 
proves Y is normal.  
 
 Proof that metrizability is a topological property.  Let h : X → Y be a 
homeomorphism between topological spaces and assume that X is metrizable.  Let ρ be 
a metric on X that induces the given topology.  Define the function σ : Y × Y → [ 0, ∞ ) 
by σ(y,y´) = ρ(h–1(y),h–1(y´)).  Since ρ is a metric on X and h : X → Y is a bijection, it is 
easy to verify that σ is a metric on Y.  (Prove this assertion.)  It remains to prove that σ 
induces the given topology on Y.  In other words, we must prove that the collection  
Bσ = { Nσ(y,ε) : y ∈ Y and ε > 0 } of all ε-neighborhoods in Y with respect to σ is a basis 
for the given topology on Y.  First, for y ∈ Y and ε > 0, observe that h(Nρ(h–1(y),ε)) =  
Nσ(y,ε).  Indeed,  

y´ ∈ Nσ(y,ε)  ⇔  σ(y,y´) < ε  ⇔  ρ(h–1(y),h–1(y´)) < ε  ⇔ 

h–1(y´) ∈ Nρ(h–1(y),ε)  ⇔  y´ ∈ h(Nρ(h–1(y),ε)). 

Since ρ induces the given topology on X, then Nρ(h–1(y),ε) is an open subset of X.  Since 
h is an open map and h(Nρ(h–1(y),ε)) = Nσ(y,ε), then Nσ(y,ε) is an open subset of Y.  
Thus, Bσ is a subset of the given topology on Y.  Suppose y is an element of an open 
subset U of Y.  Since h is continuous, then h–1(U) is an open subset of X and h–1(y) ∈  
h–1(U).  Since ρ induces the given topology on X, then Theorem I.10 implies there is an ε 
> 0 such that Nρ(h–1(y),ε) ⊂ h–1(U).  Hence, h(Nρ(h–1(y),ε)) ⊂ h(h–1(U)).  Since  
h(Nρ(h–1(y),ε)) = Nσ(y,ε) and h(h–1(U)) = U, then it follows that y ∈ Nσ(y,ε) ⊂ U.  This 
completes the proof that Bσ is a basis for the given topology on Y.  Consequently, the 
metric σ induces the given topology on Y.  We conclude that Y is metrizable.  
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 Exercise. a)  Prove that the other properties listed above are topological  
invariants. 
b)  Prove that if X and Y are topological spaces, then X × Y ≅ Y × X. 

c)  Prove that if X1, X2, ... , Xn are topological spaces and 1 ≤ k < n, then  
( X1 × ... × Xk ) × ( Xk+1 × ... × Xn )  ≅  X1 × X2 × ... × Xn. 

(Statements b) and c) play a role in certain proofs about product spaces which proceed 
by induction on the number of factors.) 
 
 Definition.  Recall that the Euclidean norm (or 2-norm) on Rn is defined by the  
formula 

|| x ||2  =  

! 

x
i

2

i=1

n

"# $ % 
& 
' 
( 
1
2 

for x = ( x1, x2, … , xn ) ∈ Rn.  We define the following subspaces of Rn: 

Bn  =  { x ∈ Rn : || x ||2 ≤ 1 }, 

Sn–1  =  { x ∈ Rn : || x ||2 = 1 }, 

  

! 

R+
n   =  Rn–1 × [ 0, ∞ ). 

Any space that is homeomorphic to Bn is called an n-ball or an n-disk.  Any space that is 
homeomorphic to B1 = [ –1, 1 ] (or, equivalently, to [ 0, 1 ]) is also called an arc; and any 
space that is homeomorphic to B2 is often called simply a disk.  Any space that is 
homeomorphic to Sn is called an n-sphere.  Any space that is homeomorphic to S1 is 
also called a simple closed curve.  Any space that is homeomorphic to   

! 

R+
n  is called an 

n-dimensional half-space. 
  
 Problem II.5.  Let ( V, || || ) be a normed vector space.  Prove that  
{ x ∈ V : || x || < 1 } is homeomorphic to V.   
 
 Thus, Bn – Sn–1 is homeomorphic to Rn. 
 
