Math 751 39 Fall 2010

E. Closure and Convergence Properties

Topology provides a means of expressing concepts of limit, convergence and
closure. Indeed, the basic definition of topology can easily be recast in terms of closed
sets rather than open sets. The connection between topology and limit concepts
accounts for topology's fundamental role in analysis.

Definition. A subset C of a topological space X is closed if X — C is open.

Theorem 1.14. Let X be a topological space.
a) J and X are closed subsets of X.
b) The intersection of any collection of closed subsets of X is a closed subset of X.
c) The union of any finite collection of closed subsets of X is a closed subset of X.

Proof. a) Since X —J =X and X — X = & are open subsets of X, then & and X
are closed subsets of X.

b) Suppose %is a collection of closed subsets of X. Then {X-C:C &€ ¥} isa
collection of open subsets of X. Therefore U{ X—-C:Ce&g %} is an open subset of X.
By De Morgan's Laws U{X-C:Ce®¥} = X=((¥). Thus, X—([¥)isan
open subset of X. Hence, (& is a closed subset of X.

¢) Suppose Z is a finite collection of closed subsets of X. Then
{X-F:F& Z} is afinite collection of open subsets of X. Therefore

(N {X—-F:F&.Z} is an open subset of X. By De Morgan's Laws
(UX-F:FeZ}=X-(UZ). Thus, X-(U.Z)is an open subset of X. Hence,
U.Zis a closed subset of X. O

Definition. Let X be a topological space. If x € X, then any open subset of X
which contains x is called a neighborhood of x in X. If A C X, then any open subset of
X which contains A is called a neighborhood of A in X.

Theorem 1.15. Let X be a topological space. Then:

a) A subset U of X is open if and only if each point of U has a neighborhood which is
contained in U.

b) A subset C of X is closed if and only if each point of X — C has a neighborhood
which is disjoint from C.

Problem 1.9. Prove Theorem 1.15. a)
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Proof of Theorem I.15. b) Let C C X. Then: C is a closed subset of X
< X -—Cis an open subset of X
< (by part a) each point of X — C has a neighborhood which is contained in X — C
< each point of X — C has a neighborhood which is disjoint from C. O

Definition. Let X be a topological space, and let A C X.

The interior of A, denoted int(A) or ,& is the set U{ U:Uisanopensetand UCA}.

The closure of A, denoted cl(A) or A, is the set ﬂ{ C:Cisaclosedsetand ACC}.

The frontier or boundary of A, denoted fr(A) or bdy(A), is the set cl(A) — int(A) = A — ,&

Theorem 1.16. Let X be a topological space, and let A C X and x € X. Then:
a) x€int(A) if and only if some neighborhood of x is contained in A.
b) x € cl(A) if and only if every neighborhood of x intersects A.

c) xefr(A) if and only if every neighborhood of x intersects both A and X — A.

Proof of a). Observe that the following sequence of equivalences is valid:
X € int(A) < thereis anopensetUsuchthatUCAandxeU <«
some neighborhood of x is contained in A.

This proves assertion a).

Proof of b). Observe that the following sequence of implications is valid:
There is a neighborhood U of x suchthat UNA=J =
X—-UisaclosedsetandACX-U =
clA)CX-U = clA)NU=J = x€&cl(A).

Hence, if x € cl(A), then every neighborhood of x intersects A.

Next observe that the following sequence of implications is valid:
X & cl(A) = thereis a closed set C suchthat ACCandx & C =
X —C is a neighborhood of xin Xand (X-C)NA=4.
Hence, if every neighborhood of x intersects A, then x € cl(A).

This completes the proof of assertion b).
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Proof of ¢). By part b) of this theorem:
X € cl(A) <= every neighborhood of x intersects A.
By part a) of this theorem:
X & int(A) < no neighborhood of x is contained in A
< every neighborhood of x intersects X — A.
Hence:
x € fr(A) <« x € cl(A)—int(A) « x€cl(A) and x € int(A) <
every neighborhood of x intersects A and every neighborhood of x intersects X — A
< every neighborhood of x intersects both A and X-A.

This completes the proof of assertion c). O

Corollary 1.17. A subset D of a topological space X is dense if and only if
cl(D) = X.

Exercise. Prove Corollary 1.17.

Theorem 1.18. Let X be a topological space, and let A, B C X.
a) int(A) is an open set, and cl(A) and fr(A) are closed sets.
b) int(A) C A Ccl(A), int(A) N fr(A) = &, and int(A) U fr(A) = cl(A).

c) Ais aclosed set if and only if cl(A) = A if and only if fr(A) C A; and
Ais an open set if and only if int(A) = A if and only if fr(A) N A= .

d) intf(A)=X—-cl(X—-A), cl(A)=X—-int(X-A), and
fr(A) =cl(A) Ncl(X—A)=X—=(int(A) Uint(X—-A)).

e) If A CB, then int(A) C int(B) and cl(A) C cl(B).

f) int(ANB)=int(A) Nint(B), int(AUB) Dint(A) U int(B),
c(AUB)=cl(A) Ucl(B), and cl(ANB)Ccl(A) N cl(B).

Proof of Theorem 1.18. a), b), c), e) and f).
a) Since int(A) is, by definition, a union of open sets, it is an open set.

Since cl(A) is, by definition, an intersection of closed sets, then it is a closed set
by Theorem 1.14. b).

Since fr(A) = cl(A) N ( X —int(A) ), then fr(A) is an intersection of closed sets. So
fr(A) is a closed set.
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This completes the proof of a).
b) Since int(A) is, by definition, a union of subsets of A, then int(A) C A.

Since cl(A) is, by definition, an intersection of sets which contain A, then A C
cl(A).

