
Math 751 Introductory Topology Fall 2010
Additional Problems – 1

I. Topological Spaces

B.  Bases

Problem I.1+.  Prove that in a second countable space, every basis contains a
countable basis.

Problem I.2+.  Prove that if ( X, T ) is a second countable space, then T   

€ 

p  R
(i.e., there is an injective function from T to R).

Problem I.3+.  This problem presents a variation on Example I.8.  Recall that N
denotes the set of natural numbers or positive integers and Q denotes the set of all
rational numbers.  Then Q N denotes the set of all functions from N to Q.  We now define
a topology on Q N.  For each f ∈ Q N and each function ε : N → ( 0, ∞ ), define

N(f,ε)  =  { g ∈ Q N : | f(n) – g(n) | < ε(n) for every n ∈ N }.

a)  Prove that { N(f,ε) : f ∈ Q N and ε ∈ ( 0, ∞ )  N } is a basis for a topology on Q N.

A function f ∈ Q N is said to be eventually zero if there is an n ∈ N such that f(k) = 0 for
all k > n.  Let E denote the subspace of Q N consisting of all eventually zero elements of
Q N.

b)  Prove that E is a countable set.
c)  Prove that for every f ∈ E, E is not first countable at f.

d)  Prove that E is Hausdorff.
e)  Prove the E is regular.

E is, in fact, normal.  This follows from a theorem in a later chapter which implies that all
countable regular spaces are normal.
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C. Linearly Ordered Spaces

Problem I.4+.
a)  Is every separable linearly ordered space necessarily first countable?
b)  Is every separable linearly ordered space necessarily second countable?

Problem I.5+.  a)  Problem I.4 asserts that if ( X, < ) is a complete linearly
ordered set, then it has the property that every decreasing sequence I1 ⊃ I2 ⊃ I3 ⊃ … of
closed bounded intervals in X has non-empty intersection.  Is the converse to this
assertion true?  In other words, if ( X, < ) is a linearly ordered set with the property that
every decreasing sequence of closed bounded intervals in X has non-empty
intersection, then must ( X, < ) be complete?
b)  Prove that if ( X, < ) is a separable linearly ordered set with the property that every
decreasing sequence of closed bounded intervals in X has non-empty intersection, then
( X, < ) is complete.
If C is a collection of sets with the property that for all A and B ∈ C, either A ⊂ B or B ⊂
A, then we call C a nested collection.

c)  Generalize Problem I.4 by proving that if ( X, < ) is a complete linearly ordered set,
then it has the property that every nested collection of non-empty bounded closed
intervals in X has non-empty intersection.
d)  Is the converse to the assertion in part c) true?  In other words, if ( X, < ) is a linearly
ordered set with the property that every nested collection of non-empty bounded closed
intervals in X has non-empty intersection, then must ( X, < ) be complete?
A collection C of sets is said to have the finite intersection property if every non-empty
finite subcollection of C has non-empty intersection.  Thus C has the finite intersection
property if and only if whenever C1, C2, … , Cn ∈ C for some positive integer n, then
C1 ∩ C2 ∩ ... ∩ Cn ≠ ∅.

e)  Prove that a linearly ordered set ( X, < ) is complete if and only if it has the property
that every collection of bounded closed intervals in X with the finite intersection property
has non-empty intersection.

f)  Let ( X, < ) be a linearly ordered set with the order topology.  Prove that if ( X, < ) is
complete, then every collection of bounded closed subsets of X with the finite
intersection property has non-empty intersection.
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D.  Metric Spaces

Problem I.6+.  Prove that if x and y ∈ Rn, then ρ2(x,y)  ≤  ρ1(x,y)  ≤  

€ 

nρ2(x,y).

Problem I.7+.  On the set [ 0, 1 ] N of all functions from N to [ 0, 1 ], we define
three metrics:

i)  σ1(x,y)  =  
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2–i   x(i) –  y(i) 
i ∈ N
∑ .

ii)  σ2(x,y)  =  
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2–i   x(i) –  y(i) ( )2

i ∈ N
∑
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.            (Here x, y ∈ [ 0, 1 ] N.)

iii)  σ∞(x,y)  =  sup { 2–i | x(i) – y(i) | : i ∈ N }.

a)  Verify that these three formulas define metrics on [ 0, 1 ] N.  (Observe that the factors
2–i occuring in these formulas prevent these metrics from arising from norms in the
obvious way that the taxicab, Euclidean and supremum metrics on Rn do.)

b)  Prove that these three metrics on [ 0, 1 ] N are equivalent.
The space [ 0, 1 ] N with the topology induced by any one of these three equivalent
metrics is called the Hilbert cube.

c)  Is the Hilbert cube separable?

