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II. Continuity

A.  Continuous Functions

Problem II.1+.  Prove that if f, g : X → Y are maps and Y is Hausdorff, then
{ x ∈ X : f(x) = g(x) } is a closed subset of X.

Problem II.2+. a)  Let f1 : X → Y1 and f2 : X → Y2 be functions.  Define the
function ( f1, f2 ) : X → Y1 × Y2 by ( f1, f2 )(x) = ( f1(x), f2(x) ).  Prove that f1 and f2 are
continuous if and only if ( f1, f2 ) is continuous.
b)  Let f1 : X1 → Y1 and f2 : X2 → Y2 be functions.  Define the function f1 × f2 : X1 × X2 →
Y1 × Y2 by ( f1 × f2 )(x1,x2) = ( f1(x1), f2(x2) ).  Prove that f1 and f2 are continuous if and only
if f1 × f2 is continuous.

Problem II.3+.  We regard a function f : X → Y as a subset of X × Y by identifying
f with its "graph" { (x,f(x)) ∈ X × Y : x ∈ X }.

a)  Prove that if f : X → Y is a map and Y is a Hausdorff space, the f is a closed subset
of X × Y.

b)  Find a T1 space X such that idX is not a closed subset of X × X.

c)  Find a discontinuous function f : R → R such that f is a closed subset of R 2.

Problem II.4+.  Let f : X → Y be an onto map between topological spaces.  Either
prove or provide a counterexample to each of the following assertions.
a)  If X is second countable, then so is Y. e)  If X is T1, then so is Y.

b)  If X is first countable, then so is Y. f)  If X is Hausdorff, then so is Y.
c)  If X is separable, then so is Y. g)  If X is regular, then so is Y.
d)  If X is metrizable, then so is Y. h)  If X is normal, then so is Y.

Problem II.5+.  Let f : X → Y be an open onto map between topological spaces.
Either prove or provide a counterexample to each of assertions a) through h) in Problem
II.4+.

Hint.  Let Y denote the three-point space { 0, 1/2, 1 } with the topology
{ ∅ } ∪ { U ⊂ Y : 1/2 ∈ U }, and consider the function f : [ 0, 1 ] → Y satisfying f(0) = 0,
f(1) = 1 and f(x) = 1/2 for 0 < x < 1.
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Problem II.6+.  Let f : X → Y be an closed onto map between topological spaces.
Either prove or provide a counterexample to each of assertions a) through h) in Problem
II.4+.

Hint.  Consider the following two functions.

Recall N = { 1, 2, 3, ... }.  Let X1 denote the subspace
( R × { 0 } ) ∪ { ( x, 1/y ) : x, y ∈ N } of R2, let Y1 denote the space defined in Example I.8,
and define the function f1 : X1 → Y1 by f1( x, 1/y ) = ( x, y ) and f1( R × { 0 } ) = { ∞ }.

Let X2 be a Hausdorff regular space which is not normal.  (Such a space occurs
among the examples in Chapter I.)  Let A and B be disjoint closed subsets of X2 which
don't have disjoint neighborhoods.  Let α and β be distinct points not in X2.  Set Y2 =
( X2 – ( A ∪ B ) ) ∪ { α, β }.  Define f2 : X2 → Y2 by f2(x) = x for x ∈ X2 – ( A ∪ B ), f2(A) =
α and f2(B) = β.  Set T = { U ⊂ Y2 : f2

–1(U) is an open subset of X2 }.  Verify that T is a
topology on Y2.

Problem II.7+.  Let f : R →  R be a monotone increasing function (i.e, x ≤ y
implies f(x) ≤ f(y) for all x, y ∈  R).  Prove that the set of points of R at which f is
discontinuous is countable.

Problem II.8+.  Prove that every continuous function f : Ω → R  is eventually
constant (i.e., there is an x ∈ Ω such that f(y) = f(x) for every y ∈ [x,∞)).

