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E. Closure and Convergence Properties

Topology provides a means of expressing concepts of limit, convergence and
closure.  Indeed, the basic definition of topology can easily be recast in terms of closed
sets rather than open sets.  The connection between topology and limit concepts
accounts for topology's fundamental role in analysis.

Definition.  A subset C of a topological space X is closed  if X – C is open.

Theorem I.14.  Let X be a topological space.
a)  ∅ and X are closed subsets of X.

b)  The intersection of any collection of closed subsets of X is a closed subset of X.
c)  The union of any finite collection of closed subsets of X is a closed subset of X.

Proof.  a)  Since X – ∅ = X and X – X = ∅ are open subsets of X, then ∅ and X
are closed subsets of X.

b)  Suppose C is a collection of closed subsets of X.  Then  { X – C : C ∈ C }  is a
collection of open subsets of X.  Therefore  ∪{ X – C : C ∈ C }  is an open subset of X.
By De Morgan's Laws  ∪{ X – C : C ∈ C }  =  X – ( ∩ C ).    Thus,  X – ( ∩ C ) is an
open subset of X.  Hence,  ∩ C is a closed subset of X.

c)  Suppose F is a finite collection of closed subsets of X.  Then
{ X – F : F ∈ F }  is a finite collection of open subsets of X.  Therefore
∩ { X – F : F ∈ F }  is an open subset of X.  By De Morgan's Laws
∩{ X – F : F ∈ F }  =  X – ( ∪ F ).    Thus,  X – ( ∪ F ) is an open subset of X.  Hence,
∪ F is a closed subset of X. 

Definition.  Let X be a topological space.  If x ∈ X, then any open subset of X
which contains x is called a neighborhood  of x in X.  If A ⊂ X, then any open subset of
X which contains A is called a neighborhood of A in X.

Theorem I.15.  Let X be a topological space.  Then:
a)  A subset U of X is open  if and only if  each point of U has a neighborhood which is
contained in U.
b)  A subset C of X is closed  if and only if  each point of X – C has a neighborhood
which is disjoint from C.

Problem I.9.  Prove Theorem I.15. a)
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Proof of Theorem I.15. b)  Let C ⊂ X.  Then: C is a closed subset of X
⇔  X – C is an open subset of X
⇔ (by part a) each point of X – C has a neighborhood which is contained in X – C
⇔  each point of X – C has a neighborhood which is disjoint from C. 

Definition.  Let X be a topological space, and let A ⊂ X.

The interior of A, denoted int(A) or 

€ 

A
o

, is the set  ∪{ U : U is an open set and U ⊂ A }.

The closure of A, denoted cl(A) or 

€ 

A , is the set  ∩{ C : C is a closed set and A ⊂ C }.

The frontier or boundary of A, denoted fr(A) or bdy(A), is the set cl(A) – int(A) = 

€ 

A  – 

€ 

A
o

.

Theorem I.16.  Let X be a topological space, and let A ⊂ X and x ∈ X.  Then:

a)  x ∈ int(A)  if and only if  some neighborhood of x is contained in A.

b)  x ∈ cl(A)  if and only if  every neighborhood of x intersects A.

c)  x ∈ fr(A)  if and only if  every neighborhood of x intersects both A and X – A.

Proof of a).  Observe that the following sequence of equivalences is valid:
x ∈ int(A)  ⇔  there is an open set U such that U ⊂ A and x ∈ U  ⇔

some neighborhood of x is contained in A.

This proves assertion a).

Proof of b).  Observe that the following sequence of implications is valid:
There is a neighborhood U of x such that U ∩ A = ∅  ⇒

X – U is a closed set and A ⊂ X – U  ⇒

cl(A) ⊂ X – U  ⇒  cl(A) ∩ U = ∅  ⇒  x ∉ cl(A).

Hence, if x ∈ cl(A), then every neighborhood of x intersects A.

Next observe that the following sequence of implications is valid:
x ∉ cl(A)  ⇒  there is a closed set C such that A ⊂ C and x ∉ C  ⇒

X – C is a neighborhood of x in X and ( X – C ) ∩ A = ∅.

Hence, if every neighborhood of x intersects A, then x ∈ cl(A).

This completes the proof of assertion b).
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Proof of c).  By part b) of this theorem:
x ∈ cl(A)  ⇔  every neighborhood of x intersects A.

By part a) of this theorem:
x ∉ int(A)  ⇔  no neighborhood of x is contained in A

⇔  every neighborhood of x intersects X – A.

Hence:
x ∈ fr(A)  ⇔  x ∈  cl(A) – int(A)  ⇔  x ∈ cl(A) and x ∉ int(A)  ⇔

every neighborhood of x intersects A and every neighborhood of x intersects X – A
⇔ every neighborhood of x intersects both A and X–A.

This completes the proof of assertion c). 

Corollary I.17.  A subset D of a topological space X is dense if and only if
cl(D)  =  X.

Exercise.  Prove Corollary I.17.

Theorem I.18.  Let X be a topological space, and let A, B ⊂ X.

a)  int(A) is an open set, and cl(A) and fr(A) are closed sets.
b)  int(A) ⊂ A ⊂ cl(A), int(A) ∩ fr(A) = ∅, and int(A) ∪ fr(A) = cl(A).

c)  A is a closed set  if and only if  cl(A) = A  if and only if  fr(A) ⊂ A;  and
A is an open set  if and only if  int(A) = A  if and only if  fr(A) ∩ A = ∅.

d)  int(A) = X – cl( X – A ),  cl(A) = X – int( X – A ),  and
fr(A) = cl(A) ∩ cl( X – A ) = X – ( int(A) ∪ int( X – A ) ).

e)  If A ⊂ B, then int(A) ⊂ int(B) and cl(A) ⊂ cl(B).

f)  int( A ∩ B ) = int(A) ∩ int(B),  int( A ∪ B ) ⊃ int(A) ∪ int(B),
cl( A ∪ B ) = cl(A) ∪ cl(B),  and  cl( A ∩ B ) ⊂ cl(A) ∩ cl(B).

Proof of Theorem I.18. a), b), c), e) and f).

a)  Since int(A) is, by definition, a union of open sets, it is an open set.

Since cl(A) is, by definition, an intersection of closed sets, then it is a closed set
by Theorem I.14. b).

Since fr(A) = cl(A) ∩ ( X – int(A) ), then fr(A) is an intersection of closed sets.  So
fr(A) is a closed set.
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This completes the proof of a).

b)  Since int(A) is, by definition, a union of subsets of A, then int(A) ⊂ A.

Since cl(A) is, by definition, an intersection of sets which contain A, then A ⊂
cl(A).  

Since fr(A) = cl(A) – int(A), then fr(A) ∩ int(A) = ∅.

Since fr(A) = cl(A) – int(A), then cl(A) ⊂ int(A) ∪ fr(A).  Since int(A) ⊂ A ⊂ cl(A)
and fr(A) = cl(A) – int(A) ⊂ cl(A), then int(A) ∪ fr(A) ⊂ cl(A).  Thus, cl(A) = int(A) ∪ fr(A).

This completes the proof of b).

c)  First we prove: A is a closed set ⇔ cl(A) = A.

Assume A is a closed set.  cl(A) is, by definition, the intersection of all the closed
sets that contain A and A is such a set.  Thus, cl(A) ⊂ A.  Since it is also true that A ⊂
cl(A) by part b), then we conclude that cl(A) = A.

Conversely, if cl(A) = A, then A is a closed set by part a).

Next we prove: cl(A) = A ⇔ fr(A) ⊂ A.

Since fr(A) = cl(A) – int(A) ⊂ cl(A), then cl(A) = A implies fr(A) ⊂ A.

Assume fr(A) ⊂ A.  int(A) ⊂ A by part b). Since cl(A) = int(A) ∪ fr(A), then it
follows that cl(A) ⊂ A.  Since it is also true that A ⊂ cl(A) by part b), then we conclude
that cl(A) = A.

Third, we prove: A is an open set ⇔ int(A) = A.

Assume A is an open set.  int(A) is, by definition, the union of all the open sets
that are contained in A, and A is such a set.  Hence, A ⊂ int(A).  Since it is also true that
int(A) ⊂ A by part b), then we conclude that  int(A) = A.

Conversely, if int(A) = A, then A is an open set by part a).

Finally, we prove: int(A) = A  ⇔  fr(A) ∩ A = ∅.

Since, by part b), int(A) ∩ fr(A) = ∅, then int(A) = A implies A ∩ fr(A) = ∅.
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Assume fr(A) ∩ A = ∅.  Since, by part b), A ⊂ cl(A) = int(A) ∪ fr(A), then it follows
that A ⊂ int(A). Since it is also true that int(A) ⊂ A by part b), then we conclude that
int(A) = A.

This completes the proof of c).

e)  Assume A ⊂ B.

Since int(A) ⊂ A, then int(A) ⊂ B.  Also int(A) is an open set.  Since int(B) is the
union of all the open sets that are contained in B, it follows that int(A) ⊂ int(B).

Since B ⊂ cl(B), then A ⊂ cl(B).  Also cl(B) is a closed set.  Since cl(A) is the
intersection of all the closed sets that contain A, it follows that cl(A) ⊂ cl(B).

This completes the proof of e).

f)  Since A ∩ B ⊂ A  and A ∩ B ⊂ B, then part e) implies int( A ∩ B ) ⊂ int(A) and
int( A ∩ B ) ⊂ int(B).  Hence, int( A ∩ B ) ⊂ int(A) ∩ int(B).  On the other hand, since by
parts a) and b), int(A) is an open subset of A and int(B) is an open subset of B, then
int(A) ∩ int(B) is an open subset of A ∩ B.  Since int( A ∩ B ) is the union of all open
subsets of A ∩ B, then it follows that int(A) ∩ int(B) ⊂ int( A ∩ B ).  We conclude that
int( A ∩ B ) = int(A) ∩ int(B).

Since A ⊂ A ∪ B and B ⊂ A ∪ B, then part e) implies int(A) ⊂ int( A ∪ B ) and
int(B) ⊂ int( A ∪ B ).  Hence, int(A) ∪ int(B) ⊂ int( A ∪ B ).