Problem I.8+.  Does every norm on Rn induce the standard topology?

Problem I.9+.  This problem outlines a way to decide whether Rbad is metrizable
without appealing to Theorem I.13.  To begin assume there is a metric ρ on Rbad which
induces the closed-open interval topology; and for x ∈ Rbad and ε > 0, let N(x,ε) denote
the ε-neighborhood of x determined by the metric ρ.  For m, n ∈ N, define

Sm,n  =  { x ∈ Rbad : [x,x+(1/m)) ⊂ N(x,1/n) ⊂ [x,∞) }.

Now complete steps a), b) and c).

a) Prove that the collection of sets { Sm,n : m, n ∈ N } covers R; i.e., every element of
R belongs to Sm,n for some m, n ∈ N.

b) Prove there are elements m, n ∈ N such that the set Sm,n is uncountable.

b) Assume Sm,n is uncountable. Prove that there are elements x, y ∈ Sm.n such that
x < y < x+(1/m).

c) Derive a contradiction.
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Problem I.10+.  There is a way to prove that Ω is not metrizable using properties
of compactness introduced in a later chapter.  (Ω can be shown to be sequentially
compact but not compact.  On the other hand, all sequentially compact metric spaces
are compact.)  This problem outlines a proof that Ω is not metrizable which does not rely
on compactness properties.
a)  Prove that if A is an uncountable subset of Ω, then there is an x ∈ Ω such that
( –∞, x) ≠ ∅ and ( y, x ) ∩ A ≠ ∅ for every y ∈ ( –∞, x).

b)  Assume there is a metric ρ on Ω which induces the order topology; and for x ∈ Ω
and ε > 0, let N(x,ε) denote the ε-neighborhood of x determined by the metric ρ.  For
each n ∈ N, define Sn = { x ∈ Ω : N(x,1/n) ⊂ ( –∞, x ] }.  Prove there is an n ∈ N such
that Sn is uncountable.  Then use part a) of this problem to obtain a contradiction.

Problem I.11+.  Let ( X, ρ ) be a metric space.  For ε > 0, a subset S of X is
ε -separated if ρ(x,y) ≥ ε for all distinct points x, y ∈ S.

a)  Prove that a metric space is separable if and only if for every ε > 0, every
ε-separated subset of X is countable.

b)  Prove that a metric space is separable if and only if every pairwise disjoint
collection of non-empty open subsets of X is countable.

Remark.  Additional Problem I.11+. b) becomes false if the "metric" hypothesis is
removed.  Indeed, Additional Problem I.17+ outlines the construction of a non-separable
space X in which every pairwise disjoint collection of open subsets of X is countable.  Of
course, this space is not metrizable.

Problem I.12+.  Let X be an infinite set and let B(X) denote the metric space
described in Example I.15.
a)  Prove there is a pairwise disjoint collection U of non-empty open subsets of B(X)
such that U ≈ P(X).

b)  Assume N × X ≈ X.  (This is not hard to prove for X = N or R and can be proved in
general if X well-ordered.  If we assume Zermelo’s Well Ordering Principle, then it
follows, of course, that X is well-ordered).  Prove B(X) ≈ P(X).  Conclude that if D is any
dense subset of B(X), then D ≈ B(X).

E. Closure and Convergence Properties

Problem I.13+.  Prove that if A is an uncountable subset of a second countable
space X, then there is a closed subset B of X such that A ∩ B is uncountable and for
every x ∈ B, every neighborhood of x intersects A ∩ B in an uncountable set.
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Problem I.14+.  Let X be a topological space.  The closure operator A   

€ 

a cl(A)
and the complement operator A   

€ 

a ( X – A ) are two functions from the collection P(X)
of all subsets of X to itself.  They are known as the Kuratowski operators on P(X).

a)  Given a subset A of X, find the maximum number of distinct subsets of X that can
theoretically be formed from A by repeated application of the Kuratowski operators.

b)  Give an example of a subset A of a topological space X for which this theoretical
maximum is achieved.

