I. Topological Spaces

B. Bases

Problem I.1+. Prove that in a second countable space, every basis contains a countable basis.

Problem l.2+. Prove that if (X, \mathscr{T}) is a second countable space, then $\mathscr{T} \preceq \mathbb{R}$ (i.e., there is an injective function from \mathscr{T} to \mathbb{R}).

Problem l.3+. This problem presents a variation on Example I.8. Recall that \mathbb{N} denotes the set of natural numbers or positive integers and \mathbb{Q} denotes the set of all rational numbers. Then $\mathbb{Q}^{\mathbb{N}}$ denotes the set of all functions from \mathbb{N} to \mathbb{Q}. We now define a topology on $\mathbb{Q}^{\mathbb{N}}$. For each $f \in \mathbb{Q}^{\mathbb{N}}$ and each function $\varepsilon: \mathbb{N} \rightarrow(0, \infty)$, define

$$
N(f, \varepsilon)=\left\{g \in \mathbb{Q}^{\mathbb{N}}:|f(n)-g(n)|<\varepsilon(n) \text { for every } n \in \mathbb{N}\right\} .
$$

a) Prove that $\left\{N(f, \varepsilon): f \in \mathbb{Q}^{\mathbb{N}}\right.$ and $\left.\varepsilon \in(0, \infty)^{\mathbb{N}}\right\}$ is a basis for a topology on $\mathbb{Q}^{\mathbb{N}}$.

A function $f \in \mathbb{Q}^{\mathbb{N}}$ is said to be eventually zero if there is an $n \in \mathbb{N}$ such that $f(k)=0$ for all $k>n$. Let E denote the subspace of $\mathbb{Q}^{\mathbb{N}}$ consisting of all eventually zero elements of $\mathbb{Q}^{\mathbb{N}}$.
b) Prove that E is a countable set.
c) Prove that for every $\mathrm{f} \in E, E$ is not first countable at f .
d) Prove that E is Hausdorff.
e) Prove the E is regular.
E is, in fact, normal. This follows from a theorem in a later chapter which implies that all countable regular spaces are normal.

Additional Problems - 2

C. Linearly Ordered Spaces

Problem I.4+.

a) Is every separable linearly ordered space necessarily first countable?
b) Is every separable linearly ordered space necessarily second countable?

Problem I.5+. a) Problem I. 4 asserts that if ($\mathrm{X},<$) is a complete linearly ordered set, then it has the property that every decreasing sequence $I_{1} \supset I_{2} \supset I_{3} \supset \ldots$ of closed bounded intervals in X has non-empty intersection. Is the converse to this assertion true? In other words, if ($\mathrm{X},<$) is a linearly ordered set with the property that every decreasing sequence of closed bounded intervals in X has non-empty intersection, then must $(X,<)$ be complete?
b) Prove that if $(X,<)$ is a separable linearly ordered set with the property that every decreasing sequence of closed bounded intervals in X has non-empty intersection, then ($\mathrm{X},<$) is complete.

If \mathscr{C} is a collection of sets with the property that for all A and $B \in \mathscr{C}$, either $A \subset B$ or $B \subset$ A, then we call \mathscr{C} a nested collection.
c) Generalize Problem $I .4$ by proving that if $(X,<)$ is a complete linearly ordered set, then it has the property that every nested collection of non-empty bounded closed intervals in X has non-empty intersection.
d) Is the converse to the assertion in part c) true? In other words, if ($\mathrm{X},<$) is a linearly ordered set with the property that every nested collection of non-empty bounded closed intervals in X has non-empty intersection, then must $(\mathrm{X},<$) be complete?

A collection \mathscr{C} of sets is said to have the finite intersection property if every non-empty finite subcollection of \mathscr{C} has non-empty intersection. Thus \mathscr{C} has the finite intersection property if and only if whenever $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{n}} \in \mathscr{C}$ for some positive integer n , then $\mathrm{C}_{1} \cap \mathrm{C}_{2} \cap \cdots \cap \mathrm{C}_{\mathrm{n}} \neq \varnothing$.
e) Prove that a linearly ordered set $(X,<)$ is complete if and only if it has the property that every collection of bounded closed intervals in X with the finite intersection property has non-empty intersection.
f) Let $(X,<)$ be a linearly ordered set with the order topology. Prove that if $(X,<)$ is complete, then every collection of bounded closed subsets of X with the finite intersection property has non-empty intersection.