 Next we note an interesting topological phenomenon: Cartesian factors are not 
topologically unique.  In other words, there are topological spaces X, Y and Z such that 
X × Z ≅ Y × Z but X 

! 

/ "  Z.  Perhaps the simplest illustration of this phenomenon is 
presented in part a) of the next problem.  
 
 Problem II.6. a)  Prove that R   × [ 0 ,∞ ) is homeomorphic to [ 0 ,∞ ) × [ 0 ,∞ ). 

b)  Prove that Rn × [ 0 ,∞ )k is homeomorphic to [ 0 ,∞ )n+k.
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 Of course, for Problem II.6.a to be an illustration of the non-uniqueness of 
Cartesian factors, one must prove that R 

! 

/ "  [ 0, ∞ ).  The proof of this fact is slightly 
beyond our current level of understanding, but will become easily understandable based 
on work in a later chapter.  However, we easily can (and do) explain the idea of this 
proof at this point.  The piece of information from a subsequent chapter that is not yet 
available to us is that the space ( 0, ∞ ) is connected; in other words, ( 0, ∞ ) can’t be 
expressed as the union of two non-empty disjoint open subsets.  If we assume that  
( 0, ∞ ) is connected, then the rest of the argument that R 

! 

/ "  [ 0, ∞ ) is straightforward. 
 

Proof that R 

! 

/ "  [ 0, ∞ ).  Assume that R ≅ [ 0, ∞ ).  Then there is a  
homeomorphism h : [ 0, ∞ ) → R.  Let z = h(0).  Then  

h( ( 0, ∞ ) )  =  h( [ 0, ∞ ) – { 0 } )  =  h( [ 0, ∞ ) ) – { h(0) } 

=  R – { z }  =  ( –∞, z ) ∪ ( z, ∞ ). 

Thus, ( 0, ∞ ) is the union of the two non-empty disjoint open sets h–1( ( –∞, z ) ) and  
h–1( (z, ∞ ) ).  This contradicts the connectedness of ( 0, ∞ ).  We conclude that R 

! 

/ "  
[ 0, ∞ ).  
 
 At the current time, there is an fundamental unsolved topological problem related 
to the non-uniqueness of Cartesian factors.  For each n ≥ 3, there are many known 
examples of spaces X with the property that X × R ≅ Rn+1 but X 

! 

/ "  Rn.  (For n = 1 or 2,  
X × R  ≅ Rn+1 implies X ≅ Rn.)  Thus, in high dimensional situations, an R-factor usually 
can't be cancelled.  However, there are some high dimensional situations in which an  
R-factor can be cancelled.  For instance, it is known that for any topological space X: if 
X × R3 ≅ Rn+3, then X ×  R2 ≅ Rn+2.  (It follows by induction that for any k ≥ 3, if X × Rk ≅ 
Rn+k, then X ×  R2 ≅ Rn+2.)   Thus, an R-factor can be cancelled if there are at least two 
other R-factors present.  What remains unknown at this time is whether an  
R-factor can be cancelled if there is just one other R-factor present.  In other words:      
 
 Unsolved Problem.  For every topological space X, does X × R2 ≅ Rn+2 imply  
X × R ≅ Rn+1? 
 
 Problem II.7.  Prove that if p ∈ Sn, then Rn is homeomorphic to Sn – { p }. 
 
 An approach to the solution of this problem is outlined in an Additional Problem. 
 
 Definition.  A topological characterization of a space X is a list of properties of X 
together with the assertion that if a space satisfies the properties on the list, then it must 
be homeomorphic to X. 
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 Exercise.  Let X be a space with the discrete discrete topology.  Prove the 
following topological characterization of X.  A space Y is homeomorphic to X if and only 
if Y has the discrete topology and X ≈ Y (i.e., there is a bijection from X to Y). 
 