Since fr(A) = cl(A) — int(A), then fr(A) N int(A) = &.

Since fr(A) = cl(A) — int(A), then cl(A) C int(A) U fr(A). Since int(A) C A C cl(A)
and fr(A) = cl(A) — int(A) C cl(A), then int(A) U fr(A) C cl(A). Thus, cl(A) = int(A) U fr(A).

This completes the proof of b).

c) First we prove: A is a closed set < cl(A) = A.

Assume A is a closed set. cl(A) is, by definition, the intersection of all the closed
sets that contain A and A is such a set. Thus, cl(A) C A. Since it is also true that A C
cl(A) by part b), then we conclude that cl(A) = A.

Conversely, if cl(A) = A, then A is a closed set by part a).

Next we prove: cl(A) = A < fr(A) C A.

Since fr(A) = cl(A) — int(A) C cl(A), then cl(A) = A implies fr(A) C A.

Assume fr(A) C A. int(A) C A by part b). Since cl(A) = int(A) U fr(A), then it
follows that cl(A) C A. Since it is also true that A C cl(A) by part b), then we conclude
that cl(A) = A.

Third, we prove: A is an open set < int(A) = A.

Assume A is an open set. int(A) is, by definition, the union of all the open sets
that are contained in A, and A is such a set. Hence, A Cint(A). Since it is also true that
int(A) C A by part b), then we conclude that int(A) = A.

Conversely, if int(A) = A, then A is an open set by part a).

Finally, we prove: int(A) = A < fr(A) NA={.

Since, by part b), int(A) N fr(A) = &, then int(A) = A implies A N fr(A) = &.
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Assume fr(A) N A = . Since, by part b), A C cl(A) = int(A) U fr(A), then it follows
that A C int(A). Since it is also true that int(A) C A by part b), then we conclude that
int(A) = A.

This completes the proof of c).
e) Assume A C B.

Since int(A) C A, then int(A) C B. Also int(A) is an open set. Since int(B) is the
union of all the open sets that are contained in B, it follows that int(A) C int(B).

Since B C cl(B), then A C cl(B). Also cl(B) is a closed set. Since cl(A) is the
intersection of all the closed sets that contain A, it follows that cl(A) C cl(B).

This completes the proof of e).

f) Since ANBCA and AN B CB, then part e) implies int( A N B) C int(A) and
int(ANB) Cint(B). Hence, int( AN B) Cint(A) Nint(B). On the other hand, since by
parts a) and b), int(A) is an open subset of A and int(B) is an open subset of B, then
int(A) N int(B) is an open subset of A N B. Since int( A N B) is the union of all open
subsets of A N B, then it follows that int(A) N int(B) C int( A N B ). We conclude that
intf( AN B) =int(A) Nint(B).

Since ACA UB and B C AU B, then part e€) implies int(A) Cint( A UB ) and
int(B) Cint( AU B ). Hence, int(A) U int(B) Cint(A UB).

Since ACA UB and B C A U B, then part e) implies cl(A) C cl( A U B ) and cl(B)
Ccl(AUB). Hence, cl(A) U cl(B) C cl( AU B ). On the other hand, since by parts a)
and b), cl(A) is a closed set containing A and cl(B) is a closed set containing B, then
cl(A) U cl(B) is a closed set containing A U B. Since cl( A U B) is the intersection of all
the closed sets that contain A U B, then it follows that cl(A) U cl(B) D cl( AU B ). We
conclude that cl(A) U cl(B) = cl( A U B).

Finally, since ANB CA and A N B CB, then part e) implies cl( AN B ) C cl(A)
and cl( AN B) Ccl(B). Hence, cl( AN B) Ccl(A) Ncl(B).

This completes the proof of f). O

Problem 1.10. Prove Theorem 1.18 d). Also give examples which show that the
inclusions int( A U B ) Dint(A) Uint(B) and cl( AN B) Ccl(A) Ncl(B) in .18 f) can’t be
replaced by equalities. In other words, give examples of subsets A and B of a
topological space X such that int( A UB) #int(A) Uint(B) and cl( ANB) #
cl(A) N cl(B).
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Suggestion: Look for ways to shorten and simplify your proof of .18 d) by
exploiting the parts of Theorem 1.18 that are already proved.

Definition. Let X be a topological space, and let AC X and x € X. xis a limit
point or accumulation point of A if for every neighborhood U of xin X, UN (A —{x}) #
@. Thus, x is a limit pointof A <« x & cl( A—{x}). The set of all limit points of A is
called the derived set of A and is denoted A".

Theorem 1.19. If A is a subset of a topological space X, then
a) clA)=AUA’", and b) Aisaclosedset ifand onlyif A" CA.

Proof. a) A Ccl(A), by Theorem .18 b). Also,
x € A" = every neighborhood of x intersects A — {x} =
every neighborhood of x intersects A = x € cl(A) by Theorem 1.16 b).
Hence, A" Ccl(A). It follows that AU A" C cl(A).

Note that:
XECIA)—A = xEclA)andxZ A =
every neighborhood of x intersects A (by Theorem .15 b)) and A=A —{x}

= every neighborhood of x intersects A —{x} = x€A".

Hence, cl(A) — A C A". It follows that cl(A) CAUA".
We conclude that cl(A) = A U A". This completes the proof of a).

b) Observe that:
A'CA & AUA =A < cl(A) = A (by part a) of this theorem)
< As aclosed set (by Theorem 1.18 c)).

This completes the proof of b). O

Theorem 1.20. In a second countable space, every uncountable subset contains
a limit point of itself.