F. Separation Properties

Problem I.15+.  Is every linearly ordered space  a) T1,  b) Hausdorff,  c) regular,
d) normal?

Problem I.16+. a)  Prove that if X is a second countable T1 space, then X   
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p  R.

b)  Prove that if X is a separable Hausdorff space, then X   

€ 

p  P(R).

Remark.  The estimate in Additional Problem I.16+. b) can't be improved.  In fact,
Additional Problem I.17+. e) provides an example of a separable Hausdorff space X
such that X ≈ P(R).

Problem I.17+. a)  Prove that if X is a separable regular space, then X has a
basis B such that B   
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p  R.

b)  Here we outline a construction which (when combined with Additional Problem
I.18+) shows that the "regular" hypothesis in part a) of this problem can't be replaced by
"Hausdorff".  Suppose ( X, T ) is a separable Hausdorff space in which every non-empty
open subset is uncountable, and suppose D is a countable dense subset of X.  Set
B∗ = { { x } ∪ ( U ∩ D ) : x ∈ U ∈ T }.

i)  Prove B∗ is a basis for a topology on X, and let T∗ denote this topology.

Prove that  ( X, T∗ ) is ii) Hausdorff but not regular, and iii) separable.

iv) Prove that if B∗∗ is any basis for T∗, then B∗∗   

€ 

f  X.

Now suppose that ( X, T ) is a separable Hausdorff space satisfying X ≈ P(R) in which
every non-empty open subset is uncountable.  (Such a space is constructed in
Additional Problem I.18+.  See the remark following Additional Problem I.18+.)  Then
( X, T∗ ) is a separable Hausdorff space with the property that if B∗∗ is any basis for
T∗, then B∗∗   
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f  P(R).  We conclude that the "regular" hypothesis in part a) of this



Additional Problems – 6

problem can't be replaced by "Hausdorff".

Remark.  Again suppose that ( X, T )is a separable Hausdorff space satisfying X
≈ P(R).  Since T ⊂ P(X), it is possible in principle that T ≈ P(X) ≈ P(P(R)) and,
further, that if B is any basis for T, then B ≈ P(X) ≈ P(P(R)).  Then T would in some
sense be a "largest possible topology" on a separable Hausdorff space.  The
construction just carried out in Additional Problem I.17+. b) does not provide such a
topology because the basis B∗ constructed there satisfies B∗ ≈ X ×  P(D) ≈ P(R).
Additional Problem I.19+ fills this gap by outlining the construction of a separable
Hausdorff space with a "largest possible topology".

Problem I.18+.  Let X be a set.  Let { 0, 1 }X denote the set of all functions from X
to { 0, 1 }.  For every f ∈ { 0, 1 }X and every finite subset A of X, set

N(f,A)  =  { g ∈ { 0, 1 }X : g|A = f|A }.

Set B =  { N(f,A) : f ∈ { 0, 1 }X and A is a finite subset of X }.

a)  Prove B is a basis for a topology on { 0, 1 }X.

Endow { 0, 1 }X with this topology.
b)  Prove that { 0, 1 }X is a regular Hausdorff space.
c)  Prove that if X is infinite, then every non-empty open subset of { 0, 1 }X is
uncountable.

d)  Prove that the following are equivalent: i) X is countable, ii) { 0, 1 }X is second
countable, and iii) { 0, 1 }X is first countable.

e)  Prove that if X is countable, then { 0, 1 }X is metrizable.

f)  Prove that if X   
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p  R, then { 0, 1 }X is separable.

g)  Prove that if X   
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f  R and B∗ is any basis for { 0, 1 }X, then B∗   
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f  R and { 0, 1 }X is
not separable.
h)  Prove that every pairwise disjoint collection of open subsets of { 0, 1 }X is countable.

Observe that if X   

€ 

f  R, then { 0, 1 }X provides an example of the type mentioned in the
remark following Addition Problem I.11+: a non-separable regular Hausdorff space in
which every pairwise disjoint collection of open subsets is countable.