Since A ⊂ A ∪ B and B ⊂ A ∪ B, then part e) implies cl(A) ⊂ cl( A ∪ B ) and cl(B)
⊂ cl( A ∪ B ).  Hence, cl(A) ∪ cl(B) ⊂ cl( A ∪ B ).  On the other hand, since by parts a)
and b), cl(A) is a closed set containing A and cl(B) is a closed set containing B, then
cl(A) ∪ cl(B) is a closed set containing A ∪ B.  Since cl( A ∪ B ) is the intersection of all
the closed sets that contain A ∪ B, then it follows that cl(A) ∪ cl(B) ⊃ cl( A ∪ B ).  We
conclude that cl(A) ∪ cl(B) = cl( A ∪ B ).

Finally, since A ∩ B ⊂ A  and A ∩ B ⊂ B, then part e) implies cl( A ∩ B ) ⊂ cl(A)
and cl( A ∩ B ) ⊂ cl(B).  Hence, cl( A ∩ B ) ⊂ cl(A) ∩ cl(B).

This completes the proof of f). 

Problem I.10.  Prove Theorem I.18 d).    Also give examples which show that the
inclusions int( A ∪ B ) ⊃ int(A) ∪ int(B) and cl( A ∩ B ) ⊂ cl(A) ∩ cl(B) in I.18 f) can’t be
replaced by equalities.  In other words, give examples of subsets A and B of a
topological space X such that  int( A ∪ B ) ≠ int(A) ∪ int(B)  and  cl( A ∩ B ) ≠
cl(A) ∩ cl(B).
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Suggestion:  Look for ways to shorten and simplify your proof of I.18 d) by
exploiting the parts of Theorem I.18 that are already proved.

Definition.  Let X be a topological space, and let A ⊂ X and x ∈ X.  x is a limit
point or accumulation point of A if for every neighborhood U of x in X, U ∩ ( A – {x} ) ≠
∅. Thus, x is a limit point of A  ⇔  x ∈ cl( A – {x} ).  The set of all limit points of A is
called the derived set of A and is denoted A´.

Theorem I.19.  If A is a subset of a topological space X, then
a)  cl(A) = A ∪ A´,   and     b)  A is a closed set  if and only if  A´ ⊂ A.

Proof.  a)  A ⊂ cl(A), by Theorem I.18 b).  Also,

x ∈ A´  ⇒  every neighborhood of x intersects A – {x}  ⇒

every neighborhood of x intersects A  ⇒  x ∈ cl(A) by Theorem I.16 b).

Hence, A´  ⊂ cl(A).  It follows that A ∪ A´  ⊂  cl(A).

Note that:
x ∈ cl(A) – A  ⇒  x ∈ cl(A) and x ∉ A  ⇒

every neighborhood of x intersects A (by Theorem I.15 b))  and  A = A – {x}
⇒  every neighborhood of x intersects A – {x}  ⇒  x ∈ A´.

Hence, cl(A) – A ⊂ A´.  It follows that cl(A) ⊂ A ∪ A´.

We conclude that cl(A) = A ∪ A´.  This completes the proof of a).

b)  Observe that:
A´ ⊂ A  ⇔  A ∪ A´ = A  ⇔  cl(A) = A (by part a) of this theorem)

⇔  A is a closed set (by Theorem I.18 c)).

This completes the proof of b). 

Theorem I.20.  In a second countable space, every uncountable subset contains
a limit point of itself.

Problem I.11.  Prove Theorem I.20.

Remark.  This theorem can be strengthened.  There is an Additional Problem
that asks for a proof of a theorem with the same hypothesis as Theorem I.20 but with a
significantly stronger conclusion.
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Definition.  Let X be a set.  A sequence in X is a function from N = { 1, 2, 3, ... }
to X.  If x : N → X is a sequence in X, then we also denote x by { xn } where xn = x(n) for
n ∈ N.

Definition.  Let X be a topological space, let { xn } be a sequence in X, and let y
∈ X.  { xn } converges to y if for every neighborhood U of y in X, there is an n ∈ N such
that i ≥ n  ⇒  xi ∈ U.  If { xn } converges to y, we also say y is a limit of { xn }, and we
write  y = lim xn  and  { xn } → y.

Theorem I.21.  Let X be a topological space, and let A ⊂ X and x ∈ X.

a)  If x is a limit of a sequence in A, then x ∈ cl(A).

b)  Assume X is a first countable space.  Then
x ∈ cl(A)  if and only if  x is a limit of a sequence in A.

Proof. a)  If x is a limit of a sequence in A, then, clearly, every neighborhood of x
intersects A.  So x ∈ cl(A) by Theorem I.16 b).

b)  Assume X is a first countable space.  Then there is a countable basis
{ Un : n ∈ N } for X at x.  We can assume U1 ⊃ U2 ⊃ U3 ⊃ ...  by replacing Un by
U1 ∩ U2 ∩ ... ∩ Un for each n ∈ N.  Suppose x ∈ cl(A).  Then Theorem I.16 b) implies
that each Un intersects A.  So for each n ∈ N, we can choose a point an ∈ Un ∩ A.  Then
{ an } is a sequence in A.  To show { an } → x, let V be a neighborhood of x in X.  Then
there is an n ∈ N such that  Un ⊂ V.  Now i ≥ n  ⇒  xi ∈ Ui ⊂ Un ⊂ V.  This proves { an } →
x.  So x is a limit of a sequence in A.  The converse direction of b) follows from a). 

Corollary I.22.  Let X be a topological space, and let A ⊂ X.

a)  If A is a closed set, then every point of X which is a limit of a sequence in A belongs
to A.
b)  Assume X is a first countable space.  Then A is a closed set if and only if every point
of X which is a limit of a sequence in A belongs to A. 

Problem I.12.  This problem illustrates that the first countability hypothesis can't
be omitted in either Theorem I.21 b) or its corollary.  Recall the space Ω+ = Ω ∪ { ω+ }
defined in Example I.11.

a)  Prove that ω+ is not the limit of any sequence in Ω.

b)  Prove that ω+ ∈ cl(Ω).

Hence, every point of Ω+ which is a limit of a sequence in Ω belongs to Ω, but Ω is not a
closed subset of Ω+.
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F. Separation Properties

The separation properties – T1, Hausdorff, regular and normal – are fundamental
topological properties that can be used to distinguish among spaces.  Linearly ordered
spaces and metric spaces possess all four of these properties.  Examples I.16 and I.17,
presented below, describe spaces which satisfy one separation property but not
another.  These spaces are two of the more interesting examples in these notes.

Definition. The Separation Properties.  Let X be a topological space.
a)  X is a T1 space  if for all x, y ∈ X such that x ≠ y, there is a neighborhood U of x such
that y ∉ U.

b)  X is a Hausdorff  or T2 space  if for all x, y ∈ X such that x ≠ y, there are
neighborhoods U of x and V of y such that U ∩ V = ∅.

c)  X is a regular  or T3 space  if for every x ∈ X and for every closed subset C of X such
that x ∉ C, there are neighborhoods U of x and V of C such that U ∩ V = ∅.

d)  X is a normal  or T4 space  if for all closed subsets C and D of X such that C ∩ D =
∅, there are neighborhoods U of C and V of D such that U ∩ V = ∅.

Theorem I.23.  Let X be a topological space.
a)  X is a T1 space  if and only if  for every x ∈ X, { x } is a closed set.

b)  X is a regular space  if and only if  for every x ∈ X and for every neighborhood U of
x, there is a neighborhood V of x such that cl(V) ⊂ U.

c)  X is a normal space  if and only if  for every closed subset C of X and for every
neighborhood U of C, there is a neighborhood V of C such that cl(V) ⊂ U.

Proof.  a)  Assume X is a T1 space.  Let x ∈ X.  Then for each y ∈  X – { x } ,
there is a neighborhood Uy of y such that x ∉ Uy.  It follows that ∪ { Uy : y ∈ X – { x } }
=  X – { x }.  Thus, X – { x } is a union of open sets.  So  X – { x }  is an open set.  We
conclude that { x } is a closed set.

For the converse, assume that for each x ∈ X, { x } is a closed set.  To prove that
X is a T1 space, let x and y be distinct points of X.  Since { y } is a closed set, then
X – { y }  is a neighborhood of x that doesn't contain y.  This proves X is a T1 space.

b)  Assume X is a regular space.  Let x ∈ X and let U be a neighborhood of x.
Set C  =  X – U.  Then C is a closed set not containing the point x.  Since X is a regular
space, it follows that there are neighborhoods V of x and W of C such that V ∩ W  =  ∅.
Since V ∩ W  =  ∅,  then V ⊂ X – W.  Since X – W is a closed set, it follows that cl(V) ⊂
X – W.  Hence, cl(V) ∩ W = ∅.  Since C ⊂ W, then cl(V) ∩ C = ∅.  Thus, cl(V) ⊂ X – C =
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U.  We conclude that V is a neighborhood of x such that cl(V) ⊂ U.

For the converse, assume that for every x ∈ X and for every neighborhood U of
x, there is a neighborhood V of x such that cl(V) ⊂ U.  To prove X is a regular space, let
x ∈ X and let C be a closed set not containing x.  Then X – C is a neighborhood of x.
Hence, there is a neighborhood V of x such that cl(V) ⊂ X – C.  Thus, C ⊂ X – cl(V).
Since V ⊂ cl(V)  and cl(V) is a closed set, then V and X – cl(V) are disjoint open sets.
Furthermore, x ∈ V and C ⊂ X – cl(V).  This proves X is regular.

c)  Assume X is normal space.  Let C be a closed subset of X and let U be a
neighborhood of C.  Set D = X – U.  Then C and D are disjoint closed subsets of X.
Since X is a normal space, it follows that there are neighborhoods V of C and W of D
such that V ∩ W = ∅.  Since V ∩ W = ∅,  then V ⊂ X – W.  Since X – W is a closed set,
it follows that cl(V) ⊂ X – W.  Hence, cl(V) ∩ W = ∅.  Since D ⊂ W, then cl(V) ∩ D = ∅.
Thus, cl(V) ⊂ X – D = U.  We conclude that V is a neighborhood of C such that cl(V)  ⊂
U.

The following problem finishes this proof. 

Problem I.13.  Prove Theorem I.23 c) ⇐.

Theorem I.24. a)  Every Hausdorff space is T1.
b)  Every regular T1 space is Hausdorff.
c)  Every normal T1 space is regular.