 Topological characterizations of the simplest spaces – balls, spheres and 
Euclidean spaces – are regarded as some of the most central and important results of 
topology.  This is true not only because such characterizations are the first problems 
that occur to researchers in the area, but because such results serve as tools in the 
efforts to characterize more complicated objects.  For n = 1 and 2, there are simple and 
satisfying topological characterizations of Bn, Sn and Rn.  (Later we will acquire the 
concepts needed to state these results and prove some of them.)  In dimension n = 3, 
we encounter a topological characterization result which until recently was the best 
known and arguably the most fundamental unsolved problem in topology: the Poincaré 
conjecture.  The Poincaré conjecture is a topological characterization of S3.  (We don't 
yet have the terminology to formulate this characterization.)  It was settled affirmatively 
in 2002 by Grigori Perelman.  (Perelman, who apparently disapproves of the effect that 
prizes have on the mathematical community, refused to accept a Fields Medal and the 
$1,000,000 Millenium prize offered by the Clay Foundation for this work!)  The 
affirmative resolution of the Poincaré conjecture immediately led to proofs of topological 
characterizations of B3 and R3.   
 
 One of the paradoxes of modern topology is that although the conjectured 
characterizations of 3-dimensional balls, spheres and Euclidean spaces were proved 
only recently, the high dimensional analogues of these conjectures were settled and, in 
fact, well understood much earlier.  In the early 1960's work of J. Milnor, S. Smale, J. 
Stallings and E. C. Zeeman answered many of the fundamental questions in dimensions 
≥ 5.  In particular, they established a high-dimensional analogue of the Poincaré 
conjecture, thereby characterizing Sn for n ≥ 5.  In the early 1980's, M. Freedman and S. 
Donaldson made breakthroughs which provide answers to a number of characterization 
conjectures in dimension 4.  Freedman proved a 4-dimensional analogue of the 
Poincaré conjecture and thus characterized S4.  However, many unsolved problems 
remain in dimension 4.  The methods that worked to resolve these characterization 
conjectures in dimension 4 were inspired by techniques that worked in dimensions 5 
and above.  However, the methods used in dimension 3 are completely different from 
the higher dimensional approaches.  Dimension 3 is too "cramped" for the strategies 
that succeed in the "roominess" of higher dimensions.
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 The following three problems ask for proofs of topological characterizations. 
 
 Definition.  A subset C of a vector space V is convex if whenever C contains two 
points v and w, it also contains the straight line segment  { ( 1 – t )v + t w : 0 ≤ t ≤ 1 } 
joining v to w.  
 
 Problem II.8.  Let ( V, || || ) be a normed vector space, and let B =  
{ x ∈ V : || x || ≤ 1 }.  Prove that if X is a closed bounded convex subset of V with non-
empty interior, then there is a homeomorphism h : V → V such that h(B) = X. 
 
 The result of Problem II.8 is extended in two Additional Problems. 
 
 The next two problems propose topological characterizations of Q and R 
regarded as linearly ordered spaces up to order preserving homeomorphisms.  (Recall 
that Q is the set of rational numbers regarded as a subspace of R.) 
 
 Definition.  A linearly ordered set X is densely ordered if between any two 
distinct points of X there is a third point of X.  A function f : X → Y between linearly 
ordered sets is order preserving if for any two points x and x´ ∈ X, x < x´ ⇒ f(x) < f(x´). 
 
 Problem II.9.  Prove that if X is a countable densely ordered linearly ordered 
space with no least element and no greatest element, then there is an order preserving 
homeomorphism from X to Q.   
 
 The result of Problem II.9 is generalized in an Additional Problem.  The result of 
Problem II.9 can be used in the solution of the next problem. 
 
 Problem II.10.  Prove that if X is a separable densely ordered complete linearly 
ordered space with no least element and no greatest element, then there is an order 
preserving homeomorphism from X to R.   
 
 Observe that the result of Problem II.9 implies that there is an order preserving 
homeomorphism from Q to Q ∩ ( 0, 1 ), where both Q and Q ∩ ( 0, 1 ) are regarded as 
subspaces of R.  However, because an order preserving homeomorphism must 
preserve least elements and greatest elements, there can be no order preserving 
homeomorphisms between any two of the spaces Q ∩ ( 0, 1 ), Q ∩ [ 0, 1 ), Q ∩ ( 0, 1 ] 
and Q ∩ [ 0, 1 ].  None the less, these spaces might be homeomorphic via non-order 
preserving homeomorphisms. 
 