Additional Problems - 3

D. Metric Spaces

Problem I.6+. Prove that if \mathbf{x} and $\mathbf{y} \in \mathbb{R}^{n}$, then $\rho_{2}(\mathbf{x}, \mathbf{y}) \leq \rho_{1}(\mathbf{x}, \mathbf{y}) \leq \sqrt{n} \rho_{2}(\mathbf{x}, \mathbf{y})$.
Problem l.7+. On the set $[0,1]^{\mathbb{N}}$ of all functions from \mathbb{N} to $[0,1]$, we define three metrics:
i) $\sigma_{1}(\mathbf{x}, \mathbf{y})=\sum_{i \in \mathbb{N}} 2^{-i}|\mathbf{x}(\mathrm{i})-\mathbf{y}(\mathrm{i})|$.
ii) $\sigma_{2}(\mathbf{x}, \mathbf{y})=\left(\sum_{i \in \mathbb{N}} 2^{-i}(\mathbf{x}(\mathrm{i})-\mathbf{y}(\mathrm{i}))^{2}\right)^{1 / 2}$.
(Here $\mathbf{x}, \mathbf{y} \in[0,1]^{\mathbb{N}}$.)
iii) $\sigma_{\infty}(\mathbf{x}, \mathbf{y})=\sup \left\{2^{-i}|\mathbf{x}(\mathrm{i})-\mathbf{y}(\mathrm{i})|: i \in \mathbb{N}\right\}$.
a) Verify that these three formulas define metrics on $[0,1]^{\mathbb{N}}$. (Observe that the factors 2^{-i} occuring in these formulas prevent these metrics from arising from norms in the obvious way that the taxicab, Euclidean and supremum metrics on \mathbb{R}^{n} do.)
b) Prove that these three metrics on $[0,1]^{\mathbb{N}}$ are equivalent.

The space $[0,1]^{\mathbb{N}}$ with the topology induced by any one of these three equivalent metrics is called the Hilbert cube.
c) Is the Hilbert cube separable?

Problem l.8+. Does every norm on \mathbb{R}^{n} induce the standard topology?
Problem I.9+. This problem outlines a way to decide whether $\mathbb{R}_{\text {bad }}$ is metrizable without appealing to Theorem I.13. To begin assume there is a metric ρ on $\mathbb{R}_{\text {bad }}$ which induces the closed-open interval topology; and for $x \in \mathbb{R}_{\text {bad }}$ and $\varepsilon>0$, let $N(x, \varepsilon)$ denote the ε-neighborhood of x determined by the metric ρ. For $m, n \in \mathbb{N}$, define

$$
S_{m, n}=\left\{x \in \mathbb{R}_{\text {bad }}:[x, x+(1 / m)) \subset N(x, 1 / n) \subset[x, \infty)\right\}
$$

Now complete steps a), b) and c).
a) Prove that the collection of sets $\left\{S_{m, n}: m, n \in \mathbb{N}\right\}$ covers \mathbb{R}; i.e., every element of \mathbb{R} belongs to $S_{m, n}$ for some $m, n \in \mathbb{N}$.
b) Prove there are elements $m, n \in \mathbb{N}$ such that the set $S_{m, n}$ is uncountable.
b) Assume $S_{m, n}$ is uncountable. Prove that there are elements $x, y \in S_{m . n}$ such that $x<y<x+(1 / m)$.
c) Derive a contradiction.

Additional Problems - 4

Problem l.10+. There is a way to prove that Ω is not metrizable using properties of compactness introduced in a later chapter. (Ω can be shown to be sequentially compact but not compact. On the other hand, all sequentially compact metric spaces are compact.) This problem outlines a proof that Ω is not metrizable which does not rely on compactness properties.
a) Prove that if A is an uncountable subset of Ω, then there is an $x \in \Omega$ such that $(-\infty, x) \neq \varnothing$ and $(y, x) \cap A \neq \varnothing$ for every $y \in(-\infty, x)$.
b) Assume there is a metric ρ on Ω which induces the order topology; and for $x \in \Omega$ and $\varepsilon>0$, let $N(x, \varepsilon)$ denote the ε-neighborhood of x determined by the metric ρ. For each $n \in \mathbb{N}$, define $S_{n}=\{x \in \Omega: N(x, 1 / n) \subset(-\infty, x]\}$. Prove there is an $n \in \mathbb{N}$ such that S_{n} is uncountable. Then use part a) of this problem to obtain a contradiction.