Problem I.11. Prove Theorem 1.20.
Remark. This theorem can be strengthened. There is an Additional Problem

that asks for a proof of a theorem with the same hypothesis as Theorem 1.20 but with a
significantly stronger conclusion.
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Definition. Let X be a set. A sequencein X is a functionfromN={1,2,3, -}
to X. If x: N — Xis a sequence in X, then we also denote x by { x, } where x, = x(n) for
n e N.

Definition. Let X be a topological space, let{ x, } be a sequence in X, and lety
€ X. {x, } converges toy if for every neighborhood U of y in X, there is an n € N such

thati=n = x,€U. If{x,}convergestoy, we also say y is a limit of { x, }, and we
write y=limx, and {x,}—Y.
Theorem 1.21. Let X be a topological space, and let AC X and x € X.
a) If x is a limit of a sequence in A, then x € cl(A).
b) Assume X is a first countable space. Then
x € cl(A) if and only if x is a limit of a sequence in A.

Proof. a) If x is a limit of a sequence in A, then, clearly, every neighborhood of x
intersects A. So x € cl(A) by Theorem 1.16 b).

b) Assume X is a first countable space. Then there is a countable basis
{U,:neN}for Xatx. We can assume U, D U, D U, D - by replacing U, by

U, NU,N..NU,foreach n € N. Suppose x € cl(A). Then Theorem [.16 b) implies
that each U, intersects A. So for each n € N, we can choose a pointa, € U, N A. Then
{a, }is asequencein A. Toshow { a, } — x, let V be a neighborhood of x in X. Then
thereisann &N suchthat U,CV. Nowi=n = x, €U, CU,CV. This proves{a,}—
X. So x is a limit of a sequence in A. The converse direction of b) follows from a). O

Corollary 1.22. Let X be a topological space, and let A C X.

a) If Ais a closed set, then every point of X which is a limit of a sequence in A belongs
to A.

b) Assume X is a first countable space. Then A is a closed set if and only if every point
of X which is a limit of a sequence in A belongs to A. O

Problem 1.12. This problem illustrates that the first countability hypothesis can't
be omitted in either Theorem 1.21 b) or its corollary. Recall the space Q+=Q U { w*}
defined in Example 1.11.

a) Prove that w* is not the limit of any sequence in Q.
b) Prove that o+ € cl(Q).

Hence, every point of Q* which is a limit of a sequence in Q belongs to Q, but Q is not a
closed subset of Q*.
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F. Separation Properties

The separation properties — T1, Hausdorff, regular and normal — are fundamental

topological properties that can be used to distinguish among spaces. Linearly ordered
spaces and metric spaces possess all four of these properties. Examples .16 and 1.17,
presented below, describe spaces which satisfy one separation property but not
another. These spaces are two of the more interesting examples in these notes.

Definition. The Separation Properties. Let X be a topological space.

a) Xisa T, space if for all x, y € X such that x # y, there is a neighborhood U of x such
thaty & U.

b) Xis a Hausdorff or To space if for all x, y € X such that x #y, there are
neighborhoods U of x and V of y such thatU NV = &.

c) Xis a regular or Tz space if for every x € X and for every closed subset C of X such
that x & C, there are neighborhoods U of x and V of C suchthatU NV = &.

d) Xis a normal or T4 space if for all closed subsets C and D of X suchthat CN D =
@, there are neighborhoods U of C and V of D suchthatU NV = &.

Theorem 1.23. Let X be a topological space.
a) XisaT, space if and only if for every x € X, {x }is a closed set.

b) Xis aregular space if and only if for every x € X and for every neighborhood U of
X, there is a neighborhood V of x such that cl(V) C U.

c) Xis a normal space if and only if for every closed subset C of X and for every
neighborhood U of C, there is a neighborhood V of C such that cl(V) C U.

Proof. a) Assume Xisa T, space. Letx& X. Thenforeachye X—-{x},
there is a neighborhood Uy of y such that x & Uy. It follows that U {Uy:yeX-{x}}

= X—{x}. Thus, X—{x }is a union of open sets. So X—{x} is an open set. We
conclude that{ x } is a closed set.

For the converse, assume that for each x € X, { x } is a closed set. To prove that
Xis a T, space, let x and y be distinct points of X. Since {y } is a closed set, then
X —{y} is a neighborhood of x that doesn't contain y. This proves X is a T, space.

b) Assume X is a regular space. Let x € X and let U be a neighborhood of x.
Set C = X—-U. Then C is a closed set not containing the point x. Since X is a regular
space, it follows that there are neighborhoods V of x and W of C suchthat VW = .
Since VNW = &, thenVC X-W. Since X - W is a closed set, it follows that cl(V) C
X —W. Hence, cl(V) "W =d. Since CCW, thencl(V)NC=d. Thus,cl(V)CX-C=
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U. We conclude that V is a neighborhood of x such that cl(V) C U.

For the converse, assume that for every x € X and for every neighborhood U of
X, there is a neighborhood V of x such that cl(V) C U. To prove X is a regular space, let
x € X and let C be a closed set not containing x. Then X — C is a neighborhood of x.
Hence, there is a neighborhood V of x such that cl(V) C X — C. Thus, C C X —cl(V).
Since V C cl(V) and cl(V) is a closed set, then V and X — cl(V) are disjoint open sets.
Furthermore, x € V and C C X —cl(V). This proves X is regular.

¢) Assume X is normal space. Let C be a closed subset of X and let U be a
neighborhood of C. Set D = X —U. Then C and D are disjoint closed subsets of X.
Since X is a normal space, it follows that there are neighborhoods V of C and W of D
suchthat VN W=. SinceVNW =4, thenV C X—-W. Since X—W is a closed set,
it follows that cl(V) C X — W. Hence, cl(V) "W = . Since D C W, then cl(V) "D = .
Thus, cl(V) C X — D = U. We conclude that V is a neighborhood of C such that cl(V) C
U.