B. Homeomorphisms and Embeddings

Problem II.9+.  Let f : X → Y be a function.  Identify f with its graph in X × Y as in
Problem II.3+.
a)  Prove that f : X → Y is continuous if and only if the function h : X → f defined by h(x)
= ( x, f(x) ) is a homeomorphism.
b)  Suppose Y is a normed vector space.  Prove that f : X → Y is continuous if and only
if there is a homeomorphism F : X × Y → X × Y such that F(x,0) = ( x, f(x) ).

Problem II.10+.  In this problem, we introduce two special types of
homeomorphisms of Rn: reflections in planes and inversions in spheres.  Reflections
and inversions have great geometric significance: reflections in planes generate the
isometry group of Rn with the Euclidean metric (the standard model of Euclidean
geometry), and inversions in spheres that preserve Sn–1 generate the isometry group of
the Poincaré ball model of hyperbolic geometry.  (An isometry of a metric space ( X, ρ )



Additional Problems – 13

is a bijection f : X → X which preserves distance in the sense that ρ(f(x),f(x´)) = ρ(x,x´)
for all x, x´ ∈ X.)  Furthermore, inversions yield a very efficient solution to Problem II.7.

To define reflection and inversion, first recall that the standard inner product  on
Rn is defined by

€ 

〈x,y

€ 

〉  = 

€ 

xiyii=1

n
∑ ,

and that the Euclidean norm on Rn is defined by

|| x || = (

€ 

〈x,x

€ 

〉 )1/2,

for x = ( x1, x2, … , xn ) and y = ( y1, y2, … , yn ) ∈ Rn.

Let c, u ∈ Rn such that || u || = 1.  Define the hyperplane through c orthogonal to
u to be the set

P(c,u)  =  { x ∈ Rn : 

€ 

〈x – c,u

€ 

〉  = 0 }.

Define the half-spaces determined by P(c,u) to be the sets

{ x ∈ Rn : 

€ 

〈x – c,u

€ 

〉  > 0 }  and  { x ∈ Rn : 

€ 

〈x – c,u

€ 

〉  < 0 }.

Define the reflection in P(c,u) to be the map Rc,u : Rn → Rn determined by the formula

Rc,u(x)  =  x – 2

€ 

〈x – c,u

€ 

〉u

for x ∈ Rn.

Let c ∈ Rn and let r > 0.  Define the sphere centered at c of radius r to be the set

S(c,r)  =  { x ∈ Rn : || x – c || = r }.

Define the ball centered at c of radius r to be the set

B(c,r)  =  { x ∈ Rn : || x – c || ≤ r }.

Define the interior and exterior of B(c,r) to be the sets

{ x ∈ Rn : || x – c || < r }  and  { x ∈ Rn : || x – c || > r },

respectively.  Define the inversion in S(c,r) to be the map Ic,r : Rn – { c } → Rn – { c }
determined by the formula

Ic,r(x)  =  

€ 

r2

||  x –  c ||2
 

 
 

 

 
 ( x – c ) + c

for x ∈ Rn – { c }.
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Two hyperplanes P(c,u) and P(d,v) are orthogonal if 

€ 

〈u,v

€ 

〉  = 0.  A hyperplane
P(c,u) and a sphere S(d,r) are orthogonal if d ∈ P(c,u).  Two spheres S(c,r) and S(d,s)
are orthogonal if S(c,r) ∩ S(d,s) ≠ ∅ and 

€ 

〈x – c,x – d

€ 

〉  = 0 for every x ∈ S(c,r) ∩ S(d,s).

Let c, u ∈ Rn such that || u || = 1.

a)  Prove that Rc,u°Rc,u =  idRn, and conclude that Rc,u : Rn →  Rn is a homeomorphisms.

b)  Prove that  { x ∈ Rn : Rc,u(x) = x }  =  P(c,u).

c)  Prove that Rc,u maps:
i)  hyperplanes to hyperplanes,
ii)  half-spaces to half-spaces,
iii)  spheres of radius r to spheres of radius r, and
iv)  balls of radius r to balls of radius r.

d)  Prove that
i)  Rc,u maps a hyperplane to itself if and only if the hyperplane either coincides with

P(c,u) or is orthogonal to P(c,u), and
ii)  Rc,u maps a sphere to itself if and only if the sphere is orthogonal to P(c,u).

