Introductory Topology Additional Problems – 1

I. Topological Spaces

B. Bases

Problem I.1+. Prove that in a second countable space, every basis contains a countable basis.

Problem I.2+. Prove that if (X, \mathscr{T}) is a second countable space, then $\mathscr{T} \leq \mathbb{R}$ (i.e., there is an injective function from \mathscr{T} to \mathbb{R}).

Problem I.3+. This problem presents a variation on Example I.8. Recall that \mathbb{N} denotes the set of natural numbers or positive integers and \mathbb{Q} denotes the set of all rational numbers. Then $\mathbb{Q}^{\mathbb{N}}$ denotes the set of all functions from \mathbb{N} to \mathbb{Q} . We now define a topology on $\mathbb{Q}^{\mathbb{N}}$. For each $f \in \mathbb{Q}^{\mathbb{N}}$ and each function $\varepsilon : \mathbb{N} \rightarrow (0, \infty)$, define

$$N(f,\epsilon) = \{ g \in \mathbb{Q}^{\mathbb{N}} : | f(n) - g(n) | < \epsilon(n) \text{ for every } n \in \mathbb{N} \}.$$

a) Prove that { $N(f,\epsilon) : f \in \mathbb{Q}^{\mathbb{N}}$ and $\epsilon \in (0, \infty)^{\mathbb{N}}$ } is a basis for a topology on $\mathbb{Q}^{\mathbb{N}}$.

A function $f \in \mathbb{Q}^{\mathbb{N}}$ is said to be *eventually zero* if there is an $n \in \mathbb{N}$ such that f(k) = 0 for all k > n. Let E denote the subspace of $\mathbb{Q}^{\mathbb{N}}$ consisting of all eventually zero elements of $\mathbb{Q}^{\mathbb{N}}$.

- **b)** Prove that E is a countable set.
- c) Prove that for every $f \in E$, E is not first countable at f.
- d) Prove that E is Hausdorff.
- e) Prove the E is regular.

E is, in fact, normal. This follows from a theorem in a later chapter which implies that all countable regular spaces are normal.

C. Linearly Ordered Spaces

Problem I.4+.

- a) Is every separable linearly ordered space necessarily first countable?
- b) Is every separable linearly ordered space necessarily second countable?

Problem I.5+. a) Problem I.4 asserts that if (X, <) is a complete linearly ordered set, then it has the property that every decreasing sequence $I_1 \supset I_2 \supset I_3 \supset ...$ of closed bounded intervals in X has non-empty intersection. Is the converse to this assertion true? In other words, if (X, <) is a linearly ordered set with the property that every decreasing sequence of closed bounded intervals in X has non-empty intersection, then must (X, <) be complete?

b) Prove that if (X, <) is a separable linearly ordered set with the property that every decreasing sequence of closed bounded intervals in X has non-empty intersection, then (X, <) is complete.

If \mathscr{C} is a collection of sets with the property that for all A and B $\in \mathscr{C}$, either A \subset B or B \subset A, then we call \mathscr{C} a *nested* collection.

c) Generalize Problem I.4 by proving that if (X, <) is a complete linearly ordered set, then it has the property that every nested collection of non-empty bounded closed intervals in X has non-empty intersection.

d) Is the converse to the assertion in part c) true? In other words, if (X, <) is a linearly ordered set with the property that every nested collection of non-empty bounded closed intervals in X has non-empty intersection, then must (X, <) be complete?

A collection \mathscr{C} of sets is said to have the *finite intersection property* if every non-empty finite subcollection of \mathscr{C} has non-empty intersection. Thus \mathscr{C} has the finite intersection property if and only if whenever $C_1, C_2, \ldots, C_n \in \mathscr{C}$ for some positive integer n, then $C_1 \cap C_2 \cap \cdots \cap C_n \neq \emptyset$.

e) Prove that a linearly ordered set (X, <) is complete if and only if it has the property that every collection of bounded closed intervals in X with the finite intersection property has non-empty intersection.

f) Let (X, <) be a linearly ordered set with the order topology. Prove that if (X, <) is complete, then every collection of bounded closed subsets of X with the finite intersection property has non-empty intersection.

D. Metric Spaces

Problem I.6+. Prove that if **x** and $\mathbf{y} \in \mathbb{R}^n$, then $\rho_2(\mathbf{x}, \mathbf{y}) \leq \rho_1(\mathbf{x}, \mathbf{y}) \leq \sqrt{n} \rho_2(\mathbf{x}, \mathbf{y})$.