The following problem finishes this proof. OO
Problem 1.13. Prove Theorem 1.23 ¢) <.

Theorem 1.24. a) Every Hausdorff space is T,.
b) Every regular T, space is Hausdorff.

c) Every normal T, space is regular.

Proof. a) Assume X is a Hausdorff space. If x and y are distinct points of X,
then there are disjoint neighborhoods U of x and V of y. Hence, y & U. This proves X is
T,.

b) Assume X is a regular T, space. To prove that X is Hausdorff, let x and y be
distinct points of X. Then{y }is a closed subset of X by Theorem 1.23 a). Since X is
regular, it follows that x and { y } have disjoint neighborhoods. This proves X is
Hausdorff.

c) Assume X is a normal T, space. To prove that X is regular, let x € X and let C
be a closed set not containing x. Then { x } is a closed subset of X by Theorem 1.23 a).
Since X is normal, it follows that { x } and C have disjoint neighborhoods. This proves X
is regular. O

Corollary. Every normal T, space is Hausdorff and regular.

Theorem 1.25. Every metric space is T,, Hausdorff, regular, and normal.
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Proof. Since, according to Theorem 1.24, a Hausdorff space is T, and a T,
normal space is regular, then it suffices to prove that every metric space is Hausdorff
and normal.

Let ( X, p) be a metric space. To prove that X is Hausdorff, let x and y be distinct
points of X. Set e = ('/,)p(x,y). € >0 because x zy. Set U= N(x,e) and V = N(y,e).
Then U and V are neighborhoods of x and y, respectively. It remains to show that
UNV=yd. Tothisend, assume UNV £ . Then there is a pointz& U N V. Hence,
z € N(x,e) and z € N(y,e). Therefore,

2e = p(x,y) = p(X,2) +p(z,y) < e+¢ = 2.

Thus, 2e < 2¢. We have reached a contradiction. We conclude that U NV = . This
proves X is Hausdorff.

The following problem finishes this proof. OO
Problem 1.14. Prove that every metric space is normal.

Remark. Metric spaces satisfying a strong form of normality called complete
normality. A space X is completely normal if for any two subsets A and B of X satisfying
cl(A) N B =< = A N cl(B), there are neighborhoods U of A and V of B suchthatU NV =
@. The proof that every metric space is completely normal is assigned as an Additional
Problem.

Exercise. Show that there are simple topological spaces having none of the
separation properties by finding a topology on a three point set that is not T1, not
Hausdorff, not regular and not normal.

Next we explore the question of which of the separation properties are enjoyed
by the spaces described in Examples 1.1 through 1.15.

We begin by observing that if A and B are disjoint subsets of a space X and if B =
&, then X and @ are disjoint neighborhoods of A and B, respectively. Thus, when
deciding whether a space is regular or normal, one need only consider non-empty
closed sets. Armed with this observation, we note that, by default, a one-point space X
={ x } has all the separation properties: T,, Hausdorff, regular and normal, because X
doesn’t contain distinct points, X doesn’t contain a point that is disjoint from a non-
empty closed set, and X doesn’t contain two disjoint non-empty closed sets.

If a space X has more than one point and is endowed with the indiscrete topology
(Example 1.1), then X is clearly not T, and not Hausdorff. However, X is regular and
normal by default, because it doesn’t contain a point that is disjoint from a non-empty
closed set, and it doesn’t contain two disjoint non-empty closed sets.
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A space X with the discrete topology (Example 1.2) enjoys all the separation
properties because any two disjoint subsets of X, being open, are disjoint
neighborhoods of themselves.

The space X ={x, y, z } described in Example 1.3 is neither T, nor Hausdorff,
because every neighborhood of the point z also contains the point x. This space is not
regular because the point x and the closed set { y, z } don’t have disjoint neighborhoods.
However, X ={ X, y, z } is normal. Indeed, the only pairs of non-empty disjoint closed
sets in this space are{y },{z}and{y}, {x, z}; and the pair{y }, { x, z } of disjoint
open sets contains the sets of each of these pairs.

Problem 1.15(4). Decide whether or under what conditions the set X endowed
with the finite completement topology (described in Example 1.4) is a) T4, b) Hausdorff,

c) regular, d) normal.

Since R and R" (Examples |.5 and 1.6) are metrizable, then Theorem 1.25 implies
that they enjoy all the separation properties.

Problem 1.15(7). Decide whether the space R, (described in Example 1.7) is a)
T4, b) Hausdorff, ¢) regular, d) normal.

The space X = (N x N ) U { o } described in Example 1.8 is Hausdorff and normal
(and, hence, T, and regular by Theorem 1.24.) Recall that every subset of N x N is open
in X. To verify the assertion that X is Hausdorff, first observe that if p = (m,n) € N x N
and we define the function f : N — N to be the constant function f(x) = n + 1, then
X={p}t=((NxN)={p})UN(). Since (N xN)—{p}and N(f) are both open
subsets of X, then we conclude that X —{ p } is an open subset of X. Now suppose p
and q are distinct points of X. We can assume p # «©. Then the preceding observation
implies that { p } and X — { p } are disjoint neighborhoods of p and q, respectively. This
proves X is a Hausdorff space. It is easier to verify the assertion that X is a normal
space. Suppose A and B are disjoint closed subsets of X. We can assume « & A.
Then A and X — A are disjoint neighborhoods of A and B, respectively, leading us to
conclude that X is a normal space.