Problem l.11+. Let (X, ρ) be a metric space. For $\varepsilon>0$, a subset S of X is ε-separated if $\rho(x, y) \geq \varepsilon$ for all distinct points $x, y \in S$.
a) Prove that a metric space is separable if and only if for every $\varepsilon>0$, every ε-separated subset of X is countable.
b) Prove that a metric space is separable if and only if every pairwise disjoint collection of non-empty open subsets of X is countable.

Remark. Additional Problem I.11+. b) becomes false if the "metric" hypothesis is removed. Indeed, Additional Problem I.17+ outlines the construction of a non-separable space X in which every pairwise disjoint collection of open subsets of X is countable. Of course, this space is not metrizable.

Problem l.12+. Let X be an infinite set and let $B(X)$ denote the metric space described in Example I.15.
a) Prove there is a pairwise disjoint collection \mathscr{U} of non-empty open subsets of $B(X)$ such that $\mathscr{U} \approx \mathscr{P}(\mathrm{X})$.
b) Assume $\mathbb{N} \times X \approx X$. (This is not hard to prove for $X=\mathbb{N}$ or \mathbb{R} and can be proved in general if X well-ordered. If we assume Zermelo's Well Ordering Principle, then it follows, of course, that X is well-ordered). Prove $B(X) \approx \mathscr{P}(X)$. Conclude that if D is any dense subset of $B(X)$, then $D \approx B(X)$.

E. Closure and Convergence Properties

Problem l.13+. Prove that if A is an uncountable subset of a second countable space X, then there is a closed subset B of X such that $A \cap B$ is uncountable and for every $x \in B$, every neighborhood of x intersects $A \cap B$ in an uncountable set.

Additional Problems - 5

Problem l.14+. Let X be a topological space. The closure operator $A \mapsto c l(A)$ and the complement operator $\mathrm{A} \mapsto(\mathrm{X}-\mathrm{A})$ are two functions from the collection $\mathscr{P}(\mathrm{X})$ of all subsets of X to itself. They are known as the Kuratowski operators on $\mathscr{P}(\mathrm{X})$.
a) Given a subset A of X, find the maximum number of distinct subsets of X that can theoretically be formed from A by repeated application of the Kuratowski operators.
b) Give an example of a subset A of a topological space X for which this theoretical maximum is achieved.

F. Separation Properties

Problem l.15+. Is every linearly ordered space a) T_{1}, b) Hausdorff, c) regular, d) normal?

Problem l.16+. a) Prove that if X is a second countable T_{1} space, then $X \preceq \mathbb{R}$.
b) Prove that if X is a separable Hausdorff space, then $X \preceq \mathscr{P}(\mathbb{R})$.

Remark. The estimate in Additional Problem I.16+. b) can't be improved. In fact, Additional Problem I.17+. e) provides an example of a separable Hausdorff space X such that $X \approx \mathscr{P}(\mathbb{R})$.

Problem I.17+. a) Prove that if X is a separable regular space, then X has a basis \mathscr{B} such that $\mathscr{B} \preceq \mathbb{R}$.
b) Here we outline a construction which (when combined with Additional Problem l.18+) shows that the "regular" hypothesis in part a) of this problem can't be replaced by "Hausdorff". Suppose (X, \mathscr{T}) is a separable Hausdorff space in which every non-empty open subset is uncountable, and suppose D is a countable dense subset of X. Set $\mathscr{B}_{*}=\{\{x\} \cup(U \cap D): x \in U \in \mathscr{T}\}$.
i) Prove \mathscr{B}_{*} is a basis for a topology on X , and let \mathscr{T}_{*} denote this topology.