Problem I.7+. On the set [0, 1]^{\mathbb{N}} of all functions from \mathbb{N} to [0, 1], we define three metrics:

i)
$$\sigma_1(\mathbf{x}, \mathbf{y}) = \sum_{i \in \mathbb{N}} 2^{-i} | \mathbf{x}(i) - \mathbf{y}(i) |.$$

ii) $\sigma_2(\mathbf{x}, \mathbf{y}) = \left(\sum_{i \in \mathbb{N}} 2^{-i} (\mathbf{x}(i) - \mathbf{y}(i))^2\right)^{\frac{1}{2}}.$ (Here $\mathbf{x}, \mathbf{y} \in [0, 1]^{\mathbb{N}}.$)

iii) $\sigma_{\infty}(\mathbf{x},\mathbf{y}) = \sup \{ 2^{-i} \mid \mathbf{x}(i) - \mathbf{y}(i) \mid : i \in \mathbb{N} \}.$

a) Verify that these three formulas define metrics on $[0, 1]^{\mathbb{N}}$. (Observe that the factors 2^{-i} occuring in these formulas prevent these metrics from arising from norms in the obvious way that the taxicab, Euclidean and supremum metrics on \mathbb{R}^n do.)

b) Prove that these three metrics on $[0, 1]^{\mathbb{N}}$ are equivalent.

The space $[0, 1]^{\mathbb{N}}$ with the topology induced by any one of these three equivalent metrics is called the *Hilbert cube*.

c) Is the Hilbert cube separable?

Problem I.8+. Does every norm on \mathbb{R}^n induce the standard topology?

Problem I.9+. This problem outlines a way to decide whether \mathbb{R}_{bad} is metrizable without appealing to Theorem I.13. To begin assume there is a metric ρ on \mathbb{R}_{bad} which induces the closed-open interval topology; and for $x \in \mathbb{R}_{bad}$ and $\varepsilon > 0$, let $N(x,\varepsilon)$ denote the ε -neighborhood of x determined by the metric ρ . For m, $n \in \mathbb{N}$, define

 $S_{\text{m,n}} \ = \ \{ \ x \in \mathbb{R}_{\text{bad}} : [x,x+(1/m)) \subset N(x,1/n) \subset [x,\infty) \ \}.$

Now complete steps a), b) and c).

- a) Prove that the collection of sets { $S_{m,n}$: m, $n \in \mathbb{N}$ } covers \mathbb{R} ; i.e., every element of \mathbb{R} belongs to $S_{m,n}$ for some m, $n \in \mathbb{N}$.
- **b)** Prove there are elements m, $n \in \mathbb{N}$ such that the set $S_{m,n}$ is uncountable.
- b) Assume $S_{m,n}$ is uncountable. Prove that there are elements x, $y \in S_{m,n}$ such that x < y < x+(1/m).
- c) Derive a contradiction.

Problem I.10+. There is a way to prove that Ω is not metrizable using properties of compactness introduced in a later chapter. (Ω can be shown to be sequentially compact but not compact. On the other hand, all sequentially compact metric spaces are compact.) This problem outlines a proof that Ω is not metrizable which does not rely on compactness properties.

a) Prove that if A is an uncountable subset of Ω , then there is an $x \in \Omega$ such that $(-\infty, x) \neq \emptyset$ and $(y, x) \cap A \neq \emptyset$ for every $y \in (-\infty, x)$.

b) Assume there is a metric ρ on Ω which induces the order topology; and for $x \in \Omega$ and $\varepsilon > 0$, let $N(x,\varepsilon)$ denote the ε -neighborhood of x determined by the metric ρ . For each $n \in \mathbb{N}$, define $S_n = \{ x \in \Omega : N(x,1/n) \subset (-\infty, x] \}$. Prove there is an $n \in \mathbb{N}$ such that S_n is uncountable. Then use part a) of this problem to obtain a contradiction.

Problem I.11+. Let (X, ρ) be a metric space. For $\varepsilon > 0$, a subset S of X is ε -separated if $\rho(x,y) \ge \varepsilon$ for all distinct points x, $y \in S$.

a) Prove that a metric space is separable if and only if for every $\varepsilon > 0$, every ε -separated subset of X is countable.

b) Prove that a metric space is separable if and only if every pairwise disjoint collection of non-empty open subsets of X is countable.

Remark. Additional Problem I.11+. b) becomes false if the "metric" hypothesis is removed. Indeed, Additional Problem I.17+ outlines the construction of a non-separable space X in which every pairwise disjoint collection of open subsets of X is countable. Of course, this space is not metrizable.