 Problem II.11.  Are any of the four spaces Q ∩ ( 0, 1 ), Q ∩ [ 0, 1 ), Q ∩ ( 0, 1 ] 
and Q ∩ [ 0, 1 ] (regarded as subspaces of R) homeomorphic? 
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 The following four problems are exercises in visualizing homeomorphisms of R3 
that carry one subspace to another.  They may initially appear to be impossible.  In fact, 
the homeomorphisms sought in these problems perform rather complicated motions of 
R3.  To solve one of these problems, a student should describe a motion of the points of 
R3 that will carry one subspace to the other.  A convincing way to describe a 
complicated motion of the points of R3 that is intended to be a homeomorphism is to 
express this motion as a composition of simple moves each of which shifts points only 
within a small set.  We describe one such simple move following the statements of 
these four problems.  We call this simple move scooching a tube.   
 

A description of a homeomorphism that solves one of these problems can consist 
of words or pictures or both.  Clearly, each such motion should be a continuous bijection 
of R3 whose inverse is also continuous.  However, at this point, the student is not 
expected to present a completely rigorous proof that the described motions are 
homeomorphisms.  It suffices for the student to present a clear idea of the motion, 
possibly using a picture.  The details of proving that the motions which solve these 
problems are homeomorphisms can be made easier by developing some technical 
tools.  Some of the Additional Problems explore the development of relevant technical 
tools.  

 
Problem II.12.  Let X and Y be the closed bounded subsets of R3 shown in the 

following picture.  X is the closure of the region between two concentric balls with a hole 
drilled out.  So is Y.  In X, the hole is straight.  In Y, the hole is knotted.  Prove that there 
is a homeomorphism h : R3 → R3  such that h(X) = Y. 
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Problem II.13.  Let X and Y be the closed bounded subsets of R3 shown in the following 
picture. X consists of two rings joined by a tube.  So does Y.  The rings of X are 
unlinked, while the rings of Y are linked.  Prove that there is a homeomorphism  
h : R3 → R3  such that h(X) = Y.  
 
 

 
 
 
 
 
 
 
 

Problem II.14.  Let X and Y be the closed bounded subsets of R3 shown in the 
following picture. X and Y are each cubes with two holes drilled out of them.  In X, both 
holes are straight.  In Y, one hole is straight and the other is knotted.  Prove that there is 
a homeomorphism h : R3 → R3  such that h(X) = Y. 
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 Problem II.15.  Let X and Y be the closed bounded subsets of R3 shown in the 
following picture.  X and Y are 2-dimensional surfaces.  X is a disk with two holes.  Y is 
a disk with a "handle".  ( Y = X ∪ (handle).)  Prove X × [ 0, 1 ] and Y × [ 0, 1 ] can be 
identified with subsets and R3, and that there is a homeomorphism h : R3 → R3  such 
that h( X × [0,1] ) = Y × [0,1]. 
 

 
 
 
 Problem II.15, like Problem II.6.a, illustrates the non-uniqueness of Cartesian 
factorization:  In Problem II.14,  X × [ 0, 1 ] ≅ Y × [ 0, 1 ], but X 

! 

/ "  Y.  At this point, we 
can't prove X 

! 

/ "  Y; however, we can suggest a reason for it: the "boundary" of X is the 
union of three disjoint simple closed curves, whereas the "boundary" of Y is a single 
simple closed curve. 
 
 We now describe a homeomorphism of R3 which we call scooching a tube.  C is 
a cylindrical 3-ball in R3.  h : R3 → R3 is a homeomorphism which shifts only the points 
of int(C).  h(x) = x for every x ∈ R3 – int(C).  Thus, h(C) = C.  D is a horizontal disk in C 
half way between the top and the bottom of C.  T is a tube in C with its lower end on the 
left side of D and its upper end on the top of C.  h doesn’t move the upper end of T, but 
h scooches the lower end of T from the left side of D to the right side of D.  Also h(D) = 
D.  The complicated homeomorphisms which are the solutions to some of the previous 
problems are the compositions of simple moves like scooching a tube that shift points 
only within a small set. 
 