Prove that $\left(\mathrm{X}, \mathscr{T}_{*}\right)$ is ii) Hausdorff but not regular, and iii) separable.
iv) Prove that if $\mathscr{B}_{* *}$ is any basis for \mathscr{T}_{*}, then $\mathscr{B}_{* *} \succeq \mathrm{X}$.

Now suppose that (X, \mathscr{T}) is a separable Hausdorff space satisfying $X \approx \mathscr{P}(\mathbb{R})$ in which every non-empty open subset is uncountable. (Such a space is constructed in Additional Problem I.18+. See the remark following Additional Problem I.18+.) Then ($\mathrm{X}, \mathscr{T}_{*}$) is a separable Hausdorff space with the property that if $\mathscr{B}_{* *}$ is any basis for \mathscr{T}_{*}, then $\mathscr{B}_{*^{*}} \succeq \mathscr{P}(\mathbb{R})$. We conclude that the "regular" hypothesis in part a) of this
problem can't be replaced by "Hausdorff".
Remark. Again suppose that (X, \mathscr{T}) is a separable Hausdorff space satisfying X $\approx \mathscr{P}(\mathbb{R})$. Since $\mathscr{T} \subset \mathscr{P}(\mathrm{X})$, it is possible in principle that $\mathscr{T} \approx \mathscr{P}(\mathrm{X}) \approx \mathscr{P}(\mathscr{P}(\mathbb{R}))$ and, further, that if \mathscr{B} is any basis for \mathscr{T}, then $\mathscr{B} \approx \mathscr{P}(\mathrm{X}) \approx \mathscr{P}(\mathscr{P}(\mathbb{R}))$. Then \mathscr{T} would in some sense be a "largest possible topology" on a separable Hausdorff space. The construction just carried out in Additional Problem l.17+. b) does not provide such a topology because the basis \mathscr{B}_{*} constructed there satisfies $\mathscr{B}_{*} \approx \mathrm{X} \times \mathscr{P}(\mathrm{D}) \approx \mathscr{P}(\mathbb{R})$. Additional Problem I.19+ fills this gap by outlining the construction of a separable Hausdorff space with a "largest possible topology".

Problem l.18+. Let X be a set. Let $\{0,1\}^{X}$ denote the set of all functions from X to $\{0,1\}$. For every $f \in\{0,1\}^{X}$ and every finite subset A of X, set

$$
\mathrm{N}(\mathrm{f}, \mathrm{~A})=\left\{\mathrm{g} \in\{0,1\}^{\mathrm{x}}: \mathrm{gl} \mid \mathrm{A}=\mathrm{fl} \mathrm{~A}\right\} .
$$

Set $\mathscr{B}=\left\{N(f, A): f \in\{0,1\}^{X}\right.$ and A is a finite subset of $\left.X\right\}$.
a) Prove \mathscr{B} is a basis for a topology on $\{0,1\}^{x}$.

Endow $\{0,1\}^{x}$ with this topology.
b) Prove that $\{0,1\}^{x}$ is a regular Hausdorff space.
c) Prove that if X is infinite, then every non-empty open subset of $\{0,1\}^{X}$ is uncountable.
d) Prove that the following are equivalent: $\mathbf{i}) \mathrm{X}$ is countable, ii) $\{0,1\}^{X}$ is second countable, and iii) $\{0,1\}^{x}$ is first countable.
e) Prove that if X is countable, then $\{0,1\}^{X}$ is metrizable.
f) Prove that if $X \preceq \mathbb{R}$, then $\{0,1\}^{X}$ is separable.
g) Prove that if $X \succ \mathbb{R}$ and \mathscr{B}_{*} is any basis for $\{0,1\}^{X}$, then $\mathscr{B}_{*} \succ \mathbb{R}$ and $\{0,1\}^{X}$ is not separable.
h) Prove that every pairwise disjoint collection of open subsets of $\{0,1\}^{x}$ is countable. Observe that if $X \succ \mathbb{R}$, then $\{0,1\}^{X}$ provides an example of the type mentioned in the remark following Addition Problem l.11+: a non-separable regular Hausdorff space in which every pairwise disjoint collection of open subsets is countable.