Problem I.12+. Let X be an infinite set and let B(X) denote the metric space described in Example I.15.

a) Prove there is a pairwise disjoint collection \mathscr{U} of non-empty open subsets of B(X) such that $\mathscr{U} \approx \mathscr{P}(X)$.

b) Assume $\mathbb{N} \times X \approx X$. (This is not hard to prove for $X = \mathbb{N}$ or \mathbb{R} and can be proved in general if X well-ordered. If we assume Zermelo's Well Ordering Principle, then it follows, of course, that X is well-ordered). Prove $B(X) \approx \mathscr{P}(X)$. Conclude that if D is any dense subset of B(X), then $D \approx B(X)$.

E. Closure and Convergence Properties

Problem I.13+. Prove that if A is an uncountable subset of a second countable space X, then there is a closed subset B of X such that $A \cap B$ is uncountable and for every $x \in B$, every neighborhood of x intersects $A \cap B$ in an uncountable set.

Problem I.14+. Let X be a topological space. The *closure operator* $A \mapsto cl(A)$ and the *complement operator* $A \mapsto (X - A)$ are two functions from the collection $\mathscr{P}(X)$ of all subsets of X to itself. They are known as the *Kuratowski operators* on $\mathscr{P}(X)$.

a) Given a subset A of X, find the maximum number of distinct subsets of X that can theoretically be formed from A by repeated application of the Kuratowski operators.

b) Give an example of a subset A of a topological space X for which this theoretical maximum is achieved.

F. Separation Properties

Problem I.15+. Is every linearly ordered space **a)** T₁, **b)** Hausdorff, **c)** regular, **d)** normal?

Problem I.16+. a) Prove that if X is a second countable T_1 space, then $X \leq \mathbb{R}$.

b) Prove that if X is a separable Hausdorff space, then $X \leq \mathscr{P}(\mathbb{R})$.

Remark. The estimate in Additional Problem I.16+. b) can't be improved. In fact, Additional Problem I.17+. e) provides an example of a separable Hausdorff space X such that $X \approx \mathscr{P}(\mathbb{R})$.

Problem I.17+. a) Prove that if X is a separable regular space, then X has a basis \mathscr{B} such that $\mathscr{B} \leq \mathbb{R}$.

b) Here we outline a construction which (when combined with Additional Problem I.18+) shows that the "regular" hypothesis in part a) of this problem can't be replaced by "Hausdorff". Suppose (X, \mathscr{T}) is a separable Hausdorff space in which every non-empty open subset is uncountable, and suppose D is a countable dense subset of X. Set $\mathscr{B}_* = \{\{x\} \cup (U \cap D) : x \in U \in \mathscr{T}\}.$

i) Prove \mathscr{B}_* is a basis for a topology on X, and let \mathscr{T}_* denote this topology.

Prove that (X, \mathscr{T}_*) is **ii)** Hausdorff but not regular, and **iii)** separable.

iv) Prove that if \mathscr{B}_{**} is any basis for \mathscr{T}_* , then $\mathscr{B}_{**} \succeq X$.

Now suppose that (X, \mathscr{T}) is a separable Hausdorff space satisfying $X \approx \mathscr{P}(\mathbb{R})$ in which every non-empty open subset is uncountable. (Such a space is constructed in Additional Problem I.18+. See the remark following Additional Problem I.18+.) Then (X, \mathscr{T}_*) is a separable Hausdorff space with the property that if \mathscr{B}_{**} is any basis for \mathscr{T}_* , then $\mathscr{B}_{**} \succeq \mathscr{P}(\mathbb{R})$. We conclude that the "regular" hypothesis in part a) of this problem can't be replaced by "Hausdorff".

Remark. Again suppose that (X, \mathscr{T}) is a separable Hausdorff space satisfying $X \approx \mathscr{P}(\mathbb{R})$. Since $\mathscr{T} \subset \mathscr{P}(X)$, it is possible in principle that $\mathscr{T} \approx \mathscr{P}(X) \approx \mathscr{P}(\mathscr{P}(\mathbb{R}))$ and, further, that if \mathscr{B} is any basis for \mathscr{T} , then $\mathscr{B} \approx \mathscr{P}(X) \approx \mathscr{P}(\mathscr{P}(\mathbb{R}))$. Then \mathscr{T} would in some sense be a "largest possible topology" on a separable Hausdorff space. The construction just carried out in Additional Problem I.17+. b) does not provide such a topology because the basis \mathscr{B}_* constructed there satisfies $\mathscr{B}_* \approx X \times \mathscr{P}(D) \approx \mathscr{P}(\mathbb{R})$. Additional Problem I.19+ fills this gap by outlining the construction of a separable

Hausdorff space with a "largest possible topology".