 
 
                             
                                     T                                                                        h(T) 
                                                   h 

        D             h(D) 
 
 

         C              C 
 
 

Scooching a tube 
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 Definition.  A function e : X → Y between topological spaces is an embedding if    
e : X → e(X) is a homeomorphism.  (Here, e(X) has the subspace topology it receives 
as a subset of Y.)  Therefore, e : X → Y is an embedding if and only if e is injective and 
continuous and e–1 : e(X) → X is continuous.  Equivalently, e : X → Y is an embedding if 
and only if e is injective and continuous and e: X → e(X) is open. 
 
 Example II.6 above shows that a continuous bijection need not be a 
homeomorphism.  Consequently, a continuous injection need not be an embedding.  
This is illustrated further by Examples II.7 and II.9 below.  
 
 Example II.7.  Assign N the discrete topology.  Define the injective continuous 
functions e1, e2 and e3 : N → R by e1(n) = n, e2(n) = 1/n, and e3(1) = 0 and e3(n) = 1/n for 
n ≥ 2.  Then e1 and e2 are embeddings.  However, e3 is not an embedding, because  
e3

–1 : e3(N) → N is not continuous.  (See Example II.6.) 
 
 Example II.8.  Recall that S1 = { x ∈ R2:  || x ||2 = 1 } is a circle of radius 1 in R2.  
The following picture illustrates an embedding e : S1 → R2 whose image e(S1) is a trefoil 
knot . 
 
 

 
 
 
 
 Example II.9.  There is an injective continuous function f : R → R2 whose image, 
f(R) is shown in the following picture.  f is not an embedding because f–1 is not 
continuous.  Indeed, f( –1, 1 ) is not a relatively open subset of f(R). 
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 The following theorem reveals that we have already encountered embeddings 
when studying products of topological spaces. 
 
 Theorem II.12.  Let X1, X2, … , Xn be topological spaces, let X1 × X2 × … × Xn 
have the product topology, and choose a point a = ( a1, a2, … , an ) ∈  X1 × X2 × … × Xn.  
Then for 1 ≤ i ≤ n, the ith injection function ea,i : Xi → X1 × X2 × … × Xn is an embedding. 
 
 Proof.  Let 1 ≤ i ≤ n.  Clearly, ea,i : Xi → X1 × X2 × … × Xn is injective.  Also ea,i is 
continuous by Theorem II.8.  It remains to show that ea,i : Xi → ea,i(Xi) is open.   
 

To begin, recall that the ith projection function πi : X1 × X2 × … × Xn → Xi satisfies 
the equation πiºea,i = idXi by Theorem I.30.a.  Also πi is continuous by Theorem II.8.  Now 
let V be an open subset of Xi.  We must prove that ea,i(V) is a relatively open subset of 
ea,i(Xi).  Since πi

–1(V) is an open subset of X1 × X2 × … × Xn, then it will suffice to prove 
that ea,i(V) = πi

–1(V) ∩ ea,i(Xi).  To accomplish this, we first prove the inclusion ea,i(V) ⊂  
πi

–1(V) ∩ ea,i(Xi).  Since πi(ea,i(V)) = V, then ea,i(V) ⊂ πi
–1(V); also since V ⊂ X, then ea,i(V)   

⊂ ea,i(X).  Hence, ea,i(V) ⊂ πi
–1(V) ∩ ea,i(Xi).  Now we prove the opposite inclusion:  

πi
–1(V) ∩ ea,i(Xi) ⊂ ea,i(V).  To this end, assume y ∈ πi

–1(V) ∩ ea,i(Xi).  Since y ∈ ea,i(Xi), 
then there is a point x ∈ Xi such that y = ea,i(x).  Since y ∈ πi

–1(V), then πi(y) ∈ V.  Thus,  
x = πi(ea,i(x)) = πi(y) ∈ V.  Therefore, y = ea,i(x) ∈ ea,i(V).  This proves πi

–1(V) ∩ ea,i(Xi) ⊂ 
ea,i(V).  We conclude that ea,i(V) = πi

–1(V) ∩ ea,i(Xi).  Since πi
–1(V) is an open subset of  

X1 × X2 × … × Xn, it follows that ea,i(V) is a relatively open subset of ea,i(X).  So ea,i : Xi → 
ea,i(Xi) is open.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

94 

 

 