Remark. It follows that $\{0,1\}^{\mathbb{R}}$ is a separable regular Hausdorff space satisfying $\{0,1\}^{\mathbb{R}} \approx \mathscr{P}(\mathbb{R})$. Hence, that the estimate of Additional Problem I.16+. b) can't be improved. Also this is the sort of space needed in Additional Problem I.17+. b).

Additional Problems - 7

Problem I.19+. This problem outlines the rather lengthy construction of a separable Hausdorff space Y with the property that if \mathscr{B} is any basis for Y , then $\mathscr{B} \approx$ $\mathscr{P}(\mathscr{P}(\mathbb{R}))$). Prove the propositions labelled a) through $\mathbf{m})$.

To begin, let X denote an infinite set. Assume $\mathbb{N} \times X \approx X$. (As we remarked in Problem l.12+. b), this can be proved if $X=\mathbb{N}$ or \mathbb{R} or if X well-ordered. Later we will set $X=\mathbb{R}$.) An ultrafilter on X is a collection α of subsets of X satisfying
i) $A, B \in \alpha \Rightarrow A \cap B \in \alpha$,
ii) $A \in \alpha$ and $A \subset B \subset X \Rightarrow B \in \alpha$, and
iii) $\forall A \subset X$, exactly one of A and $X-A$ is an element of α.
(It follows that $X \in \alpha$ and $\varnothing \notin \alpha$.)
Let \mathscr{U} denote the set of all ultrafilters on X.
For each $x \in X$, set $\alpha_{x}=\{A \subset X: x \in A\}$.
a) Prove that for each $x \in X, \alpha_{x}$ is an ultrafilter on X.

The ultrafilters of the form α_{x} (where $\mathrm{x} \in \mathrm{X}$) are called principal ultrafilters on X . Let \mathscr{U}_{p} denote the set of all principal ultrafilters on X .

A collection σ of subsets of X has the finite intersection property if for all finite sequences $\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{n}}$ of elements of $\sigma, \bigcap_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{S}_{\mathrm{i}} \neq \varnothing$.
b) Prove that if σ is a collection of subsets of X with the finite intersection property, then there is an ultrafilter α on X such that $\sigma \subset \alpha$.

A collection σ of subsets of X is independent if for all finite sequences S_{1}, S_{2}, \ldots, $S_{m}, T_{1}, T_{2}, \ldots, T_{n}$ of distinct elements of $\sigma,\left(\bigcap_{i=1}^{m} S_{i}\right) \cap\left(\bigcap_{j=1}^{n}\left(X-T_{j}\right)\right) \neq \varnothing$.
c) Prove that if σ is an independent collection of subsets of X, then for each subset τ of σ, there is an ultrafilter α_{τ} on X such that $\tau \cup\{X-S: S \in \sigma-\tau\} \subset \alpha_{\tau}$. Also prove that the function $\tau \mapsto \alpha_{\tau}: \mathscr{P}(\sigma) \rightarrow \mathscr{U}$ is one-to-one. Conclude that $\mathscr{P}(\sigma) \preceq \mathscr{U}$.
d) Prove that there exists an independent collection σ of subsets of X such that $\sigma \approx \mathscr{P}(\mathrm{X})$.
Outline of proof of d): For any set S , let $\mathscr{F}(\mathrm{S})$ denote the collection of all finite subsets of S . Set $\mathrm{Y}=\mathscr{F}(\mathrm{X}) \times \mathscr{F}(\mathscr{F}(\mathrm{X}))$.
i) Prove $X \approx Y$.

For every $A \subset X$, define $A^{*} \subset Y$ by $A^{*}=\{(F, \Phi) \in Y: F \cap A \in \Phi\}$.

Additional Problems - 8

ii) Prove that the function $\mathrm{A} \mapsto \mathrm{A}^{*}: \mathscr{P}(\mathrm{X}) \rightarrow \mathscr{P}(\mathrm{Y})$ is one-to-one.
iii) Prove that $\left\{A^{*}: A \in \mathscr{P}(X)\right\}$ is an independent collection of subsets of Y.
iv) Prove that there exists an independent collection σ of subsets of X such that $\sigma \approx$ $\mathscr{P}(\mathrm{X})$.
e) Prove that $\mathscr{U} \approx \mathscr{P}(\mathscr{P}(\mathrm{X}))$.
f) Prove that \mathscr{U} is an independent collection of subsets of $\mathscr{P}(\mathrm{X})$.