Next we consider three linearly ordered spaces: [ 0, 1 ]? with the lexicographic
order described in Example 1.9, and the well ordered spaces Q and Q" described in
Examples .10 and 1.11 respectively. The status of these three spaces with respect to
the separation properties is settled by the following result: all linearly ordered spaces
are all Hausdorff and normal (and, hence, T, and regular by Theorem 1.24). Here is a
proof that every linearly ordered space is Hausdorff. Assume that ( X, <) is a linearly
ordered space and that x and y are distinct points of X. We can assume that x<y. We
must consider two cases: either the open interval ( x, y ) is empty or non-empty. If
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(x,y)#J,choose z&€ (x,y). Inthiscase (—», z) and ( z, ) are disjoint
neighborhoods of x and y, respectively. On the other hand, if (x,y ) = &, then (-, y)
and ( x, %) are disjoint neighborhoods of x and y, respectively. Since x and y have
disjoint neighborhoods in either case, we conclude that X is a Hausdorff space. The
proof that linearly ordered spaces are normal is long and logically complicated, requiring
the consideration of a complex tree of alternative cases. (We just saw that the proof
that linearly ordered spaces are Hausdorff requires a bifurcation into two cases. The
proof of normality is much more involved.) The proof of normality of linearly ordered
spaces is assigned as an Additional Problem. We can give ad hoc arguments to settle
the question of normality for [ 0, 1 %, Q and Q* without appealing to the general result
that all linearly ordered spaces are normal. For instance, information acquired in a later
chapter will allow us to give straightforward proofs of the normality of [ 0, 1 ]* and Q*,
because both these spaces are compact and Hausdorff. Also the solution to Problem
[.15(7) which settles the normality of R,,, can be adapted to show that the well ordered
spaces Q and Q" are normal. This is because well ordered spaces and R, have a

common characteristic that is instrumental in settling the issue of their normality.

Exercise. Modify the solution to Problem 1.15(7) settling the normality of R, into
a proof that every well ordered linearly ordered space is normal.

The spaces described in Examples 1.12 through 1.15 — a set with the discrete
metric, R with the standard metric, R" with either the taxicab, Euclidean or supremum

metric, and B(X) with the supremum metric — are all metrizable. Hence, they are T,,
Hausdorff, regular and normal by Theorem 1.25.

Theorem 1.24 establishes various logical connections between the separation
properties. We could conjecture other relationships between the separation properties
such as: every Hausdorff space is regular, and every regular space is normal. The
following two examples illustrate the limitations on such conjectures.

Example 1.16. Let 7 denote the standard topology on R, and let Q denote the
set of rational numbers. Set Z,={{x}U(UNQ):xeUe& J}. Then %, is a basis for
a non-standard topology on R called the rational topology on R.

Exercise. Verify that %, is a basis for a topology on R.

Observe that R with the rational topology is separable. Indeed, since every
element of the basis %, has non-empty intersection with Q, then Q is a countable dense
subset of this space. Also observe that for each x € R, the countable collection

{3U((x=",x+"7,)NQ):nEN}
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is a basis for the rational topology at x. Hence, R with the rational topology is first
countable. We assert that R with the rational topology is not second countable. To
prove this, suppose &£ is any basis for R with the rational topology. We will prove that
2 is uncountable. Since £ is a basis for R with the rational topology, then for each
irrational number x € R — Q, there is a B, € £ such that

xeEB, CXPU((x=1,x+1)NQ).

Observe that for each x € R — Q, x is the only irrational number which is an element of
the set B,. Thus, if x and y are distinct elements of R — Q, then B, # B,. Therefore, the
functionx — B, : (R—-Q ) — Zis injective. Since R — Q is uncountable, the % must
also be uncountable. This proves that R with the rational topology does not have a
countable basis. We conclude that R with the rational topology is not second countable.
Finally, since R with the rational topology is separable but not second countable, then R
with the rational topology is not metrizable by Theorem 1.13.

Problem 1.15(16). Decide whether R with the rational topology (described in
Example 1.16) is a) T1, b) Hausdorff, ¢) regular, d) normal.

Example 1.17. Let R® =R x[0,2) ={ (x,y) ER?:y=0}. Let p, denote the
Euclidean metric on R?; and for p € R and £ > 0, let N(p,e) ={q € R : p,(p,q) < ¢ }.
Observe that if (x,y) € R* and 0 < & <y, then N((x,y),e) C R%. Forx €R and ¢ > 0, set
B(x,&) = { (x,0) } U N((x,¢),e). Then the collection

{N((x,y),e) 1 (x,y) € RZand0<e<y}U{B(x,e) :xERande>0}

is a basis for a (non-standard) topology on R? called the bubble topology on R?.

Exercise. Verify that this collection is actually a basis for some topology on R?.

@ ‘\l(p,s)
() O
(x,0)
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We observe the countable set D ={ (x,y) EQ x Q : y >0 } is a dense subset of
R? with the bubble topology. This is because D has non-empty intersection with each
neighborhood of the form N((x,y),e) where (x,y) € R? and 0 <¢ <. [If we choose
rational numbers a € ( x — /N2, x + a/\/_ andbe(y- e/2, y + a/\/_ then (a,b) €
D N N((x,y),¢).] Hence, D has non-empty intersection with every element of the given
basis for R? with the bubble topology. This makes D a countable dense subset of R?
with the bubble topology. It follows that R? with the bubble topology is separable. For
(x,y) € R? where y > 0, it is clear that the countable collection

{N((x,y),”/):nENand '/, <y}

is a basis for R? with the bubble topology at (x,y). Also for x € R, it is clear that the
countable collection { B(x,'/,) : n €N } is a basis for R? with the bubble topology at (x,0).
Hence, R? with the bubble topology is first countable. We assert that R? with the
bubble topology is not second countable. To prove this, suppose 4 is any basis for R?
with the bubble topology. We will prove that £ is uncountable. Since £ is a basis for
R? with the bubble topology, then for each x € R, there is a B, € £ such that (x,0) € B,
C B(x,1). Observe that for each x € R, (x,0) is the only point on the x-axis R x {0 }
which is an element of the set B,. Thus, if x and y are distinct elements of R, then B, #
B,. Therefore, the function x = B, : R — A is injective. Since R is uncountable, the %
must also be uncountable. This proves that R? with the bubble topology does not have
a countable basis. We conclude that R? with the bubble topology is not second
countable. Finally, since R? with the bubble topology is separable but not second
countable, then R? with the bubble topology is not metrizable by Theorem 1.13.