Proof. a)  Assume X is a Hausdorff space.  If x and y are distinct points of X,
then there are disjoint neighborhoods U of x and V of y.  Hence, y ∉ U.  This proves X is
T1.

b)  Assume X is a regular T1 space.  To prove that X is Hausdorff, let x and y be
distinct points of X.  Then { y } is a closed subset of X by Theorem I.23 a).  Since X is
regular, it follows that x and { y } have disjoint neighborhoods.  This proves X is
Hausdorff.

c)  Assume X is a normal T1 space.  To prove that X is regular, let x ∈ X and let C
be a closed set not containing x.  Then { x } is a closed subset of X by Theorem I.23 a).
Since X is normal, it follows that { x } and C have disjoint neighborhoods.  This proves X
is regular. 

Corollary.  Every normal T1 space is Hausdorff and regular.

Theorem I.25.  Every metric space is T1, Hausdorff, regular, and normal.
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Proof.  Since, according to Theorem I.24, a Hausdorff space is T1 and a T1
normal space is regular, then it suffices to prove that every metric space is Hausdorff
and normal.

Let ( X, ρ ) be a metric space.  To prove that X is Hausdorff, let x and y be distinct
points of X.  Set ε = (1/2)ρ(x,y).  ε > 0 because x ≠ y.  Set U = N(x,ε) and V = N(y,ε).
Then U and V are neighborhoods of x and y, respectively.  It remains to show that
U ∩ V = ∅.  To this end, assume U ∩ V ≠ ∅.  Then there is a point z ∈ U ∩ V.  Hence,
z ∈ N(x,ε) and z ∈ N(y,ε).  Therefore,

2ε  =  ρ(x,y)  ≤  ρ(x,z) + ρ(z,y)  <  ε + ε  =  2ε.

Thus, 2ε < 2ε.  We have reached a contradiction.  We conclude that U ∩ V = ∅.  This
proves X is Hausdorff.

The following problem finishes this proof. 

Problem I.14.  Prove that every metric space is normal.

Remark.  Metric spaces satisfying a strong form of normality called complete
normality.  A space X is completely normal if for any two subsets A and B of X satisfying
cl(A) ∩ B = ∅ = A ∩ cl(B), there are neighborhoods U of A and V of B such that U ∩ V =
∅.  The proof that every metric space is completely normal is assigned as an Additional
Problem.

Exercise.  Show that there are simple topological spaces having none of the
separation properties by finding a topology on a three point set that is not T1, not
Hausdorff, not regular and not normal.

Next we explore the question of which of the separation properties are enjoyed
by the spaces described in Examples I.1 through I.15.

We begin by observing that if A and B are disjoint subsets of a space X and if B =
∅, then X and ∅ are disjoint neighborhoods of A and B, respectively.  Thus, when
deciding whether a space is regular or normal, one need only consider non-empty
closed sets.  Armed with this observation, we note that, by default, a one-point space X
= { x } has all the separation properties: T1, Hausdorff, regular and normal, because X
doesn’t contain distinct points, X doesn’t contain a point that is disjoint from a non-
empty closed set, and X doesn’t contain two disjoint non-empty closed sets.

If a space X has more than one point and is endowed with the indiscrete topology
(Example I.1), then X is clearly not T1 and not Hausdorff.  However, X is regular and
normal by default, because it doesn’t contain a point that is disjoint from a non-empty
closed set, and it doesn’t contain two disjoint non-empty closed sets.
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A space X with the discrete topology (Example I.2) enjoys all the separation
properties because any two disjoint subsets of X, being open, are disjoint
neighborhoods of themselves.

The space X = { x, y, z } described in Example I.3 is neither T1 nor Hausdorff,
because every neighborhood of the point z also contains the point x.  This space is not
regular because the point x and the closed set { y, z } don’t have disjoint neighborhoods.
However, X = { x, y, z } is normal.  Indeed, the only pairs of non-empty disjoint closed
sets in this space are { y }, { z } and { y }, { x, z }; and the pair { y }, { x, z } of disjoint
open sets contains the sets of each of these pairs.

Problem I.15(4).  Decide whether or under what conditions the set X endowed
with the finite completement topology (described in Example I.4) is a) T1, b) Hausdorff,
c) regular, d) normal.

Since R and Rn (Examples I.5 and I.6) are metrizable, then Theorem I.25 implies
that they enjoy all the separation properties.

Problem I.15(7).  Decide whether the space Rbad (described in Example I.7) is a)
T1, b) Hausdorff, c) regular, d) normal.

The space X = ( N × N ) ∪ { ∞ } described in Example I.8 is Hausdorff and normal
(and, hence, T1 and regular by Theorem I.24.)  Recall that every subset of N × N is open
in X.  To verify the assertion that X is Hausdorff, first observe that if p = (m,n) ∈ N × N
and we define the function f : N → N to be the constant function f(x) = n + 1, then
X – { p } = ( ( N × N ) – { p } ) ∪ N(f).  Since ( N × N ) – { p } and N(f) are both open
subsets of X, then we conclude that X – { p } is an open subset of X.  Now suppose p
and q are distinct points of X.  We can assume p ≠ ∞.  Then the preceding observation
implies that { p } and X – { p } are disjoint neighborhoods of p and q, respectively.  This
proves X is a Hausdorff space.  It is easier to verify the assertion that X is a normal
space.  Suppose A and B are disjoint closed subsets of X.  We can assume ∞ ∉ A.
Then A and X – A are disjoint neighborhoods of A and B, respectively, leading us to
conclude that X is a normal space.

Next we consider three linearly ordered spaces: [ 0, 1 ]2 with the lexicographic
order described in Example I.9, and the well ordered spaces Ω and Ω+ described in
Examples I.10 and I.11 respectively.  The status of these three spaces with respect to
the separation properties is settled by the following result: all linearly ordered spaces
are all Hausdorff and normal (and, hence, T1 and regular by Theorem I.24).  Here is a
proof that every linearly ordered space is Hausdorff.  Assume that ( X, < ) is a linearly
ordered space and that x and y are distinct points of X.  We can assume that x < y.  We
must consider two cases: either the open interval ( x, y ) is empty or non-empty.  If
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( x, y ) ≠ ∅, choose z ∈ ( x, y ).  In this case ( –∞, z ) and ( z, ∞ ) are disjoint
neighborhoods of x and y, respectively.  On the other hand, if ( x, y ) = ∅, then ( –∞, y )
and ( x, ∞ ) are disjoint neighborhoods of x and y, respectively.  Since x and y have
disjoint neighborhoods in either case, we conclude that X is a Hausdorff space.  The
proof that linearly ordered spaces are normal is long and logically complicated, requiring
the consideration of a complex tree of alternative cases.  (We just saw that the proof
that linearly ordered spaces are Hausdorff requires a bifurcation into two cases.  The
proof of normality is much more involved.)  The proof of normality of linearly ordered
spaces is assigned as an Additional Problem.  We can give ad hoc arguments to settle
the question of normality for [ 0, 1 ]2, Ω and Ω+ without appealing to the general result
that all linearly ordered spaces are normal.  For instance, information acquired in a later
chapter will allow us to give straightforward proofs of the normality of [ 0, 1 ]2 and Ω+,
because both these spaces are compact and Hausdorff.  Also the solution to Problem
I.15(7) which settles the normality of Rbad can be adapted to show that the well ordered
spaces Ω and Ω+ are normal.  This is because well ordered spaces and Rbad have a
common characteristic that is instrumental in settling the issue of their normality.

Exercise.  Modify the solution to Problem I.15(7) settling the normality of Rbad into
a proof that every well ordered linearly ordered space is normal.

The spaces described in Examples I.12 through I.15 – a set with the discrete
metric, R with the standard metric, Rn with either the taxicab, Euclidean or supremum
metric, and B(X) with the supremum metric – are all metrizable.  Hence, they are T1,
Hausdorff, regular and normal by Theorem I.25.

Theorem I.24 establishes various logical connections between the separation
properties.  We could conjecture other relationships between the separation properties
such as: every Hausdorff space is regular, and every regular space is normal.  The
following two examples illustrate the limitations on such conjectures.

Example I.16.  Let T denote the standard topology on R, and let Q denote the
set of rational numbers.  Set B Q = { {x} ∪ ( U ∩  Q ) : x ∈ U ∈ T }.  Then B Q is a basis for
a non-standard topology on R called the rational topology on R.

Exercise.  Verify that B Q is a basis for a topology on R.

Observe that R with the rational topology is separable.  Indeed, since every
element of the basis B Q has non-empty intersection with Q, then Q is a countable dense
subset of this space.  Also observe that for each x ∈  R, the countable collection

{ {x} ∪ ( ( x – 1/n, x + 1/n ) ∩  Q ) : n ∈  N }
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is a basis for the rational topology at x.  Hence, R with the rational topology is first
countable.  We assert that R with the rational topology is not second countable.  To
prove this, suppose B is any basis for R with the rational topology.  We will prove that
B is uncountable.  Since B is a basis for R with the rational topology, then for each
irrational number x ∈  R – Q, there is a Bx ∈  B such that

x ∈ Bx ⊂ {x} ∪ ( ( x – 1, x + 1 ) ∩  Q ).

Observe that for each x ∈  R – Q, x is the only irrational number which is an element of
the set Bx.  Thus, if x and y are distinct elements of R – Q, then Bx ≠ By.  Therefore, the
function x   

€ 

a Bx : ( R – Q ) → B�� is injective.  Since R – Q is uncountable, the B must
also be uncountable.  This proves that R with the rational topology does not have a
countable basis.  We conclude that R with the rational topology is not second countable.
Finally, since R with the rational topology is separable but not second countable, then R
with the rational topology is not metrizable by Theorem I.13.

Problem I.15(16).  Decide whether R with the rational topology (described in
Example I.16) is a) T1, b) Hausdorff, c) regular, d) normal.