Problem I.18+. Let X be a set. Let $\{0, 1\}^{X}$ denote the set of all functions from X to $\{0, 1\}$. For every $f \in \{0, 1\}^{X}$ and every finite subset A of X, set

 $N(f,A) = \{ g \in \{ 0, 1 \}^{X} : g|A = f|A \}.$

Set $\mathscr{B} = \{ N(f,A) : f \in \{0, 1\}^X \text{ and } A \text{ is a finite subset of } X \}.$

a) Prove \mathscr{B} is a basis for a topology on $\{0, 1\}^{X}$.

Endow { 0, 1 }^x with this topology.

b) Prove that $\{0, 1\}^{x}$ is a regular Hausdorff space.

c) Prove that if X is infinite, then every non-empty open subset of $\{0, 1\}^{x}$ is uncountable.

d) Prove that the following are equivalent: **i)** X is countable, **ii)** { 0, 1 }^x is second countable, and **iii)** { 0, 1 }^x is first countable.

e) Prove that if X is countable, then $\{0, 1\}^X$ is metrizable.

f) Prove that if $X \leq \mathbb{R}$, then { 0, 1 }^x is separable.

g) Prove that if $X \succ \mathbb{R}$ and \mathscr{B}_* is any basis for $\{0, 1\}^X$, then $\mathscr{B}_* \succ \mathbb{R}$ and $\{0, 1\}^X$ is not separable.

h) Prove that every pairwise disjoint collection of open subsets of $\{0, 1\}^{x}$ is countable.

Observe that if $X \succ \mathbb{R}$, then $\{0, 1\}^x$ provides an example of the type mentioned in the remark following Addition Problem I.11+: a non-separable regular Hausdorff space in which every pairwise disjoint collection of open subsets is countable.

Remark. It follows that $\{0, 1\}^{\mathbb{R}}$ is a separable regular Hausdorff space satisfying $\{0, 1\}^{\mathbb{R}} \approx \mathscr{P}(\mathbb{R})$. Hence, that the estimate of Additional Problem I.16+. b) can't be improved. Also this is the sort of space needed in Additional Problem I.17+. b).

Problem I.19+. This problem outlines the rather lengthy construction of a separable Hausdorff space Y with the property that if \mathscr{B} is any basis for Y, then $\mathscr{B} \approx \mathscr{P}(\mathscr{P}(\mathbb{R}))$. Prove the propositions labelled **a**) through **m**).

To begin, let X denote an infinite set. Assume $\mathbb{N} \times X \approx X$. (As we remarked in Problem I.12+. b), this can be proved if $X = \mathbb{N}$ or \mathbb{R} or if X well-ordered. Later we will set $X = \mathbb{R}$.) An *ultrafilter* on X is a collection α of subsets of X satisfying

i) A, $B \in \alpha \Rightarrow A \cap B \in \alpha$,

ii) $A \in \alpha$ and $A \subset B \subset X \Rightarrow B \in \alpha$, and

iii) $\forall A \subset X$, exactly one of A and X – A is an element of α .

(It follows that $X \in \alpha$ and $\emptyset \notin \alpha$.)

Let \mathscr{U} denote the set of all ultrafilters on X.

For each $x \in X$, set $\alpha_x = \{ A \subset X : x \in A \}$.

a) Prove that for each $x \in X$, α_x is an ultrafilter on X.

The ultrafilters of the form α_x (where $x \in X$) are called *principal ultrafilters* on X. Let \mathscr{U}_p denote the set of all principal ultrafilters on X.

A collection σ of subsets of X has the *finite intersection property* if for all finite sequences S_1, S_2, \ldots, S_n of elements of $\sigma, \bigcap_{i=1}^n S_i \neq \emptyset$.

b) Prove that if σ is a collection of subsets of X with the finite intersection property, then there is an ultrafilter α on X such that $\sigma \subset \alpha$.