Set $\mathscr{B}=$
$\left\{\left(\bigcap_{\mathrm{i}=1}^{m} \alpha_{\mathrm{i}}\right) \cap\left(\bigcap_{\mathrm{j}=1}^{\mathrm{n}}\left(\mathscr{P}(\mathrm{X})-\beta_{\mathrm{j}}\right)\right): \mathrm{m}, \mathrm{n} \in \mathbb{N}\right.$ and $\left.\alpha_{1}, \ldots, \alpha_{\mathrm{m}}, \beta_{1}, \ldots, \beta_{\mathrm{n}} \in \mathscr{U}\right\}$, and set $\mathscr{B}_{\mathrm{p}}=$
$\left\{\left(\bigcap_{i=1}^{m} \alpha_{i}\right) \cap\left(\bigcap_{j=1}^{n}\left(\mathscr{P}(X)-\beta_{j}\right)\right): m, n \in \mathbb{N}\right.$ and $\left.\alpha_{1}, \ldots, \alpha_{m}, \beta_{1}, \ldots, \beta_{n} \in \mathscr{U}_{p}\right\}$.
g) Prove that \mathscr{B} is a basis for a topology \mathscr{T} on $\mathscr{P}(\mathrm{X})$, and \mathscr{B}_{p} is a basis for a topology \mathscr{T}_{p} on $\mathscr{P}(\mathrm{X})$ such that $\mathscr{T}_{\mathrm{p}} \subset \mathscr{T}$.
h) Prove that for every $\mathrm{A} \in \mathscr{P}(\mathrm{X})$, if $\mathscr{B}(\mathrm{A})$ is any basis for \mathscr{T} at A , then $\mathscr{B}(\mathrm{A}) \approx$ $\mathscr{P}(\mathscr{P}(\mathrm{X}))$.
i) Prove that ($\left.\mathscr{P}(\mathrm{X}), \mathscr{T}_{\mathrm{p}}\right)$ and ($\left.\mathscr{P}(\mathrm{X}), \mathscr{T}\right)$ are Hausdorff spaces.
(Parenthetical observation: Identify $\mathscr{P}(X)$ with $\{0,1\}^{X}$ by identifying each subset A of X with its characteristic function $\chi_{A}: X \rightarrow\{0,1\}$. $\left(\chi_{A}(x)=1\right.$ if $x \in A$ and $\chi_{A}(x)=$ 0 if $x \in X-A$.) Observe that this identification carries the topology \mathscr{T}_{p} onto the topology defined on $\{0,1\}^{x}$ in Additional Problem I.18+.)

Now set $X=\mathbb{R}$.
j) Prove that $\left(\mathscr{P}(\mathbb{R}), \mathscr{T}_{p}\right)$ is separable.

Let Δ be a countable dense subset of $\left(\mathscr{P}(\mathbb{R}), \mathscr{T}_{\mathrm{p}}\right)$.
Set $\mathscr{T}^{\#}=\left\{(\alpha-\Delta) \cap(\beta \cap \Delta): \alpha \in \mathscr{T}, \beta \in \mathscr{T}_{p}\right.$, and $\left.\alpha \subset \beta\right\}$.
k) Prove that $\mathscr{T}^{\#}$ is a topology on $\mathscr{P}(\mathbb{R})$, and $\mathscr{T}_{\mathrm{p}} \subset \mathscr{T}^{\#}$.
I) Prove that $\left(\mathscr{P}(\mathbb{R}), \mathscr{T}^{\#}\right)$ is a separable Hausdorff space.

Additional Problems - 9

m) Prove that for every $\mathrm{A} \in \mathscr{P}(\mathbb{R})-\Delta$, if $\mathscr{B}^{\#}(\mathrm{~A})$ is any basis for $\mathscr{T}^{\#}$ at A , then $\mathscr{B}^{\#}(\mathrm{~A}) \approx \mathscr{P}(\mathscr{P}(\mathbb{R}))$. Conclude that if $\mathscr{B}^{\#}$ is any basis for $\mathscr{T}^{\#}$, then $\mathscr{B}^{\#} \approx \mathscr{P}(\mathscr{P}(\mathbb{R}))$.