Example I.17.  Let   

€ 

R+
2  = R × [0,∞) = { (x,y) ∈ R2 : y ≥ 0 }.  Let ρ2 denote the

Euclidean metric on R2; and for p ∈ R2 and ε > 0, let N(p,ε) = { q ∈ R2 : ρ2(p,q) < ε }.
Observe that if (x,y) ∈ R2 and 0 < ε ≤ y, then N((x,y),ε) ⊂   

€ 

R+
2 .  For x ∈ R and ε > 0, set

B(x,ε) = { (x,0) } ∪ N((x,ε),ε).  Then the collection

{ N((x,y),ε) : (x,y) ∈   

€ 

R+
2  and 0 < ε ≤ y } ∪ { B(x,ε) : x ∈ R and ε > 0 }

is a basis for a (non-standard) topology on   

€ 

R+
2  called the bubble topology on   

€ 

R+
2 .

Exercise.  Verify that this collection is actually a basis for some topology on   

€ 

R+
2 .

                                                                                         ε
                                                                           p
                                                                                    N(p,ε)

                                       B(x,ε)         ε
                                                          (x,ε)
                                                               
                                                    (x,0)
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We observe the countable set D = { (x,y) ∈  Q × Q : y > 0 } is a dense subset of
  

€ 

R+
2  with the bubble topology.  This is because D has non-empty intersection with each

neighborhood of the form N((x,y),ε) where (x,y) ∈   

€ 

R+
2  and 0 < ε ≤ y.  [If we choose

rational numbers a ∈ ( x – ε/

€ 

2 , x + ε/

€ 

2  ) and b ∈ ( y – ε/

€ 

2 , y + ε/

€ 

2  ), then (a,b) ∈
D ∩ N((x,y),ε).]   Hence, D has non-empty intersection with every element of the given
basis for   

€ 

R+
2  with the bubble topology.  This makes D a countable dense subset of   

€ 

R+
2

with the bubble topology.  It follows that   

€ 

R+
2  with the bubble topology is separable.  For

(x,y) ∈   

€ 

R+
2  where y > 0, it is clear that the countable collection

{ N((x,y),1/n) : n ∈  N and 1/n ≤ y }

is a basis for   

€ 

R+
2  with the bubble topology at (x,y).  Also for x ∈ R, it is clear that the

countable collection { B(x,1/n) : n ∈  N } is a basis for   

€ 

R+
2  with the bubble topology at (x,0).

Hence,   

€ 

R+
2  with the bubble topology is first countable.  We assert that   

€ 

R+
2  with the

bubble topology is not second countable.  To prove this, suppose B is any basis for   

€ 

R+
2

with the bubble topology.  We will prove that B is uncountable.  Since B is a basis for
  

€ 

R+
2  with the bubble topology, then for each x ∈ R, there is a Bx ∈  B such that (x,0) ∈ Bx

⊂ B(x,1).  Observe that for each x ∈  R, (x,0) is the only point on the x-axis R × { 0 }
which is an element of the set Bx.  Thus, if x and y are distinct elements of R, then Bx ≠
By.  Therefore, the function x   

€ 

a Bx : R → B�� is injective.  Since R is uncountable, the B
must also be uncountable.  This proves that   

€ 

R+
2  with the bubble topology does not have

a countable basis.  We conclude that   

€ 

R+
2  with the bubble topology is not second

countable.  Finally, since   

€ 

R+
2  with the bubble topology is separable but not second

countable, then   

€ 

R+
2  with the bubble topology is not metrizable by Theorem I.13.

Problem I.15(17).  Decide whether   

€ 

R+
2  with the bubble topology (described in

Example I.17) is a) T1, b) Hausdorff, c) regular, d) normal.

The Additional Problems include two questions which might give the student
further insight into   

€ 

R+
2  with the bubble topology.
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G. Subspaces and Finite Product Spaces

There are a number of natural ways to generate new topological spaces from
given ones.  Two of the most fundamental of these are the formation of subspaces and
finite products of spaces.

Definition.  Let ( X, T� ) be a topological space, and let Y ⊂ X.  Let
T  |Y  =  { U ∩ Y : U ∈ T }.

Then T  |Y is a topology on Y called the subspace topology or relative topology on Y.
The topological space ( Y,  T  |Y ) is called a subspace  of ( X,  T  ).  The elements of T  |Y
are called (relatively ) open subsets of Y  and are said to be open in Y.   If C ⊂ Y and
Y – C ∈ T  |Y, then C is called a (relatively ) closed subset of Y  and is said to be closed
in Y.  By convention, a subset of a topological space is automatically assigned the
subspace topology, unless otherwise specified.

Theorem I.26.  Let ( X,  T ) be a topological space, and let Y ⊂ X.

a) T |Y  =  { U ∩ Y : U ∈ T }  is a topology on Y.

b)  If B is a basis for T, then B |Y  =  { B ∩ Y : B ∈ B }  is a basis for T |Y.

c)  If y ∈ Y and By is a basis for T at y, then By|Y  =  { B ∩ Y : B ∈ By }  is a basis for
T |Y at y.

d)  Let C ⊂ Y.  C is a closed subset of Y  if and only if  there is a closed subset D of X
such that C = D ∩ Y.

e)  If Z ⊂ Y, then T |Z = (T |Y)|Z.

f)  Suppose Y is an open subset of X.  Let U ⊂ Y.  Then U is an open subset of Y
if and only if  U is an open subset of X.
g)  Suppose Y is a closed subset of X.  Let C ⊂ Y.  Then C is a closed subset of Y
if and only if  C is a closed subset of X.
h)  If ρ is a metric on X which induces the topology T, then ρ|Y × Y is a metric on Y
which induces the topology T |Y.

Proof.  a)  i)  Since ∅ and X ∈ T, then ∅ = ∅ ∩ Y and Y = X ∩ Y ∈ T |Y.

ii)  Assume U ⊂ T |Y.  Then for each U ∈ U, there is a U* ∈ T such that U = U* ∩ Y.
Hence, ∪U =  ∪{ U* ∩ Y : U ∈ U }  =  ( ∪{ U* : U ∈ U } ) ∩ Y, and ∪{ U* : U ∈ U } ∈ T.
Therefore, ∪U ∈ T   |Y.
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iii)  Assume U and V ∈ T   |Y.  Then U = U* ∩ Y and V = V* ∩ Y where U* and V* ∈
T.  Hence, U ∩ V = ( U* ∩ Y ) ∩ ( V* ∩ Y ) = ( U* ∩ V* ) ∩ Y, and U* ∩ V* ∈ T.
Therefore, U ∩ V ∈ T |Y.

It follows that T |Y is a topology on Y.

b)  Assume that B is a basis for T.

i)  Let B ∈ B |Y.  Then B = B* ∩ Y where B* ∈ B.  Since B ⊂ T, then B* ∈ T.
Hence, B = B* ∩ Y ∈ T  |Y.  This proves B |Y ⊂ T |Y.

ii)  Let y ∈ U ∈ T |Y.  Then U = U* ∩ Y where U ∈ T.  Hence, y ∈ U* ∈ T.  Since B
is a basis for T, then there is a B* ∈ B such that y ∈ B* ⊂ U*.  Set B = B* ∩ Y.  Then
y ∈ B ∈ B |Y  and  B  =  B* ∩ Y  ⊂  U* ∩ Y  =  U.

It follows that B |Y is a basis for T |Y.

c)  Assume y ∈ Y and By is a basis for T at y.

i)  Let B ∈ By|Y.  Then B = B* ∩ Y where B* ∈ By.   Since By ⊂ T, then B* ∈ T.
Hence, B = B* ∩ Y ∈ T |Y.  This proves By|Y ⊂ T |Y.

ii)  Let B ∈ By|Y.  Then B = B* ∩ Y where B* ∈ By.  Hence, y ∈ B* and y ∈ Y.
Therefore, y ∈ B* ∩ Y = B.

iii)  Let y ∈ U ∈ T |Y.  Then U = U* ∩ Y where U ∈ T.  Hence, y ∈ U* ∈ T.  Since By
is a basis for T at y, then there is a B* ∈ By such that B* ⊂ U*.  Set B = B* ∩ Y.  Then
B ∈ By|Y  and  B  =  B* ∩ Y  ⊂  U* ∩ Y  =  U.

It follows that By|Y is a basis for T |Y at y.

d)  Let C ⊂ Y.

i)  Assume C is a closed subset of Y.  Then Y – C ∈ T |Y.  So Y – C =  U ∩ Y where
U ∈ T.  Set D = X – U.  Then D is a closed subset of X, and

C  =  Y – ( Y – C )  =  Y – ( U ∩ Y )  =  Y – U  =  ( X – U ) ∩ Y  =  D ∩ Y.

ii)  Conversely, assume there is a closed subset D of X such that C = D ∩ Y.  Set
U = X – D.  Then U ∈ T.  So U ∩ Y ∈ T |Y.  Also
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C  =  D ∩ Y  =  ( X – U ) ∩ Y  =  Y – U  =  Y – ( U ∩ Y ).

Hence, C is a closed subset of Y.

e)  Let Z ⊂ Y.

i)  Assume U ∈ T |Z.  Then U = U* ∩ Z where U* ∈ T.  Hence, U* ∩ Y ∈ T |Y.
Since U = U* ∩ Z = U* ∩ ( Y ∩ Z ) = ( U* ∩ Y ) ∩ Z, then it follows that U ∈ (T |Y)|Z.
This proves T |Z ⊂ (T |Y)|Z.

ii)  Assume U ∈ (T |Y)|Z.  Then U = U* ∩ Z where U* ∈ T |Y.  Hence U* = U** ∩ Y
where U** ∈ T.  Since U = U* ∩ Z = ( U** ∩ Y ) ∩ Z = U** ∩ ( Y ∩ Z ) = U** ∩ Z, then
U ∈ T |Z.  This proves (T |Y)|Z ⊂ T |Z.

We have shown that T |Z = (T |Y)|Z.

f)  Assume Y is an open subset of X and U ⊂ Y.

i)  Assume U is an open subset of Y.  Then U = U* ∩ Y where U* ∈ T.  Since both
U* and Y are open subsets of X, then so is U.

ii)  Conversely, assume U is an open subset of X.  Since U = U ∩ Y and U ∈ T, then
U is an open subset of Y.

g)  Assume Y is a closed subset of X and C ⊂ Y.

i)  Assume C is a closed subset of Y.  Then by part d) of this theorem, C = D ∩ Y
where D is a closed subset of X.  Since both D and Y are closed subsets of X, then so is
C.

ii)  Conversely, assume C is a closed subset of X.  Since C = C ∩ Y and C is a
closed subset of X, then part d) of this theorem implies that C is a closed subset of Y.

h)  Assume ρ is a metric on X which induces the topology T.  Set σ = ρ|Y × Y.
Then for y, z and x ∈ Y:

i)  σ(y,z) = 0 ⇔ ρ(y,z) = 0 ⇔ y = z,

ii)  σ(y,z) = ρ(y,z) = ρ(z,y) = σ(z,y), and

iii)  σ(y,z) = ρ(y,z) ≤ ρ(y,x) + ρ(x,z) = σ(y,x) + σ(x,z).