A collection σ of subsets of X is *independent* if for all finite sequences S_1, S_2, \ldots , $S_m, T_1, T_2, \ldots, T_n$ of distinct elements of σ , $\left(\bigcap_{i=1}^m S_i\right) \cap \left(\bigcap_{j=1}^n (X - T_j)\right) \neq \emptyset$.

c) Prove that if σ is an independent collection of subsets of X, then for each subset τ of σ , there is an ultrafilter α_{τ} on X such that $\tau \cup \{X - S : S \in \sigma - \tau\} \subset \alpha_{\tau}$. Also prove that the function $\tau \mapsto \alpha_{\tau} : \mathscr{P}(\sigma) \to \mathscr{U}$ is one-to-one. Conclude that $\mathscr{P}(\sigma) \preceq \mathscr{U}$.

d) Prove that there exists an independent collection σ of subsets of X such that $\sigma \approx \mathscr{P}(X)$.

Outline of proof of d): For any set S, let $\mathscr{F}(S)$ denote the collection of all finite subsets of S. Set $Y = \mathscr{F}(X) \times \mathscr{F}(\mathscr{F}(X))$.

i) Prove $X \approx Y$.

For every $A \subset X$, define $A^* \subset Y$ by $A^* = \{ (F, \Phi) \in Y : F \cap A \in \Phi \}$.

ii) Prove that the function $A \mapsto A^* : \mathscr{P}(X) \to \mathscr{P}(Y)$ is one-to-one.

iii) Prove that { $A^* : A \in \mathscr{P}(X)$ } is an independent collection of subsets of Y.

iv) Prove that there exists an independent collection σ of subsets of X such that $\sigma \approx \mathscr{P}(X)$.

e) Prove that $\mathscr{U} \approx \mathscr{P}(\mathscr{P}(X))$.

f) Prove that \mathscr{U} is an independent collection of subsets of $\mathscr{P}(X)$.

Set *B* =

$$\big\{\left(\bigcap_{i=1}^{m}\alpha_{i}\right)\cap\Big(\bigcap_{j=1}^{n}\Big(\mathscr{P}(X)\,-\,\beta_{j}\,\Big)\,\Big):\text{m, n}\in\mathbb{N}\text{ and }\alpha_{1},\,\ldots\,,\,\alpha_{m},\,\beta_{1},\,\ldots\,,\,\beta_{n}\in\mathscr{U}\big\},$$

and set $\mathscr{B}_{p} =$

$$\big\{\left(\,\bigcap_{i\,=\,1}^{m}\alpha_{i}\,\right)\cap\,\Big(\,\bigcap_{j\,=\,1}^{n}\left(\,\mathscr{P}(X)\,-\,\beta_{j}\,\right)\,\Big):\text{m, }n\in\mathbb{N}\text{ and }\alpha_{1},\,\ldots\,,\,\alpha_{m},\,\beta_{1},\,\ldots\,,\,\beta_{n}\in\mathscr{U}_{p}\,\big\}.$$

g) Prove that \mathscr{B} is a basis for a topology \mathscr{T} on $\mathscr{P}(X)$, and \mathscr{B}_p is a basis for a topology \mathscr{T}_p on $\mathscr{P}(X)$ such that $\mathscr{T}_p \subset \mathscr{T}$.

h) Prove that for every $A \in \mathscr{P}(X)$, if $\mathscr{B}(A)$ is any basis for \mathscr{T} at A, then $\mathscr{B}(A) \approx \mathscr{P}(\mathscr{P}(X))$.

i) Prove that ($\mathscr{P}(X), \mathscr{T}_{p}$) and ($\mathscr{P}(X), \mathscr{T}$) are Hausdorff spaces.

(Parenthetical observation: Identify $\mathscr{P}(X)$ with { 0, 1 }^x by identifying each subset A of X with its characteristic function $\chi_A : X \to \{0,1\}$. ($\chi_A(x) = 1$ if $x \in A$ and $\chi_A(x) = 0$ if $x \in X - A$.) Observe that this identification carries the topology \mathscr{T}_p onto the topology defined on { 0, 1 }^x in Additional Problem I.18+.)

Now set $X = \mathbb{R}$.

j) Prove that ($\mathscr{P}(\mathbb{R}), \mathscr{T}_{p}$) is separable.

Let Δ be a countable dense subset of ($\mathscr{P}(\mathbb{R}), \mathscr{T}_{p}$). Set $\mathscr{T}^{\#} = \{ (\alpha - \Delta) \cap (\beta \cap \Delta) : \alpha \in \mathscr{T}, \beta \in \mathscr{T}_{p}, \text{ and } \alpha \subset \beta \}.$

k) Prove that $\mathscr{T}^{\#}$ is a topology on $\mathscr{P}(\mathbb{R})$, and $\mathscr{T}_{p} \subset \mathscr{T}^{\#}$.