Let c ∈ Rn and let r > 0.

e)  Prove that Ic,r°Ic,r = idRn – { c }, and conclude that Ic,r : Rn – { c } → Rn – { c } is a
homeomorphism.

f)  Prove that  { x ∈ Rn – { c } : Ic,r(x) = x }  =  S(c,r).

g)  Prove that Ic,r maps:
i)  a hyperplane containing c to itself, 
ii)  a halfspace containing c in its boundary to itself,
iii)  a hyperplane missing c to a sphere containing c and vice versa,
iv)  a half-space missing c to the interior of a ball containing c in its boundary and vice

versa,
v)  a sphere missing c to a sphere missing c,
vi)  a ball missing c to a ball missing c, and
vii)  the interior of a ball containing c in its interior to the exterior of a ball containing c

in its interior and vice versa.
h)  Prove that:
 i)  Ic,r maps a hyperplane to itself if and only if the hyperplane is orthogonal to S(c,r),
and

ii)  Ic,r maps a sphere to itself if and only if the sphere either coincides with S(c,r) or is
orthogonal to S(c,r).
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i) Let n = ( 0, 0, … , 0, 1 ) ∈  Sn–1.  Prove there is an r > 0 such that In,r maps:
i)  Rn – 1 × { 0 } onto Sn–1 – { n }, In,r,
  ii)  the half-space { x ∈ Rn : 

€ 

〈x,n

€ 

〉  > 0 } onto the interior of the ball Bn = B(0,1), and
iii)  the half-space { x ∈ Rn : 

€ 

〈x,n

€ 

〉  < 0 } onto the exterior of the ball Bn = B(0,1).

The following six problems develop elementary properties of balls and spheres.

Problem II.9+.  Invariance of domain  is a fundamental topological property of Rn

which asserts that if U and V are homeomorphic subsets of Rn and U is an open subset
of Rn, then so is V.  A proof of invariance of domain requires techniques not developed
in these notes.  Assume invariance of domain, and prove the following two propositions.

a)  If h : Bn → Bn is a homeomorphism, then h(Bn – Sn–1) = Bn – Sn–1 and h(Sn–1) = Sn–1.

b)  If C is an n–ball and g : Bn → C and h : Bn → C are homeomorphisms, then
g(Bn – Sn–1) = h(Bn – Sn–1) and g(Sn–1) = h(Sn–1).

Definition.  If C is an n–ball and h : Bn → C is a homeomorphism, then we call
the subset h(Sn–1) the boundary of C and denote it by ∂C, and we call the subset
h(Bn – Sn–1) = C – ∂C the interior of C and denote it by Int(C).  The result of Problem
II.9+.b shows that the boundary and interior of C are independent of the
homeomorphism h.

Problem II.10+.  Prove that if C and D are n–balls, h : ∂C → ∂D is a
homeomorphism, x ∈ Int(C) and y ∈ Int(D), then there is a homeomorphism H : C → D
such that H|∂C = h and H(x) = y.  Furthermore, prove that if E is an n–ball in int(C) that
contains x and U is a neighborhood of y in D, then the homeomorphism H can be
chosen so that H(E) ⊂ U.

Problem II.11+.  Prove that if a space X is the union of two closed subsets C and
D that are n–balls such that C ∩ D = ∂C = ∂D, then X is an n–sphere.

Definition.  Let C be an n–ball.  If E is an (n–1)–ball in ∂C with the property that
there is an (n–1)–ball F in ∂C such that E ∪ F = ∂C and E ∩ F = ∂E = ∂F, then we call E
a face of C, and we call E and F complementary faces of C.  We remark that for n ≥ 4,
every n–ball C has the property that its boundary ∂C contains an (n–1)–ball E which is
not a face of C because cl(∂C – E) is not an (n–1)–ball.

Problem II.12+.  Suppose that C and D are n–balls, E is a face of C and F is a
face of D.  Prove that any homeomorphism from E to F extends to a homeomorphism
from C to D.
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Problem II.13+.  Prove that if a space X is the union of two closed subsets C and
D that are n–balls such that C ∩ D = F is a face of both C and D, then X is an n–ball and
∂X = (∂C – Int(F)) ∪ (∂D – Int(F)).