Hence, σ is a metric on Y.
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For y ∈ Y and ε > 0, set Nσ(y,ε) = { z ∈ Y : σ(y,z) < ε }; and for x ∈ X and ε > 0,
set Nρ(x,ε) = { y ∈ X : ρ(x,y) < ε }.  Set Bσ = { Nσ(y,ε) : y ∈ Y and ε > 0 }.  Then Bσ is a
basis for the topology on Y induced by the metric σ.

We will now prove that Bσ is also a basis for T  |Y.   To begin, observe that for
each y ∈ Y and ε > 0,

Nσ(y,ε)  =  { z ∈ Y : σ(y,z) < ε }  =  { z ∈ Y : ρ(y,z) < ε }

=  { z ∈ X : ρ(y,z) < ε } ∩ Y  =  Nρ(y,ε) ∩ Y.

i)  For each y ∈ Y and ε > 0, since Nρ(x,ε) ∈ T and Nσ(y,ε) = Nρ(y,ε) ∩ Y, then
Nσ(y,ε) ∈ T  |Y.  Hence, Bσ ⊂ T  |Y.

ii)  Let y ∈ U ∈ T  |Y.  Then U = U* ∩ Y where U* ∈ T.  Since y ∈ U* ∈ T, then by
Theorem I.10, Nρ(y,ε) ⊂ U* for some ε > 0.  Therefore,

y ∈ Nσ(y,ε) = Nρ(y,ε) ∩ Y  ⊂  U* ∩ Y  =  U.

This completes the proof that Bσ is a basis for T |Y.

Since Bσ is a basis for both the topology on Y induced by the metric σ and for
T |Y, then the Corollary to Theorem I.1 implies that these two topologies are equal; i.e.,
the topology on Y induced by the metric σ equals T |Y.  Therefore, σ = ρ|Y × Y induces
the topology T |Y on Y. 

Next we consider the extent to which the topological properties we have been
studying – separability, first and second countability, the separation properties and
metrizability – are inherited by subspaces.

Theorem I.27.  Let X be a topological space, and let Y be a subset of X with the
subspace topology.
a)  If X is second countable, then so is Y.
b)  If X is first countable, then so is Y.
c)  If X is T1, then so is Y.

d)  If X is Hausdorff, then so is Y.
e)  If X is regular, then so is Y.

f)   If X is metrizable, then so is Y.

Proof.  a)  Assume X is second countable.  Then the topology on X has a
countable basis B.  Theorem I.26 b) implies that B |Y = { B ∩ Y : B ∈ B } is a basis for
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the subspace topology on Y.  Since B is countable, then B |Y is also clearly countable.
Hence, Y is second countable.

b)  Assume X is first countable.  To prove that Y is first countable, let y ∈ Y.
Then the topology on X has a countable basis By at y.  Theorem I.26 c) implies that
By|Y = { B ∩ Y : B ∈ By } is a basis for the subspace topology on Y at y.  Since By is
countable, then By|Y is also clearly countable.  This proves Y is first countable.

c)  Assume X is T1.  To prove Y is T1, let y, z ∈ Y such that y ≠ z.  Since X is T1,
there is an open subset U of X such that  y ∈ U and z ∉ U.  Therefore, U ∩ Y is an open
subset of Y such that y ∈ U ∩ Y and z ∉ U ∩ Y.  This proves Y is T1.

d)  Assume X is Hausdorff.  To prove Y is Hausdorff, let y, z ∈ Y such that y ≠ z.
Since X is Hausdorff, there are disjoint open subsets U and V of X such that y ∈ U and
z ∈ V.  Therefore, U ∩ Y and V ∩ Y are disjoint open subsets of Y such that y ∈ U ∩ Y
and z ∈ V ∩ Y.  This proves Y is Hausdorff.

e)  Assume X is regular.  To prove Y is regular, let y ∈ Y and let C be a closed
subset of Y such that y ∉ C.  Then by Theorem I.26.d), C = D ∩ Y where D is a closed
subset of X.  Since y ∈ Y and y ∉ C, then y ∉ D.  Since X is regular, it follows that there
are disjoint open subsets U and V of X such that y ∈ U and D ⊂ V.   Then U ∩ Y and
V ∩ Y are disjoint open subsets of Y such that y ∈ U ∩ Y and C = D ∩ Y ⊂ V ∩ Y.  This
proves Y is regular.

f)  Assume X is metrizable.  Then there is a metric ρ on X that induces the
topology on X.  Therefore, Theorem I.26 h) implies that ρ|Y × Y is a metric on Y that
induces the subspace topology on Y.  Hence, Y is metrizable. 

Observe that Theorem I.27 does not assert that the properties of separability and
normality are inherited by subspaces.  Indeed, these properties are not inherited by
subspaces, as the following problem and remark reveal.

Problem I.16.  Among the spaces described in Examples I.1 through I.17, find a
separable space which contains a non-separable subspace.

Remark.  Problem I.21 below provides an example of a normal space which
contains a non-normal subspace.

Corollary I.28.  Every subspace of a separable metrizable space is separable.

Problem I.17.  Prove Corollary I.28.
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Exercise.  Let ( X, < ) be a linearly ordered set, let Y ⊂ X, and let <Y denote the
restriction of < to Y (In other words, if we regard < as a subset of X × X, then <Y =
< ∩ (Y × Y).)  In general, the order topology on Y determined by <Y does not coincide
with the subspace topology on Y.  Find a subset of R which illustrates this phenomenon.

Definition.  Let X1, X2, … , Xn be topological spaces.  The Cartesian product of
X1, X2, … , Xn is the set of all n-tuples ( x1, x2, … , xn ) such that xi ∈ Xi for 1 ≤ i ≤ n.  It is
denoted X1 × X2 × … × Xn.  Thus,

X1 × X2 × … × Xn =  { ( x1, x2, … , xn ) : xi ∈ Xi for 1 ≤ i ≤ n }.

An open box in X1 × X2 × … × Xn is an subset of X1 × X2 × … × Xn of the form
U1 × U2 × … × Un where Ui is an open subset of Xi for 1 ≤ i ≤ n.  Observe that if Ui, Vi ⊂
Xi for 1 ≤ i ≤ n, then

( U1 × U2 × … × Un ) ∩ ( V1 × V2 × … × Vn )  =  ( U1 ∩ V1 ) × ( U2 ∩ V2 ) × … × ( Un ∩ Vn ).

Since the intersection of two open subsets of Xi is an open subset of Xi for 1 ≤ i ≤ n, then
it follows that the intersection of two open boxes in X1 × X2 × … × Xn is an open box in
X1 × X2 × … × Xn.  Hence, the Corollary to Theorem I.2 implies that the set of all open
boxes in X1 × X2 × … × Xn is a basis for a topology on X1 × X2 × … × Xn.  This topology is
called the product topology on X1 × X2 × … × Xn.

Theorem I.29.  Let ( X1, T 1 ), ( X2, T 2 ), …. , ( Xn, T n ) be topological spaces,
and let T denote the product topology on X1 × X2 × … × Xn.

a)  If Bi is a basis for T i for 1 ≤ i ≤ n, then  { B1 × B2 × … × Bn : Bi ∈ Bi for 1 ≤ i ≤ n }  is a
basis for T.

b)  If xi ∈ Xi and Bi is a basis for T i at xi for 1 ≤ i ≤ n, then
{ B1 × B2 × … × Bn : Bi ∈ Bi for 1 ≤ i ≤ n } is a basis for T at the point ( x1, x2, … , xn ).

c)  If Ci is a closed subset of Xi for 1 ≤ i ≤ n, then C1 × C2 × … × Cn is a closed subset of
X1 × X2 × … × Xn.

Proof.  a)  Assume Bi is a basis for T i for 1 ≤ i ≤ n, and set

B = { B1 × B2 × … × Bn : Bi ∈ Bi for 1 ≤ i ≤ n }.

We must prove B is a basis for the product topology T.

Since each element of B is an open box and each open box is an element of the
product topology T, then B ⊂ T.

Suppose x = ( x1, x2, … , xn ) ∈ U ∈ T.  Since the collection of all open boxes is a
basis for T, then there is an open box V1 × V2 × … × Vn such that ( x1, x2, … , xn ) ∈
V1 × V2 × … × Vn ⊂ U.  Therefore, xi ∈ Vi ∈ T i for 1 ≤ i ≤ n.  For 1 ≤ i ≤ n, since Bi is a
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basis for Ti, then there is a Bi ∈ Bi such that xi ∈ Bi ⊂ Vi.  It follows that B1 × B2 × … × Bn

∈ B and x = ( x1, x2, … , xn ) ∈ B1 × B2 × … × Bn ⊂ V1 × V2 × … × Vn ⊂ U.

This completes the proof that B is a basis for T.

b)  Assume xi ∈ Xi and Bi is a basis for T i at xi for 1 ≤ i ≤ n, and set

B = { B1 × B2 × … × Bn : Bi ∈ Bi for 1 ≤ i ≤ n }.

We must prove that B is a basis for the product topology T at the point x =
( x1, x2, … , xn ).

Since each element of B is an open box and each open box is an element of the
product topology T, then B ⊂ T.

Let B1 × B2 × … × Bn ∈ B.  For 1 ≤ i ≤ n, since Bi ∈ Bi and Bi is a basis for T i at
xi, then xi ∈ Bi.  Hence, x = ( x1, x2, … , xn ) ∈ B1 × B2 × … × Bn.

Suppose x = ( x1, x2, … , xn ) ∈ U ∈ T.  Since the collection of all open boxes is a
basis for T, then there is an open box V1 × V2 × … × Vn such that ( x1, x2, … , xn ) ∈
V1 × V2 × … × Vn ⊂ U.  Therefore, xi ∈ Vi ∈ T i for 1 ≤ i ≤ n.  For 1 ≤ i ≤ n, since Bi is a
basis for T i at xi, then there is a Bi ∈ Bi such that xi ∈ Bi ⊂ Vi.  It follows that
B1 × B2 × … × Bn ∈ B and x = ( x1, x2, … , xn ) ∈ B1 × B2 × … × Bn ⊂ V1 × V2 × … × Vn ⊂
U.