Problem 1.15(17). Decide whether R? with the bubble topology (described in
Example 1.17) is a) T4, b) Hausdorff, ¢) regular, d) normal.

The Additional Problems include two questions which might give the student
further insight into R? with the bubble topology.
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G. Subspaces and Finite Product Spaces

There are a number of natural ways to generate new topological spaces from
given ones. Two of the most fundamental of these are the formation of subspaces and
finite products of spaces.

Definition. Let ( X, ) be a topological space, and let Y C X. Let
JIY ={UunyY:Ue 7}

Then Z1Y is a topology on Y called the subspace topology or relative topology on Y.
The topological space (Y, Z1Y ) is called a subspace of ( X, 7). The elements of 7Y
are called (relatively ) open subsets of Y and are said to be openin Y. IfCCY and

Y - C e Z1Y, then C is called a (relatively ) closed subset of Y and is said to be closed
in'Y. By convention, a subset of a topological space is automatically assigned the
subspace topology, unless otherwise specified.

Theorem 1.26. Let ( X, .7) be a topological space, and let Y C X,
a) 7lIY ={UnY:Ue.J} isatopologyon.

b) If Zis a basis for 7, then ZIY = {BNY:B& A} is abasis for 71IY.

c) Ifye Y and %, is a basis for 7aty, then ZIY = {BNY :B& %, } is abasis for
JIY aty.

d) LetCCY. Cisaclosed subset of Y if and only if there is a closed subset D of X
suchthat C=D NY.

e) IfZCY, then F1Z = (Z1Y)IZ.

f) Suppose Y is an open subset of X. Let U C Y. Then U is an open subset of Y
if and only if U is an open subset of X.

g) Suppose Y is a closed subset of X. Let CC Y. Then C is a closed subset of Y
if and only if C is a closed subset of X.

h) If p is a metric on X which induces the topology 7, then plY x Y is a metric on Y
which induces the topology Z1Y.

Proof. a) i) Since Jand X Zithend=dNYandY=XNYe&ZIlY.

ii) Assume ZC Z1Y. Then for each U € %, there is a U'e IsuchthatU=U"NY.
Hence, UZ= U{U'NY:Ue%} = (U :UeZ})NY,and U :UEX}E Z
Therefore, UZ € Z1Y.
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iii) AssumeUandVeE Z1Y. ThenU=U"NYandV=V NY where U and V" €
Z. Hence,UNV=(U'NY)N(V' NY)=(U'NnV')NnY,andU' NV €2
Therefore, U NV € Z1Y.

It follows that 7Y is a topology on Y.

b) Assume that £ is a basis for 7.

i) LetBE ZIY. ThenB=B"NY where B" € 4. Since ZC J, thenB" € Z.
Hence, B=B" NY & ZIY. This proves &Y C ZIY.

ii) LetyeU € ZIY. ThenU=U"NY where UE Z Hence,y €U’ € 7 Since &
is a basis for 7 then there isa B" € # suchthaty €B* CU". SetB=B" NY. Then
yEBEZIY and B=B'nYCc U Ny = U.

It follows that £ |Y is a basis for Z1Y.

c) Assumey €Y and %, is a basis for aty.

i) LetBE %Y. ThenB=B" NY where B"€ %,. Since %,C J,thenB € Z.
Hence, B=B" NY € ZIY. This proves %,IY C Z1V.

ii) LetBE ZJ|Y. ThenB=B"NY where B" € %,. Hence,y €B andy €Y.
Therefore, y € B"NY=8.

iii) LetyeUE Z1Y. ThenU=U"NY where UE 7. Hence,y € U" € Z. Since 4,
is a basis for Zaty, then thereisa B" € %, suchthatB° C U". SetB=B"NY. Then
BE#JY and B=B NnYCUNY = U,

It follows that #,1Y is a basis for 1Y aty.
d) LetCCY.

i) Assume C is a closed subsetof Y. ThenY-C & J1Y. SoY-C= UNY where
Uue 7 SetD=X-U. Then D is a closed subset of X, and
C=Y-(Y-C)=Y-(UNY)=Y-U-=(X=-U)NnY =DnNY.

ii) Conversely, assume there is a closed subset D of X suchthat C=D NY. Set
U=X-D. ThenUe Z SoUNYeJIlY. Also
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C=DNY =(X-U)NY=Y-U=Y-(UNY).

Hence, C is a closed subset of Y.

e) LetZCY.

i) Assume U € Z1Z. ThenU =U"NZwhere U" € Z Hence, U"' NY € Z1Y.

SinceU=U"NZ=U"N(YNZ)=(U" NY)NZ thenitfollows that U € (Z1Y)IZ
This proves Z1Z C (Z1Y)IZ.

ii) Assume U € (Z1Y)IZ. ThenU=U"NZwhere U" € Z1Y. HenceU' =U" NY

where U € 7 SinceU=U"NZ=(U"NY)NZ=U"N(YNZ)=U"N2Z then
Ue JIZ. This proves (ZIY)IZC TIZ.