Problem II.14+.  Let C be an n–ball.
a)  Prove that C × [ 0, 1 ] is an (n+1)–ball such that ∂(C × [ 0, 1 ]) =
( C × { 0, 1 }) ∪ ( (∂C) × [ 0, 1 ] ),  and  C × { 0 } and C × { 1 } are faces of C × [ 0, 1 ].

b)  Let f : C → [ 0, ∞ ) be a map such that f–1(0) = ∂C, and let P =
{ (x,y) ∈ C × [ 0, ∞ ) : 0 ≤ y ≤ f(x) }. Prove that P is an (n+1)–ball and C × { 0 } is a face of
P.

The following problem contributes to a rigorous foundation for the solutions of
Problems II.12 through II.15.  The homeomorphisms sought in those problems can be
constructed as compositions of simpler homeomorphisms some of which are of the type
of produced in this problem.

Problem II.15+.  Suppose that the space X is the union of two closed subsets C
and D that are n–balls and C ∩ D = F is a face of both C and D.  (Then X is an n–ball.)
Also suppose that E is an (n–1)–ball in int(F) and U is a non-empty relatively open
subset of F.  Prove there is a homeomorphism h : X →  X such that h(C) = C, h(D) = D
(and, therefore, h(F) = F), h(D) ⊂ U and h = id on ∂X.

   C

                  E             h                      U

                                F

          X
    D
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Problem II.16+.  Any topological space that is homeomorphic to S1 × B2 is called
a solid torus.  Prove that a topological space X is a 3-sphere if and only if X is the union
of two closes subsets V and W that are solid tori and there are homeomorphisms
g : S1 × B2 → V and h : S1 × B2 → W such that V ∩ W = g(S1 × S1) = h(S1 × S1) and g(x,y)
= h(y,x) for (x,y) ∈ S1 × S1.

The next two problems generalize the result of Problem II.8.

Problem II.17+.  Let ( V, || || ) be a normed vector space, and set B =
{ x ∈ V : ||x|| ≤ 1 }.

a)  Prove that every non-empty open convex subset of V is homeomorphic to int(B).
b)  Prove that every convex subset of V with non-empty interior is homeomorphic to a
set Y satisfying int(B) ⊂ Y ⊂ B.

Problem II.18+. a)  Prove that every non-empty closed bounded convex subset
of Rn that is not a single point is homeomorphic to Bk for some k such that 1 ≤ k ≤ n.

b)  Prove that every non-empty convex subset of Rn  that is not a single point is
homeomorphic to a set Y satisfying int(Bk) ⊂ Y ⊂ Bk for some k such that 1 ≤ k ≤ n.

The next problem generalizes Problem II.9.

Problem II.19+.  Recall that a point x in a topological space X is isolated if { x } is
an open subset of X.  Prove that every countable metric space with no isolated points is
homeomorphic to Q.

Suggestion.  For the purpose of proving this result, we do not recommend using
Q as a model of a countable metric space with no isolated points.  Rather, we
recommend using a space we call   

€ 

 0, 1 { }fin
N  because this space is structured in a way

that makes it easier to describe a homeomorphism from this space to an arbitrary
countable metric space without isolated points.  The structure that makes   

€ 

 0, 1 { }fin
N  a

convenient model for countable metric spaces without isolated points is not immediately
apparent in Q.  Clearly, if we prove that every countable metric space with no isolated
points is homeomorphic to   

€ 

 0, 1 { }fin
N , then it will follow that every countable metric space

with no isolated points is homeomorphic to Q.  (Why?)