This completes the proof that B is a basis for the product topology T at the point
x = ( x1, x2, … , xn ).

c)  Assume Ci is a closed subset of Xi for 1 ≤ i ≤ n.  For 1 ≤ i ≤ n, set

Ui = X1 × ... × Xi – 1 × ( Xi – Ci ) × Xi + 1 × ... × Xn.

Then each Ui is an open box and, hence, an open subset of X1 × X2 × … × Xn.
Furthermore,  for 1 ≤ i ≤ n, x = ( x1, x2, … , xn ) ∈ Ui  if and only if  xi ∉ Ci.  Hence, a point
x = ( x1, x2, … , xn ) lies in the complement of C1 × C2 × … × Cn if and only if xi ∉ Ci for
some i between 1 and n  if and only if x ∈ Ui for some i between 1 and n.  Therefore,

( X1 × X2 × … × Xn ) – ( C1 × C2 × … × Cn ) = U1 ∪ U2 ∪ … ∪ Un.

Thus, the complement of C1 × C2 × … × Cn is an open subset of X1 × X2 × … × Xn.
Hence, C1 × C2 × … × Cn is a closed subset of X1 × X2 × … × Xn. 

Exercise.  Let R have the standard topology.  Using Theorem I.29. a), observe
that for n ≥ 1, the product topology on Rn is the standard topology.
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Now we consider the issue of whether the topological properties we have been
studying – separability, first and second countability, the separation properties and
metrizability – can pass from a finite collection of spaces to their Cartesian product.  We
also consider whether these properties pass in the reverse direction – from the
Cartesian product of finitely many spaces to the individual factor spaces.  To explore
these issues, it is convenient to introduce the following terminology and prove a lemma.

Definition.  Let X1, X2, … , Xn be topological spaces.  For 1 ≤ i ≤ n, define the ith
projection function

πi : X1 × X2 × … × Xn → Xi

by the equation πi( x1, x2, … , xn ) = xi for each ( x1, x2, … , xn ) ∈  X1 × X2 × … × Xn.  For
each a = ( a1, a2, … , an ) ∈  X1 × X2 × … × Xn and for 1 ≤ i ≤ n, define the ith injection
function

ea,i : Xi → X1 × X2 × … × Xn

by the equation ea,i(x) = ( a1, … , ai–1, x, ai+1, … , an ) for each x ∈ Xi.

Lemma I.30.  Let X1, X2, … , Xn be topological spaces, let X1 × X2 × … × Xn have
the product topology, and let a = ( a1, a2, … , an ) ∈  X1 × X2 × … × Xn.

a)  πiºea,i = idXi for 1 ≤ i ≤ n.

b)  For 1 ≤ i ≤ n, if V is an open subset of Xi, then πi
–1(V) is an open subset of

X1 × X2 × … × Xn; and if D is a closed subset of Xi, then πi
–1(D) is a closed subset of

X1 × X2 × … × Xn.

c)  For 1 ≤ i ≤ n, if U is an open subset of X1 × X2 × … × Xn, then ea,i
–1(U) is an open

subset of Xi; and if C is a closed subset of X1 × X2 × … × Xn, then ea,i
–1(C) is a closed

subset of Xi.

Remark.  When continuity is defined in Chapter II, we will see that assertions b)
and c) are equivalent to the statements that πi : X1 × X2 × … × Xn → Xi and ea,i : Xi →
X1 × X2 × … × Xn are continuous functions.

Proof. a)  Let 1 ≤ i ≤ n.  For x ∈ Xi, πiºea,i(x) = πi( a1, … , ai–1, x, ai+1, … , an ) = x.
Thus, πiºea,i = idXi.

b)  Let 1 ≤ i ≤ n.

Suppose V is an open subset of Xi.  Then
πi

–1(V) = X1 × … × Xi–1 × V × Xi+1 × … × Xn.

Hence, πi
–1(V) is an open box.  Therefore, πi

–1(V) is an open subset of X1 × X2 × … × Xn.
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Next suppose D is a closed subset of Xi.  Let V = Xi – D.  Then V is an open
subset of Xi, and D = Xi – V.  Hence, πi

–1(V) is an open subset of X1 × X2 × … × Xn.
Furthermore, (by Theorem 0.10.d)

πi
–1(D) = πi

–1(Xi) – πi
–1(V) = ( X1 × X2 × … × Xn ) – πi

–1(V).

Thus, πi
–1(D) is a closed subset of X1 × X2 × … × Xn.

c)  Let 1 ≤ i ≤ n.

First we show that if B is an open box in X1 × X2 × … × Xn, then ea,i
–1(B) is an

open subset of Xi.  Suppose B = V1 × V2 × … × Vn is an open box in X1 × X2 × … × Xn.
For x ∈ Xi, since ea,i(x) = ( a1, … , ai–1, x, ai+1, … , an ), then ea,i(x) ∈ V1 × V2 × … × Vn = B
if and only if aj ∈ Vj for all j ≠ i and x ∈ Vi.  Therefore, x ∈ ea,i

–1(B) if and only if aj ∈ Vj for
all j ≠ i and x ∈ Vi.  Hence, ea,i

–1(B) = Vi if aj ∈ Vj for all j ≠ i, and ea,i
–1(B) = ∅ if aj ∉ Vj for

some j ≠ i.  Consequently, either ea,i
–1(B) = Vi or ea,i

–1(B) = ∅.  This proves ea,i
–1(B) is an

open subset of Xi.

                                                                                                             ea,i(Xi)
     ( a1, … , ai–1, ai+1, … , an )

                                                                        box B

                                                         ea,i                                            box B´
X1 × … × Xi–1 × Xi+1 × … × Xn

                                                                                X1 × X2 × … × Xn

                                                                                                  πi

                                                           ea,i
–1(B)                                             Xi

                                                                                  ea,i
–1(B´) = ∅

Now suppose U is an arbitrary open subset of X1 × X2 × … × Xn.  Since the open
boxes in X1 × X2 × … × Xn form a basis for the product topology, then Theorem I.1
implies that U can be expressed as a union of open boxes.  Thus, there is a collection C
of open boxes in X1 × X2 × … × Xn such that U = ∪  C.  Then (by Theorem 0.10.b)

ea,i
–1(U) = ∪ { ea,i

–1(B) : B ∈  C  }.
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Since each B ∈  C   is an open box, then ea,i
–1(B) is an open subset of Xi for each B ∈  C.

Hence, ea,i
–1(U) is an open subset of Xi.

Finally, suppose C is a closed subset of X1 × X2 × … × Xn.  Let U =
( X1 × X2 × … × Xn ) – C.  Then U is an open subset of X1 × X2 × … × Xn, and C =
( X1 × X2 × … × Xn ) – U.  Hence, ea,i

–1(U) is an open subset of Xi.  Furthermore, (by
Theorem 0.10.d) ea,i

–1(C) = ea,i
–1( X1 × X2 × … × Xn ) – ea,i

–1(U) = Xi – ea,i
–1(U).  Thus,

ea,i
–1(C) is a closed subset of Xi. 

Next we state and prove a theorem which tells us the extent to which the
topological properties we have been studying pass between a finite collection of spaces
and their Cartesian product.

Theorem I.31.  Let X1, X2, … , Xn be topological spaces, and let X1 × X2 × … × Xn

have the product topology.  Then:
a)  X1 × X2 × … × Xn is second countable  if and only if  each of X1, X2, … , Xn is second
countable.
b)  X1 × X2 × … × Xn is first countable if and only if each of X1, X2, … , Xn is first
countable.
c)  X1 × X2 × … × Xn is separable if and only if each of X1, X2, … , Xn is separable.

d)  X1 × X2 × … × Xn is T1 if and only if each of X1, X2, … , Xn is T1.

e)  X1 × X2 × … × Xn is Hausdorff if and only if each of X1, X2, … , Xn is Hausdorff.

f)  X1 × X2 × … × Xn is regular if and only if each of X1, X2, … , Xn is regular.

g)  If X1 × X2 × … × Xn is normal, then each of X1, X2, … , Xn is normal.

Proof.  For 1 ≤ i ≤ n, let T i denote the topology on Xi and let T  denote the
product topology on X1 × X2 × … × Xn.  Also choose a = ( a1, a2, … , an ) ∈ 
X1 × X2 × … × Xn.  We now prove the various parts of Theorem I.31.

Proof of a) ⇒.  Assume that X1 × X2 × … × Xn is second countable.  Then the
product topology T has a countable basis B.  Let 1 ≤ i ≤ n.  We will prove that Xi is
second countable by showing that the countable set { ea,i

–1(B) : B ∈ B } is a basis for the
topology T i on Xi.  Since B ⊂ T, then Lemma I.30.c implies that ea,i

–1(B) ∈ T i for each B
∈ B.  Hence, { ea,i

–1(B) : B ∈ B } ⊂ T i.  Now let x ∈ V ∈ T i.  Then πi
–1(V) ∈ T by Lemma

1.30.c.  Also, ea,i(x) ∈ πi
–1(V).  (Proof: πiºea,i = idXi (by Lemma I.30.a)  ⇒  πi(ea,i(x)) = x ∈

V  ⇒  ea,i(x) ∈ πi
–1(V).)  Since B is a basis for T, it follows that there is a B ∈ B such that

ea,i(x) ∈ B ⊂ πi
–1(V).  Hence, x ∈  ea,i

–1(B).  Furthermore, ea,i
–1(B) ⊂ V.  (Proof: B ⊂ πi

–1(V)
⇒  ea,i

–1(B) ⊂ ea,i
–1(πi

–1(V)) = (πiºea,i)–1(V) = (idXi)
–1(V) = V.)  Thus, x ∈  ea,i

–1(B) ⊂ V.  This
completes the proof that { ea,i

–1(B) : B ∈ B } is a basis for T i.  We conclude that Xi is
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second countable.  (See the figure below.)