Remark.  It follows that { 0, 1 } R is a separable regular Hausdorff space satisfying
{ 0, 1 } R ≈ P(R).  Hence, that the estimate of Additional Problem I.16+. b) can't be
improved.  Also this is the sort of space needed in Additional Problem I.17+. b).
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Problem I.19+.  This problem outlines the rather lengthy construction of a
separable Hausdorff space Y with the property that if B is any basis for Y, then B ≈
P(P(R))).  Prove the propositions labelled a) through m).

To begin, let X denote an infinite set.  Assume N × X ≈ X.  (As we remarked in
Problem I.12+. b), this can be proved if X = N or R or if X well-ordered.  Later we will set
X = R.)  An ultrafilter on X is a collection α of subsets of X satisfying

i)  A, B ∈ α ⇒ A ∩ B ∈ α,

ii)  A ∈ α and A ⊂ B ⊂ X ⇒ B ∈ α, and

iii)  ∀ A ⊂ X, exactly one of A and X – A is an element of α.

(It follows that X ∈ α and ∅ ∉ α.)

Let U denote the set of all ultrafilters on X.

For each x ∈ X, set αx = { A ⊂ X : x ∈ A }.

a) Prove that for each x ∈ X, αx is an ultrafilter on X.

The ultrafilters of the form αx (where x ∈ X) are called principal ultrafilters on X.  Let Up
denote the set of all principal ultrafilters on X.

A collection σ of subsets of X has the finite intersection property if for all finite
sequences S1, S2, … , Sn of elements of σ, 
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Sii =  1

n
I  ≠ ∅.

b)  Prove that if σ is a collection of subsets of X with the finite intersection property,
then there is an ultrafilter α on X such that σ ⊂ α.

A collection σ of subsets of X is independent if for all finite sequences S1, S2, … ,
Sm, T1, T2, … , Tn of distinct elements of σ, 

  

€ 

 Sii =  1

m
I  ( ) ∩ 

  

€ 

  X –  Tj ( ) j =  1

n
I( ) ≠  ∅.

c)  Prove that if σ is an independent collection of subsets of X, then for each subset τ of
σ, there is an ultrafilter ατ on X such that τ ∪ { X – S : S ∈ σ – τ } ⊂ ατ.  Also prove that
the function τ   

€ 

a ατ : P(σ) → U is one-to-one.  Conclude that P(σ)   

€ 

p  U.

d)  Prove that there exists an independent collection σ of subsets of X such that
σ ≈ P(X).

Outline of proof of d):  For any set S, let F(S) denote the collection of all finite subsets
of S.  Set Y = F(X) ×  F(F(X)).

i)  Prove X ≈ Y.
For every A ⊂ X, define A* ⊂ Y by A* = { ( F, Φ ) ∈ Y : F ∩ A ∈ Φ }.
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ii)  Prove that the function A   

€ 

a A* : P(X) → P(Y) is one-to-one.

iii)  Prove that { A* : A ∈ P(X) } is an independent collection of subsets of Y.

iv)  Prove that there exists an independent collection σ of subsets of X such that σ ≈
P(X).

e)  Prove that U ≈ P(P(X)).

f)  Prove that U is an independent collection of subsets of P(X).

Set B =

{ 
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 αii =  1

m
I  ( ) ∩ 

    

€ 

  P(X) –  βj ( ) j =  1

n
I( )  : m, n ∈ N and α1, … , αm, β1, … , βn ∈ U },

and set Bp =

{ 
  

€ 

 αii =  1

m
I  ( ) ∩ 

    

€ 

  P(X) –  βj ( ) j =  1

n
I( )  : m, n ∈ N and α1, … , αm, β1, … , βn ∈ Up }.

g)  Prove that B is a basis for a topology T on P(X), and Bp is a basis for a topology
Tp on P(X) such that Tp ⊂ T.

h)  Prove that for every A ∈ P(X), if B(A) is any basis for T at A, then B(A) ≈
P(P(X)).

i)  Prove that ( P(X), Tp ) and ( P(X), T ) are Hausdorff spaces.

(Parenthetical observation: Identify P(X) with { 0, 1 }X by identifying each
subset A of X with its characteristic function χA : X → {0,1}. (χA(x) = 1 if x ∈ A and χA(x) =
0 if x ∈ X – A.)  Observe that this identification carries the topology Tp onto the topology
defined on { 0, 1 }X in Additional Problem I.18+.)