To describe   

€ 

 0, 1 { }fin
N , first consider the set { 0, 1 } N consisting of all functions

from N to { 0, 1 }.  (In other words, { 0, 1 } N is the set of all sequences of 0’s and 1’s.)
Prove that a metric ρ on { 0, 1 } N is defined by the equation
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ρ(x,y)  =  sup 
  

€ 

 x(n) −  y(n)
2n  :  n ∈  N  

 
 

 
 
 

for x, y ∈ { 0, 1 } N.  Define    

€ 

 0, 1 { }fin
N   =  { x ∈ { 0, 1 } N : x–1(1) is a finite set }.  Prove that

  

€ 

 0, 1 { }fin
N  is a countable dense subset of { 0, 1 }  N.  Thus, as a subspace of { 0, 1 } N,

  

€ 

 0, 1 { }fin
N  is a countable metric space.  Prove that   

€ 

 0, 1 { }fin
N  has no isolated points.

Now, to solve Problem II.19+, you must prove that that every countable metric space
with no isolated points is homeomorphic to   

€ 

 0, 1 { }fin
N .

C. Continuous Functions on Normal Spaces

Problem II.20+.  A space Y is an absolute retract if whenever e : Y → X is an
embedding of Y onto a closed subset of a normal space X, then there is a map
r : X → Y such that rºe = idY.

a)  Prove that every absolute extensor is an absolute retract.
The converse of this assertion is also true, and the rest of this problem is devoted to
proving it.
Suppose A is a closed subset of a normal space X, Y is a normal space and f : A → Y is
a map.  Assume X and Y are disjoint sets, and let X ∪ Y denote their union.  (If X and Y
are not disjoint, replace X by X × { 0 } and Y by Y × { 1 }.)  Let TX and TY denote the
topologies on X and Y, respectively.  Let

TX ∪ Y  =  { U ⊂ X ∪ Y : U ∩ X ∈ TX and U ∩ Y ∈ TY }

and observe that TX ∪ Y is a topology on X ∪ Y such that the inclusions of X and Y into
X ∪ Y are embeddings onto subsets of X ∪ Y that are both open and closed.  We call
TX ∪ Y the disjoint union topology on X ∪ Y.  Next let X ∪f Y denote the following
collection of subsets of X ∪ Y:

X ∪f Y  =  { { x } : x ∈ X – A } ∪ { { y } ∪ f–1( { y } ) : y ∈ Y }.

Observe that X ∪f Y is a partition of X ∪ Y; in other words, distinct elements of X ∪f Y
are disjoint and non-empty and the union of the elements of X ∪f Y is X ∪ Y.  It follows
that there is a unique onto function q : X ∪ Y → X ∪f Y is defined by the condition that
z ∈ q(z) for every z ∈ X ∪ Y.  Let

Tf  =  { U ⊂ X ∪f Y : q–1(U) ∈ TX ∪ Y }

and observe that Tf is a topology on X ∪f Y such that q : X ∪ Y → X ∪f Y is continuous
and q | Y : Y → X ∪f Y is an embedding of Y onto a closed subset of X ∪f Y.  X ∪f Y with
the topology Tf is called an adjunction space, Tf is called the quotient topology on
X ∪f Y, and q : X ∪ Y → X ∪f Y is called the quotient map.
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b)  Prove that the adjunction space X ∪f Y is normal.

Use the concept of adjunction space to complete part c) of this problem.

c)  Prove that if Y is a normal absolute retract, then Y is an absolute extensor.

Problem II.21+.  A space Y is an absolute neighborhood extensor (for the class
of all normal spaces) if for every normal space X and every map f : A → Y where A is a
closed subset of X, there is a map g : U → Y where U is a neighborhood of A in X and
g | A = f.

X
∪

            U              g              Y
∪          f

A

Clearly, every absolute extensor is an absolute neighborhood extensor.
a)  Prove that every open subset of an absolute neighborhood extensor is an absolute
neighborhood extensor.
b)  Prove that every retract of an absolute neighborhood extensor is an absolute
neighborhood extensor.

c)  Use parts a) and b) of this problem to prove that Sn is an absolute neighborhood
extensor for every n ≥ 0.