I) Prove that ($\mathscr{P}(\mathbb{R}), \mathscr{T}^{\#}$) is a separable Hausdorff space.

m) Prove that for every $A \in \mathscr{P}(\mathbb{R}) - \Delta$, if $\mathscr{B}^{\#}(A)$ is any basis for $\mathscr{T}^{\#}$ at A, then $\mathscr{B}^{\#}(A) \approx \mathscr{P}(\mathscr{P}(\mathbb{R}))$. Conclude that if $\mathscr{B}^{\#}$ is any basis for $\mathscr{T}^{\#}$, then $\mathscr{B}^{\#} \approx \mathscr{P}(\mathscr{P}(\mathbb{R}))$.

Problem I.20+. A space X is *completely normal* if it has the following property: if A and B are subsets of X satisfying $cl(A) \cap B = \emptyset = A \cap cl(B)$, then A and B have disjoint neighborhoods in X. Prove that every metric space is completely normal.

Problem I.21+. a) Let X be an infinite set with the finite complement topology, and let $\{x_n\}$ be a sequence of distinct points of X. Observe that X is T₁ but not Hausdorff. Prove that $\{x_n\}$ converges to every point of X.

b) Prove that if X is a Hausdorff space, then every converging sequence in X has a unique limit.

c) Assume X is a first countable space. Prove: X is Hausdorff ⇔ every converging sequence in X has a unique limit.

d) Find a space which is not first countable and not Hausdorff in which every converging sequence has a unique limit.

Remark. The following two problems are related to Example I.17.

Problem I.22+. Suppose that the topological space X has a subset Y with the following two properties.

i) For each $y \in Y$, { $W_n(y) : n \in \mathbb{N}$ } is a basis for X at y such that $W_{n+1}(y) \subset W_n(y)$ for each $n \in \mathbb{N}$.

ii) There is a bijection $t \mapsto y_t : \mathbb{R} \to Y$ satisfying the condition: for each $s \in \mathbb{R}$ and each $n \in \mathbb{N}$, there is a $\delta > 0$ such that if $t \in \mathbb{R}$ and $| s - t | < \delta$, then $W_n(y_s) \cap W_n(y_t) \neq \emptyset$.

a) Prove that the sets { $y_t : t \in \mathbb{Q}$ } and { $y_t : t \in \mathbb{R} - \mathbb{Q}$ } don't have disjoint neighborhoods in X. (Here \mathbb{Q} denotes the set of rational numbers.)

Assume that the set Y has no limit points in X.

b) Prove that X is not normal.

Problem I.23+. Prove that if a separable space X has a subset Y which has no limit points in X such that $Y \approx \mathbb{R}$, then X is not normal.

G. Subspaces and Finite Product Spaces

Problem I.24+. Let X and Y be topological spaces and let $A \subset X$ and $B \subset Y$. Prove that fr(A × B) = (fr(A) × B) \cup (A × fr(B)).

Problem I.25+. Recall the definition of *completely normal* from Additional Problem I.20+. A space X is *hereditarily normal* if each subspace of X is normal. Prove that for a space X, the following three assertions are equivalent.

i) X is completely normal.

ii) If Y is a subspace of X, then any two disjoint relatively closed subsets of Y have disjoint neighborhoods in X.

iii) X is hereditarily normal.

The following problem describes a space with properties similar to the space described in Example I.18. This problem is an alternative version of Problem I.21.

Problem I.26+. Let $\Omega^+ = \Omega \cup \{ \omega^+ \}$ be the space described in Example I.11. Set $Y = \{0\} \cup \{ \frac{1}{n} : n \in \mathbb{N} \}$, and regard Y as a subspace of \mathbb{R} . Let $\Omega^+ \times Y$ have the product topology.

a) Prove that $\Omega^+ \times Y$ is a normal Hausdorff space.

b) Prove that the subspace $(\Omega^+ \times Y) - \{(\omega^+, 0)\}$ of $\Omega^+ \times Y$ is not normal.

c) Is the space $\Omega^+ \times Y$ completely normal?

Problem I.27+. Is every linearly ordered space completely normal? (Equivalently: is every linearly ordered space hereditarily normal?)

Problem I.28+. A space is *hereditarily separable* if each of its subspaces is separable. (Problem I.16 asks for a separable space which is not hereditarily separable.) Is every separable linearly ordered space hereditarily separable?