Now set X = R.

j)  Prove that ( P(R), Tp ) is separable.

Let Δ be a countable dense subset of ( P(R), Tp ).
Set T  # = { ( α – Δ ) ∩ ( β ∩ Δ ) : α ∈ T, β ∈ Tp, and α ⊂ β }.

k)  Prove that T  # is a topology on P(R), and Tp ⊂ T  #.

l)  Prove that ( P(R), T  # ) is a separable Hausdorff space.



Additional Problems – 9

m)  Prove that for every A ∈ P(R) – Δ, if B #(A) is any basis for T  # at A, then
B #(A) ≈ P(P(R)).  Conclude that if B # is any basis for T  #, then B # ≈ P(P(R)). 

Problem I.20+.  A space X is completely normal if it has the following property: if
A and B are subsets of X satisfying cl(A) ∩ B = ∅ = A ∩ cl(B), then A and B have
disjoint neighborhoods in X.  Prove that every metric space is completely normal.

Problem I.21+. a)  Let X be an infinite set with the finite complement topology,
and let { xn } be a sequence of distinct points of X.  Observe that X is T1 but not
Hausdorff.  Prove that { xn } converges to every point of X.
b)  Prove that if X is a Hausdorff space, then every converging sequence in X has a
unique limit.
c)  Assume X is a first countable space.  Prove: X is Hausdorff  ⇔  every converging
sequence in X has a unique limit.
d)  Find a space which is not first countable and not Hausdorff in which every
converging sequence has a unique limit.

Remark.  The following two problems are related to Example I.17.

Problem I.22+.  Suppose that the topological space X has a subset Y with the
following two properties.

i)  For each y ∈ Y, { Wn(y) : n ∈ N } is a basis for X at y such that Wn+1(y) ⊂ Wn(y) for
each n ∈ N.

ii)  There is a bijection t   

€ 

a yt : R → Y satisfying the condition: for each s ∈ R and each
n ∈ N, there is a δ > 0 such that if t ∈ R and | s – t | < δ, then Wn(ys) ∩ Wn(yt) ≠ ∅.

a)  Prove that the sets { yt : t ∈ Q } and { yt : t ∈ R – Q } don't have disjoint
neighborhoods in X.  (Here Q denotes the set of rational numbers.)

Assume that the set Y has no limit points in X.
b)   Prove that X is not normal.

Problem I.23+.  Prove that if a separable space X has a subset Y which has no
limit points in X such that Y ≈ R, then X is not normal.
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G. Subspaces and Finite Product Spaces

Problem I.24+.  Let X and Y be topological spaces and let A ⊂ X and B ⊂ Y.
Prove that fr( A × B ) = ( fr(A) × B ) ∪ ( A × fr(B) ).

Problem I.25+.  Recall the definition of completely normal from Additional
Problem I.20+.  A space X is hereditarily normal if each subspace of X is normal.  Prove
that for a space X, the following three assertions are equivalent.
i)  X is completely normal.
ii)  If Y is a subspace of X, then any two disjoint relatively closed subsets of Y have
disjoint neighborhoods in X.
iii)  X is hereditarily normal.

The following problem describes a space with properties similar to the space
described in Example I.18.  This problem is an alternative version of Problem I.21.

Problem I.26+.  Let Ω+ = Ω ∪ { ω+ } be the space described in Example I.11.  Set
Y = {0} ∪ { 1/n : n ∈ N }, and regard Y as a subspace of R.  Let Ω+ × Y have the product
topology.
a)  Prove that Ω+ × Y is a normal Hausdorff space.

b)  Prove that the subspace ( Ω+ × Y ) – { ( ω+, 0 ) } of Ω+ × Y is not normal.

c)  Is the space Ω+ × Y completely normal?

Problem I.27+.  Is every linearly ordered space completely normal?
(Equivalently: is every linearly ordered space hereditarily normal?)

Problem I.28+.  A space is hereditarily separable if each of its subspaces is
separable.  (Problem I.16 asks for a separable space which is not hereditarily
separable.)  Is every separable linearly ordered space hereditarily separable?