                                                  B

                                                ea,i(x)                         ea,i(Xi)

                                                 πi
–1(V)                                         ea,i

                                                                ea,i
–1(B)           πi

                                                   x

                                                    V

Proof of a) ⇐.  Assume that Xi is second countable for each i between 1 and n.
Then for 1 ≤ i ≤ n, the topology T i on Xi has a countable basis Bi.  Since B1, B2, ... , Bn
are all countable sets, then their Cartesian product B1 ×  B2 × … × Bn is also a
countable set (according to Theorem 0.17).  Hence, the collection

B =  { B1 × B2 × ... × Bn : ( B1, B2, ... , Bn ) ∈ B1 ×  B2 × … × Bn }

is countable as well.  According to Theorem I.27.a, the collection B is a basis for the
product topology T on X1 × X2 × … × Xn.  Thus, T has a countable basis.  We conclude
that X1 × X2 × … × Xn is second countable.

Proof of b) ⇒.  Assume that X1 × X2 × … × Xn is first countable.  Let 1 ≤ i ≤ n and
let x ∈ Xi.  We will show that T i has a countable basis at x.  Let y = ea,i(x).  Since y ∈
X1 × X2 × … × Xn and X1 × X2 × … × Xn is first countable, then T has a countable basis
By at y.  We will prove that the countable set { ea,i

–1(B) : B ∈ By } is a basis for T i at x.
The proof is essentially the same as the proof of a) ⇒.  First since By ⊂ T, then Lemma
I.30.c implies that ea,i

–1(B) ∈ T i for each B ∈ By.  Hence, { ea,i
–1(B) : B ∈ By } ⊂ Ti.

Second, for each B ∈ By, since ea,i(x) = y ∈ B, then x ∈ ea,i
–1(B).  Third and last, let x ∈ V

∈ T i.  Then, as in the proof of a) ⇒, πi
–1(V) ∈ T and y = ea,i(x) ∈ πi

–1(V).  Since By is a
basis for T at y, it follows that there is a B ∈ B such that ea,i(x) = y ∈ B ⊂ πi

–1(V).
Therefore, as in the proof of a) ⇒, x ∈  ea,i

–1(B) and ea,i
–1(B) ⊂ V.  This completes the

proof that { ei
–1(B) : B ∈ By } is a countable basis for T i at x.  We have shown that T i

has a countable basis at every point of Xi. We conclude that Xi is first countable.

Proof of b) ⇐.  Assume that Xi is first countable for each i between 1 and n.  Let
x = ( x1, x2, … , xn ) ∈  X1 × X2 × … × Xn.  We will show that T has a countable basis at x.
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For 1 ≤ i ≤ n, since Xi is first countable, then T i has a countable basis Bi at xi.  Since the
sets B1, B2, … , Bn are all countable, then their Cartesian product B1 × B2 × … × Bn is
also countable (according to Theorem 0.17).  Hence, the collection
B  =  { B1 × B2 × … × Bn : ( B1, B2, … , Bn ) ∈ B1 × B2 × … × Bn }

is countable as well.  According to Theorem I.29.b, the collection B is a basis for T at
x.  Thus, T has a countable basis at x.  We have shown that T has a countable basis at
every point of X1 × X2 × … × Xn.  We conclude that X1 × X2 × … × Xn is first countable.

Proof of d) ⇒.  Assume X1 × X2 × … × Xn is T1.  Let 1 ≤ i ≤ n and let x and y be
distinct points of Xi.  Then

ea,i(x) =  ( a1, ... , ai – 1, x, ai + 1, ... , an )    and    ea,i(y) = ( a1, ... , ai – 1, y, ai + 1, ... , an )
are distinct points of X1 × X2 × … × Xn.  Since X1 × X2 × … × Xn is T1, there is an open
subset U of X1 × X2 × … × Xn such that ea,i(x) ∈ U and ei(y) ∉ U.  Then x ∈ ea,i

–1(U) and y
∉ ea,i

–1(U).  Furthermore, Lemma I.30.c implies that ea,i
–1(U) is an open subset of Xi.  This

proves Xi is T1.

Proof of d) ⇐.  Assume that Xi is T1 for each i between 1 and n.  Let x =
( x1, x2, … , xn ) ∈  X1 × X2 × … × Xn.  Then { xi } is a closed subset of Xi for 1 ≤ i ≤ n, by
Theorem I.23.a.  Observe that { x } = { ( x1, x2, … , xn ) } = { x1 } × { x2 } × … × { xn }.
Therefore, Theorem I.29.c implies that  { x } is a closed subset of X1 × X2 × … × Xn.
According to Theorem I.23.a, this proves X1 × X2 × … × Xn is T1.

Proof of e) ⇒.  Assume X1 × X2 × … × Xn is Hausdorff.  Let 1 ≤ i ≤ n and let x and
y be distinct points of Xi.  Then

ea,i(x) =  ( a1, ... , ai – 1, x, ai + 1, ... , an )    and    ea,i(y) = ( a1, ... , ai – 1, y, ai + 1, ... , an )
are distinct points of X1 × X2 × … × Xn.  Since X1 × X2 × … × Xn is Hausdorff, there are
disjoint open subsets U and V of X1 × X2 × … × Xn such that ea,i(x) ∈ U and ea,i(y) ∈ V.
Then x ∈  ea,i

–1(U), y ∈ ea,i
–1(V), and (by Theorem 0.10.c)

ea,i
–1(U) ∩ ea,i

–1(V)  = ea,i
–1( U ∩ V )  = ea,i

–1(∅)  =  ∅.

Furthermore,  Lemma I.30.c implies that ea,i
–1(U) and ea,i

–1(V) are open subsets of Xi.
This proves Xi is Hausdorff.

Proof of e) ⇐.  Assume that Xi is Hausdorff for each i between 1 and n.  Let x =
( x1, x2, … , xn ) and y = ( y1, y2, … , yn )  be distinct points of X1 × X2 × … × Xn.  Since x ≠
y, then xi ≠ yi for some i between 1 and n.  Since Xi is Hausdorff and xi and yi are distinct
points of Xi, then there are disjoint open subsets U and V of Xi such that xi ∈ U and yi ∈
V.  Since πi(x) = xi and πi(y) = yi, then πi(x) ∈ U and πi(y) ∈ V.  Therefore, x ∈ πi

–1(U) and
y ∈ πi

–1(V).  Also (by Theorem 0.10.c)
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πi
–1(U) ∩ πi

–1(V)  =  πi
–1( U ∩ V )  =  πi

–1(∅)  =  ∅.

Furthermore,  Lemma I.30.b implies that πi
–1(U) and πi

–1(V) are open subsets of
X1 × X2 × … × Xn.  This proves X1 × X2 × … × Xn is Hausdorff.

The following three problems complete this proof. 

Problem I.18.  Prove part c) of Theorem I.31.

Problem I.19.  Prove part f) of Theorem I.31.

Problem I.20.  Prove part g) of Theorem I.31.

Theorems I.27 and I.31, by failing to make obvious assertions about normal
spaces, raise two natural questions.  Are all subspaces of normal spaces normal?  Are
all Cartesian products of two normal spaces normal?  The following two examples shed
light on these questions.

Example I.18.  Let X be an uncountable set, let p ∈ X, and set

T  =  P( X – { p } ) ∪ { U ⊂ X : X – U is finite }.

Then T is a topology on X.  Endow X with the topology T.  Set Y = {0} ∪ { 1/n : n ∈ N },
and regard Y as a subspace of R.  Let X × Y have the product topology.

          1

 X × Y           1/2    Y
                                                                                                                                                                                       1/3

         0

                                                                 X                        p



66

Problem I.21.  Parts a, b and c of this problem refer to the space X × Y described
in Example I.18.

a)  Verify that T is a topology on X.

b)  Prove that X × Y is a normal Hausdorff space.

(The fact that X × Y is normal will follow without difficulty from results in a later chapter.
This is because X and Y are easily seen to be compact Hausdorff spaces.  Then
theorems in a subsequent chapter will imply that X × Y is a compact Hausdorff space
and, hence, a normal space.  However, for the present problem, you are asked to prove
that X × Y is normal from the definition of “normal” without appealing to the notion of
compactness which will be introduced later.)
c)  Prove that the subspace ( X × Y ) – { (p,0) } of X × Y is not normal.

Hint: Consider the two disjoint subsets ( X – { p } ) × { 0 } and { p } × ( Y – { 0 } ).

d)  Prove that X × Y is not completely normal.  (The definition of “completely normal”
follows Problem I.14.)

Problem I.21 reveals that a subspace of a normal space need not be normal.

Recall the space  Rbad described in Example I.7.  In Problem I.15(7) the question
of whether Rbad is normal was decided.

Example I.19.  Consider the Cartesian product Rbad × Rbad with the product
topology.

Problem I.22.  Is Rbad × Rbad normal?

Problem I.22 resolves the question of whether the Cartesian product of two
normal spaces must be normal.

Theorem I.32.  Let ( X1, ρ1 ), ( X2, ρ2 ), … , ( Xn, ρn ) be metric spaces.  Then
three metrics on X1 × X2 × … × Xn are defined by the following formulas.   For
x = ( x1, x2, … , xn ) and y = ( y1, y2, … , yn ) ∈ X1 × X2 × … × Xn:

a)  σ1(x,y)  =  

€ 

ρ i (xi,yi)i=1

n
∑ ,

b)  σ2(x,y)  =  

€ 

ρ i (xi,yi)( )2

i=1

n
∑   

 
 
 

1
2,

c)  σ∞(x,y)  =  max { ρi(xi,yi) : 1 ≤ i ≤ n }.

Moreover, σ1, σ2 and σ∞ are equivalent metrics and induce the product topology on
X1 × X2 × … × Xn.
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Proof.   For λ ∈ { 1, 2, ∞ }, x ∈ X1 × X2 × … × Xn and ε > 0, let

Nλ(x,ε) = { y ∈ X1 × X2 × … × Xn : σλ(x,y) < ε }.

Recall that the taxicab norm || ||1, the Euclidean norm || ||2 and the supremum norm || ||∞
on Rn are defined and shown to be norms in 0.D.  Observe that if x = ( x1, x2, … , xn )
and y = ( y1, y2, … , yn ) ∈ X1 × X2 × … × Xn, and if r = ( ρ1(x1,y1), ρ2(x2,y2), … , ρn(xn,yn) )
∈ Rn, then for λ ∈ { 1, 2, ∞ },

σλ(x,y) = || r ||λ.