Problem l.20+. A space X is completely normal if it has the following property: if A and B are subsets of X satisfying $c l(A) \cap B=\varnothing=A \cap c l(B)$, then A and B have disjoint neighborhoods in X. Prove that every metric space is completely normal.

Problem I.21+. a) Let X be an infinite set with the finite complement topology, and let $\left\{x_{n}\right\}$ be a sequence of distinct points of X. Observe that X is T_{1} but not Hausdorff. Prove that $\left\{x_{n}\right\}$ converges to every point of X.
b) Prove that if X is a Hausdorff space, then every converging sequence in X has a unique limit.
c) Assume X is a first countable space. Prove: X is Hausdorff \Leftrightarrow every converging sequence in X has a unique limit.
d) Find a space which is not first countable and not Hausdorff in which every converging sequence has a unique limit.

Remark. The following two problems are related to Example I.17.
Problem I.22+. Suppose that the topological space X has a subset Y with the following two properties.
i) For each $y \in Y$, $\left\{W_{n}(y): n \in \mathbb{N}\right\}$ is a basis for X at y such that $W_{n+1}(y) \subset W_{n}(y)$ for each $n \in \mathbb{N}$.
ii) There is a bijection $t \mapsto y_{t}: \mathbb{R} \rightarrow Y$ satisfying the condition: for each $s \in \mathbb{R}$ and each $n \in \mathbb{N}$, there is a $\delta>0$ such that if $t \in \mathbb{R}$ and $I s-t I<\delta$, then $W_{n}\left(y_{s}\right) \cap W_{n}\left(y_{t}\right) \neq \varnothing$.
a) Prove that the sets $\left\{y_{t}: t \in \mathbb{Q}\right\}$ and $\left\{y_{t}: t \in \mathbb{R}-\mathbb{Q}\right\}$ don't have disjoint neighborhoods in X. (Here \mathbb{Q} denotes the set of rational numbers.)

Assume that the set Y has no limit points in X .
b) Prove that X is not normal.

Problem l.23+. Prove that if a separable space X has a subset Y which has no limit points in X such that $Y \approx \mathbb{R}$, then X is not normal.

G. Subspaces and Finite Product Spaces

Problem l.24+. Let X and Y be topological spaces and let $A \subset X$ and $B \subset Y$. Prove that $\operatorname{fr}(A \times B)=(f r(A) \times B) \cup(A \times f r(B))$.

Problem I.25+. Recall the definition of completely normal from Additional Problem l.20+. A space X is hereditarily normal if each subspace of X is normal. Prove that for a space X, the following three assertions are equivalent.
i) X is completely normal.
ii) If Y is a subspace of X, then any two disjoint relatively closed subsets of Y have disjoint neighborhoods in X.
iii) X is hereditarily normal.

The following problem describes a space with properties similar to the space described in Example I.18. This problem is an alternative version of Problem I.21.

Problem l.26+. Let $\Omega^{+}=\Omega \cup\left\{\omega^{+}\right\}$be the space described in Example I.11. Set $\mathrm{Y}=\{0\} \cup\left\{1_{\mathrm{n}}: \mathrm{n} \in \mathbb{N}\right\}$, and regard Y as a subspace of \mathbb{R}. Let $\Omega^{+} \times \mathrm{Y}$ have the product topology.
a) Prove that $\Omega^{+} \times Y$ is a normal Hausdorff space.
b) Prove that the subspace $\left(\Omega^{+} \times Y\right)-\left\{\left(\omega^{+}, 0\right)\right\}$ of $\Omega^{+} \times Y$ is not normal.
c) Is the space $\Omega^{+} \times Y$ completely normal?

Problem I.27+. Is every linearly ordered space completely normal? (Equivalently: is every linearly ordered space hereditarily normal?)

Problem l.28+. A space is hereditarily separable if each of its subspaces is separable. (Problem I. 16 asks for a separable space which is not hereditarily separable.) Is every separable linearly ordered space hereditarily separable?