Problem II.22+.  A map of the form h : X × [ 0, 1 ] → Y is called a homotopy.  If
f : X → Y and g : X → Y are maps and h : X × [ 0, 1 ] → Y is a homotopy such that h(x,0)
= f(x) and h(x,1) = g(x) for every x ∈ X, then we say that f and g are homotopic.  Prove
that if Y is an absolute neighborhood extensor, then Y has the following Borsuk
homotopy extension property: if X is a space such that X × [ 0, 1 ] is normal, A is a
closed subset of X and f : ( A × [ 0, 1 ] ) ∪ ( X × { 0 } ) → Y is a map, then f extends to a
homotopy g : X × [ 0, 1 ] → Y (i.e., g | ( A × [ 0, 1 ] ) ∪ ( X × { 0 } ) = f).

The concepts of absolute extensor, absolute retract, absolute neighborhood
extensor and the Borsuk homotopy extension property belong to an area of topology
called the theory of retracts which was developed by the Polish topologist Karol Borsuk
in the 1930’s.  The class of absolute neighborhood extensors is broader than either the
class of topological manifolds or the class polyhedra, but the notion of absolute
neighborhood extensor captures some essential topological aspects of manifolds and
polyhedra and has played a very useful role in the study of these objects.



Additional Problems – 20

A space X is called a binormal space if it satisfies the condition that X × [ 0, 1 ] is
normal.  The term was coined by the topologist C. H. Dowker in 1951.  However, the
use of binormality as a hypothesis apparently goes back to Borsuk’s study of the
homotopy extension property in the 1930’s.  We know that the product of two normal
spaces need not be normal.  (Recall Rbad × Rbad.)   Hence, it is conceivable that a space
X might be normal but not binormal.  Indeed, an example of a normal space that is not
binormal was created by the renowned topologist M. E. Rudin in 1971.  Hence, the
hypothesis that X is binormal in Problem II.22+  apparently can’t be replaced by the
weaker assumption that X is normal.

Problem II.23+.  A space X is contractible if there is a map f : X × [ 0, 1 ] → X
such that f(x,0) = x for every x ∈ X and f maps X × { 1 } to a one-point subset of X. Thus,
X is contractible if and only if idx is homotopic to a constant map.  Observe that Bn and
Rn are contractible.  (Sn is not contractible, but this is not easy to prove.)  Suppose X is a
space such that X × [ 0, 1 ] is normal.  Prove that if X is an absolute extensor if and only
if X is a contractible absolute neighborhood extensor.

Problem II.24+.  A space X is locally contractible if for every x ∈ X and every
neighborhood U of x in X, there is a neighborhood V of x in U and a homotopy
f : V × [ 0, 1 ] → U such that f(x,0) = x for every x ∈ V and f maps V × { 1 } to a one-point
subset of U.  Prove that every absolute neighborhood extensor is locally contractible.

One might be tempted to believe the converse of this result: every locally
contractible space is an absolute neighborhood extensor.  However, this converse is
false.  Borsuk provided an example of a locally contractible metric space that is not an
absolute neighborhood extensor.  One surprising feature of Borsuk’s example is that it
is infinite dimensional.  Furthermore, infinite dimensionality is an essential feature of the
example.  Every such example must be infinite dimensional.  In other words, once an
adequate definition of topological dimension is formulated, it can be proved that every
finite dimensional locally contractible metric space is an absolute neighborhood
extensor.

Problem II.25+.  Suppose the space X is the union of two closed subsets Y and
Z such that
i)  Y, Z and Y ∩ Z are absolute neighborhood extensors, and

ii)  there is a map λ : X → [ 0, 1] such that λ–1( [ 0, 1/2 ] ) = Y and λ–1( [ 1/2, 1 ] ) = Z
(and, hence, λ–1( { 1/2 } ) = Y ∩ Z).

a)  Prove that X is an absolute neighborhood retract.
b)  Also prove that if X is a metric space, then condition ii) is automatically satisfied and
superfluous.
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Since balls and spheres are absolute neighborhood extensors, then this result
allows us to construct absolute neighborhood extensors by taking successive unions of
balls in which each ball meets the previously added balls in a subset that is a ball or a
sphere.  Since straight line segments, triangles and 3-simplexes and higher-dimensional
simplices are all homeomorphic to balls of various dimensions, then all polyhedra
constructed of such pieces are absolute neighborhood retracts.
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