We have shown that 71Z = (Z1Y)IZ.

f) Assume Y is an open subset of Xand U C Y.

i) Assume U is an open subset of Y. Then U =U" NY where U" € 7. Since both
U and Y are open subsets of X, then so is U.

ii) Conversely, assume U is an open subset of X. Since U=UNY and U € 7 then
U is an open subset of Y.

g) Assume Y is a closed subset of Xand C C Y.

i) Assume C is a closed subset of Y. Then by part d) of this theorem,C=D NY

where D is a closed subset of X. Since both D and Y are closed subsets of X, then so is
C.

ii) Conversely, assume C is a closed subset of X. SinceC=CNYandCisa
closed subset of X, then part d) of this theorem implies that C is a closed subset of Y.

h) Assume p is a metric on X which induces the topology 7. Set o =plY x Y.
Then fory,zand x € Y:

i) o(y,2) =0 = p(y,2) =0 = y=2
i) o(y,z) = p(y,2z) = p(z,y) = o(z,y), and
iii) o(y,z) = p(y,2) = p(y,x) + p(x,2) = o(y,X) + o(X,2).

Hence, o is a metricon Y.
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ForyeYande>0,setN,(y,e)={z€Y:0(y,z)<e };and forx € X and ¢ > 0,
set N (x,e) ={yEX:p(xy)<e} SetZB,={Niy,e):yeEYande>0} Then %, isa
basis for the topology on Y induced by the metric o.

We will now prove that 4, is also a basis for Z1Y. To begin, observe that for
eachyeYande>0,

N.(y,e) ={z€VY:o(y,z)<e}={z€Y:p(y,z)<e}
={zeX:py,z)<e}NY = NJy,e)NY.

i) Foreachy €Y and ¢ >0, since N (x,e) € Zand N,(y,e) = N,(y,e) N'Y, then
N.(y,e) € ZIY. Hence, Z,C JIY.

ii) LetycU € Z1Y. ThenU=U"NY where U"€ 7 Sincey € U" € Z then by
Theorem 1.10, N,(y,e) C U” for some ¢ > 0. Therefore,

yENy,e)=N(ye)NY C U NY = U.
This completes the proof that 4, is a basis for 71Y.

Since 4, is a basis for both the topology on Y induced by the metric o and for
Z1Y, then the Corollary to Theorem I.1 implies that these two topologies are equal; i.e.,
the topology on Y induced by the metric o equals Z1Y. Therefore, o = plY x Y induces
the topology 1Y on Y. O

Next we consider the extent to which the topological properties we have been
studying — separability, first and second countability, the separation properties and
metrizability — are inherited by subspaces.

Theorem 1.27. Let X be a topological space, and let Y be a subset of X with the
subspace topology.
a) If X is second countable, then sois Y.
b) If X is first countable, then sois Y.
c) If XisTq,thensoisY.
d) If X is Hausdorff, then sois Y.

e) If Xisregular, thensois Y.

f) If X is metrizable, then sois Y.

Proof. a) Assume X is second countable. Then the topology on X has a
countable basis #. Theorem 1.26 b) implies that Z1Y ={B NY : B & %} is a basis for
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the subspace topology on Y. Since £ is countable, then £ |Y is also clearly countable.
Hence, Y is second countable.

b) Assume X is first countable. To prove that Y is first countable, lety € Y.
Then the topology on X has a countable basis 2%, aty. Theorem 1.26 c) implies that
#Z)Y ={BNY:Be& %, }is abasis for the subspace topology on Y aty. Since %, is
countable, then Z Y is also clearly countable. This proves Y is first countable.

c) Assume Xis T1. To prove Yis Ty, lety, z€ Y such thaty # z. Since Xis T,
there is an open subset U of X such that y € U and z & U. Therefore, U NY is an open
subset of Y suchthatye UNYandz& U N Y. This proves Y is Ty.

d) Assume X is Hausdorff. To prove Y is Hausdorff, lety, z € Y such thaty # z.
Since X is Hausdorff, there are disjoint open subsets U and V of X such that y € U and
ze V. Therefore, U N Y and V NY are disjoint open subsets of Y suchthatyeunNy
andzeVNY. This proves Y is Hausdorff.

e) Assume X is regular. To prove Y is regular, lety € Y and let C be a closed
subset of Y such thaty & C. Then by Theorem 1.26.d), C =D N Y where D is a closed
subset of X. Sinceye€ Y andy & C, theny & D. Since X is regular, it follows that there
are disjoint open subsets U and V of X suchthaty e UandDCV. ThenU N Y and
V N'Y are disjoint open subsets of Y suchthatyeUNYandC=DNYCVNY. This
proves Y is regular.

f) Assume X is metrizable. Then there is a metric p on X that induces the
topology on X. Therefore, Theorem 1.26 h) implies that plY x Y is a metric on Y that
induces the subspace topology on Y. Hence, Y is metrizable. O

Observe that Theorem 1.27 does not assert that the properties of separability and
normality are inherited by subspaces. Indeed, these properties are not inherited by
subspaces, as the following problem and remark reveal.

Problem 1.16. Among the spaces described in Examples 1.1 through 1.17, find a
separable space which contains a non-separable subspace.

Remark. Problem |.21 below provides an example of a normal space which
contains a non-normal subspace.

Corollary 1.28. Every subspace of a separable metrizable space is separable.