We now verify that σ1, σ2 and σ∞ are metrics on X1 × X2 × … × Xn.  Let λ ∈
{ 1, 2, ∞ }.    Let x = ( x1, x2, … , xn ), y = ( y1, y2, … , yn ) and z = ( z1, z2, … , zn ) ∈
X1 × X2 × … × Xn.  Then clearly

x = y  ⇔  xi = yi for 1 ≤ i ≤ n  ⇔  ρi(xi,yi) = 0 for 1 ≤ i ≤ n  ⇔  σλ(x,y) = 0.

Also since ρi(xi,yi) = ρi(yi,xi) for 1 ≤ i ≤ n, then σλ(x,y) = σλ(y,x).  To prove the triangle
inequality, define r, s and t ∈ Rn by

r = ( ρ1(x1,y1), ρ2(x2,y2), … , ρn(xn,yn) ),

s = ( ρ1(y1,z1), ρ2(y2,z2), … , ρn(yn,zn) ) and

t = ( ρ1(x1,z1), ρ2(x2,z2), … , ρn(xn,zn) ).

Then σλ(x,y) = || r ||λ, σλ(y,z) = || s ||λ and σλ(x,z) = || t ||λ.  For 1 ≤ i ≤ n, since ρi(xi,zi) is
the ith coordinate of t, ρi(xi,yi) + ρi(yi,zi) is the ith coordinate of r + s, and 0 ≤ ρi(xi,zi) ≤
ρi(xi,yi) + ρi(yi,zi), then clearly  || t ||λ ≤ || r + s ||λ.  Since the norm || ||λ satisfies the
triangle inequality, it follows that

σλ(x,z) = || t ||λ ≤ || r + s ||λ ≤ || r ||λ + || s ||λ = σλ(x,y) + σλ(y,z).

This completes the proof that σ1, σ2 and σ∞ are metrics on X1 × X2 × … × Xn.

Observe that the definitions of the taxicab, Euclidean and supremum norms imply
that for r ∈ Rn,

|| r ||∞  ≤  || r ||2  ≤  || r ||1  ≤  n || r ||∞.
(|| r ||2  ≤  || r ||1 follows from the obvious fact that  ( || r ||2 )2  ≤  ( || r ||1 )2.)  Hence, for x
and y ∈ X1 × X2 × … × Xn, we have

σ∞(x,y)  ≤  σ2(x,y)  ≤  σ1(x,y)  ≤  n σ∞(x,y).

Thus, for x and y ∈ X1 × X2 × … × Xn and ε > 0,

σ2(x,y) < ε ⇒ σ∞(x,y) < ε, σ1(x,y) < ε ⇒ σ2(x,y) < ε and σ∞(x,y) < ε/n ⇒ σ1(x,y) < ε.

Therefore, for x ∈ X1 × X2 × … × Xn and ε > 0,
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N∞(x,ε/n) ⊂ N1(x,ε) ⊂ N2(x,ε) ⊂ N∞(x,ε).

Consequently, Theorem I.11 implies that σ1, σ2 and σ∞ are equivalent metrics on
X1 × X2 × … × Xn.

Lastly, we prove that σ∞ induces the product topology on X1 × X2 × … × Xn.  Let
B∞ = { N∞(x,ε) : x ∈ X1 × X2 × … × Xn and ε > 0 } and let Bbox denote the collection of all
open boxes in X1 × X2 × … × Xn.  Then B∞ is a basis for the topology induced on
X1 × X2 × … × Xn by the metric σ∞, and Bbox is a basis for the product topology on
X1 × X2 × … × Xn.  We will use the Corollary to Theorem I.3 to show that B∞ and Bbox

generate the same topology on X1 × X2 × … × Xn.  To accomplish this, we must prove:

• if x ∈ B1 ∈ B∞, then there is a B2 ∈ Bbox and x ∈ B2 ⊂ B1, and

• if x ∈ B2 ∈ Bbox, then there is a B1 ∈ B∞ such that x ∈ B1 ⊂ B2.

We begin by introducing more notation.  For 1 ≤ i ≤ n, x ∈ Xi and ε > 0, let

Mi(x,ε) = { y ∈ Xi : ρi(x,y) < ε }.

Next observe that for x = ( x1, x2, … , xn ) ∈ X1 × X2 × … × Xn and ε > 0:

y = ( y1, y2, … , yn ) ∈ N∞(x,ε)  ⇔  σ∞(x,y) < ε  ⇔

ρi(xi,yi) < ε for 1 ≤ i ≤ n   ⇔  yi ∈ Mi(xi,ε) for 1 ≤ i ≤ n   ⇔

y ∈ M1(x1,ε) × M2(x2,ε)  × … × Mn(xn,ε).

This proves that for x = ( x1, x2, … , xn ) ∈ X1 × X2 × … × Xn and ε > 0,

N∞(x,ε) = M1(x1,ε) × M2(x2,ε)  × … × Mn(xn,ε).

Hence, for each x ∈ X1 × X2 × … × Xn and ε > 0, N∞(x,ε) is an open box.  Consequently,
B∞ ⊂ Bbox.  Now suppose x ∈ B1 ∈ B∞.  Then B1 ∈ Bbox.  So if we set B2 = B1, then B2 ∈
Bbox and x ∈ B2 ⊂ B1.  This completes the first half of the proof that B∞ and Bbox

generate the same topology on X1 × X2 × … × Xn.  Second suppose x = ( x1, x2, … , xn )
∈ B2 ∈ Bbox.  Since B2 is an open box, then B2 = U1 × U2 × … × Un where Ui is an open
subset Xi for 1 ≤ i ≤ n.  Thus, ( x1, x2, … , xn ) ∈ U1 × U2 × … × Un.  Therefore, xi ∈ Ui for
1 ≤ i ≤ n.  At this point, Theorem I.10 implies that for 1 ≤ i ≤ n, there is an εi > 0 such that
Mi(x1,εi) ⊂ Ui.  Let ε = min { ε1, ε2, … , εn }.  Then ε > 0 and xi ∈ Mi(x1,ε) ⊂ Mi(x1,εi) ⊂ Ui for
1 ≤ i ≤ n.  Hence,

x = ( x1, x2, … , xn ) ∈  M1(x1,ε) × M2(x2,ε)  × … × Mn(xn,ε) ⊂ U1 × U2 × … × Un = B2.

We know that M1(x1,ε) × M2(x2,ε)  × … × Mn(xn,ε) = N∞(x,ε) and N∞(x,ε) ∈  B∞.  So if we
set B1 = N∞(x,ε), then B1 ∈  B∞ and x ∈ B1 ⊂ B2.  This completes the second half of the
proof that B∞ and Bbox generate the same topology on X1 × X2 × … × Xn.  We conclude
that the metric σ∞ induces the product topology on X1 × X2 × … × Xn.  Since the metrics
σ1, σ2 and σ∞ are equivalent, then all three metrics induce the product topology on
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X1 × X2 × … × Xn. 

Theorem I.33.  If X1, X2, … , Xn are topological spaces and X1 × X2 × … × Xn

has the product topology, then X1 × X2 × … × Xn is metrizable if and only if each of
X1, X2, … , Xn is metrizable.

Proof.  The ⇐ direction of the proof follows from Theorem I.32.  The following
problem completes this proof. 

Problem I.23.  Suppose if X1, X2, … , Xn are topological spaces and
X1 × X2 × … × Xn has the product topology.  Prove that if X1 × X2 × … × Xn is metrizable,
then each of X1, X2, … , Xn is metrizable.

Theorem I.34.  Let X1, X2, … , Xn be topological spaces, and let X1 × X2 × … × Xn

have the product topology.  For 1 ≤ i ≤ n, let  xi : N → Xi  be a sequence in Xi and let yi ∈
Xi.  Define the sequence  x : N → X1 × X2 × … × Xn in X1 × X2 × … × Xn by

x(k) = ( x1(k), x2(k), … , xn(k) )

for k ∈ N, and set  y = ( y1, y2, … , yn ) ∈ X1 × X2 × … × Xn.  Then x converges to y in
X1 × X2 × … × Xn  if and only if  xi converges to yi in Xi for 1 ≤ i ≤ n.

Proof.  First assume that x converges to y in X1 × X2 × … × Xn.  We must prove
that xi converges to yi in Xi for 1 ≤ i ≤ n.  To this end, let 1 ≤ i ≤ n and let V be a
neighborhood of yi in Xi.  Then Lemma I.30.b implies that πi

–1(V) is an open subset of
X1 × X2 × … × Xn.  Furthermore, since πi(y) = yi, then y ∈ πi

–1(V).  Since x converges to
y, then there is a k ∈  N such that x(j) ∈ πi

–1(V) for all j ∈  N such that j ≥ k.  Therefore,
πi(x(j)) ∈ V for all j ≥ k.  Since πi(x(j)) = xi(j), then xi(j) ∈ V for all j ≥ k.  We conclude that
xi converges to yi in Xi.

Second assume that xi converges to yi in Xi for 1 ≤ i ≤ n.  We must prove that x
converges to y in X1 × X2 × … × Xn.  To this end, let U be a neighborhood of y in
X1 × X2 × … × Xn.  Since X1 × X2 × … × Xn has the product topology, then there is an
open box V1 × V2 × … × Vn in X1 × X2 × … × Xn such that y ∈  V1 × V2 × … × Vn ⊂ U.
Since y = ( y1, y2, … , yn ), then ( y1, y2, … , yn ) ∈ V1 × V2 × … × Vn.  Hence, yi ∈ Vi for 1
≤ i ≤ n.  For 1 ≤ i ≤ n, since xi converges to yi in Xi, then there is a ki ∈  N such that xi(j)
∈ Vi for all j ∈  N such that j ≥ ki.  Let k = max { k1, k2, … , kn }.  It follows that if j ∈  N and j
≥ k, then xi(j) ∈ Vi for 1 ≤ i ≤ n.  Therefore, if j ∈  N and j ≥ k, then x(j) =
( x1(j), x2(j), … , xn(j) ) ∈ V1 × V2 × … × Vn.  Thus, x(j) ∈ U for all j ∈  N  such that j ≥ k.  We
conclude that x converges to y in X1 × X2 × … × Xn. 
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