Problem 1.17. Prove Corollary 1.28.
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Exercise. Let ( X, <) be a linearly ordered set, let Y C X, and let <, denote the
restriction of <to Y (In other words, if we regard < as a subset of X x X, then <, =
<N (Y xY).) Ingeneral, the order topology on Y determined by <, does not coincide
with the subspace topology on Y. Find a subset of R which illustrates this phenomenon.

Definition. Let X, X,, ..., X, be topological spaces. The Cartesian product of
X Xy, ..., X, is the set of all n-tuples ( X, X,, ..., X,) such thatx, € X, for1 <i<n. ltis
denoted X, x X, x ... x X,. Thus,

Xix Xox oo x X,= {(X, X5, ..., X,) : X EX for1=sisn}.

An open box in X; x X, x ... x X, is an subset of X, x X, x ... x X, of the form
U, x U, x ... x U, where U, is an open subset of X, for 1 <i < n. Observe thatif U, V,C
Xjfor 1 <i<n,then

(UyxUy,x...xU, )N(V,xVox...xV,) = (UNV)x(U,NV,)x...x(U,NV,).

Since the intersection of two open subsets of X, is an open subset of X; for 1 <i<n, then
it follows that the intersection of two open boxes in X; x X, x ... x X, is an open box in

X; x X, x ... x X,. Hence, the Corollary to Theorem 1.2 implies that the set of all open
boxes in X, x X, x ... x X, is a basis for a topology on X, x X, x ... x X,. This topology is
called the product topology on X, x X, x ... x X,.

Theorem 1.29. Let ( X,, Z,), ( Xy Z5), ...., ( X,, <, ) be topological spaces,
and let 7 denote the product topology on X, x X, x ... x X,.

a) If B isabasisfor 7, for1<i<n,then {B,xB,x...xB,:B €% fori<isn} isa
basis for .

b) If x, € X, and %, is a basis for Z; at x;for 1 <i<n, then
{B;xB,x...xB,:B &€ %for1=<i=<n}isabasis for 7at the point ( x;, X5, ..., X, ).

c) If C, is a closed subset of X, for 1 <=i<n, then C, x C, x ... x C, is a closed subset of
Xix Xy x oo x X,
Proof. a) Assume %, is a basis for 7, for 1 <i<n, and set
#={B,xB,x...xB,:BeEZ%fori<isn}.
We must prove £ is a basis for the product topology .

Since each element of % is an open box and each open box is an element of the
product topology .7, then 4 C .

Suppose x = ( X4, X, ..., X,) € U € Z. Since the collection of all open boxes is a
basis for 7, then there is an open box V, x V, x ... x V,, such that ( x,, X,, ..., X,) €
V,;xV,x...xV,CU. Therefore, x,€V,€ Z;for1<i<n. For1=<is<n,since % is a



59

basis for 7, then there is a B, € %, such that x, € B, C V.. It follows that B, x B, x ... x B,
eEBand x= (X, Xgy ... , X)) EB; xByx...xB,CV,; xV,x...xV,CU.

This completes the proof that 4 is a basis for 7.

b) Assume x, € X, and 4, is a basis for 7, at x, for 1 =i <n, and set
#={B,xB,x...xB,:BeZ%fori<isn}.
We must prove that £ is a basis for the product topology 7 at the point x =

(Xqy Xop wvv y X )-

Since each element of % is an open box and each open box is an element of the
product topology .7, then £ C .

LetB, xB,x...xB,€ %. For1=<is<n,since B,€ % and %, is a basis for 7 at

X, then x, € B, Hence, x = ( X;, X5, ..., X,) €EB; x B, x ... x B,.
Suppose x = ( X4, X, ..., X,) € U € Z. Since the collection of all open boxes is a
basis for 7, then there is an open box V, x V, x ... x V,, such that ( x,, X,, ..., X,) €

V,xV,x...xV,CU. Therefore, x,€V,€ 7, for1<i<n. For1<i<n, since % is a
basis for 7; at x,, then there is a B, € 4, such that x, € B, C V.. It follows that
BixB,x..xB,eEZandx=(X, X, ... ,X,)EB;xB,x...xB,CV,xV,x..xV,C
U.

This completes the proof that £ is a basis for the product topology 7 at the point
X=Xy, Xoy «v y X )e

¢) Assume C, is a closed subset of X, for 1 <si<n. For1<i=<n, set
U=X;x=xX_;x(Xi—=C;) x X,y xx X,

Then each U, is an open box and, hence, an open subset of X, x X, x ... x X,..
Furthermore, for1<isn, x= (X, Xy, ..., X,) €U, if and only if x; & C,. Hence, a point
X =(Xy, Xp, ... , X, ) lies in the complement of C, x C, x ... x C,, if and only if x, & C, for
some i between 1 and n if and only if x € U, for some i between 1 and n. Therefore,

(XyxXox...xX,)-(Cy;xC,x...xC,)=U,UU,U ... U U,
Thus, the complement of C, x C, x ... x C, is an open subset of X, x X, x ... x X.
Hence, C, x C, x ... x C, is a closed subset of X, x X, x ... x X,. O

Exercise. Let R have the standard topology. Using Theorem 1.29. a), observe
that for n = 1, the product topology on R" is the standard topology.
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Now we consider the issue of whether the topological properties we have been
studying — separability, first and second countability, the separation properties and
metrizability — can pass from a finite collection of spaces to their Cartesian product. We
also consider whether these properties pass in the reverse direction — from the
Cartesian product of finitely many spaces to the individual factor spaces. To explore
these issues, it is convenient to introduce the following terminology and prove a lemma.

Definition. Let X,, X,, ..., X, be topological spaces. For 1 <i < n, define the
projection function

TG Xy x X, x ..o x X, — X

by the equation m( x4, X,, ..., X,) = X; for each ( X, X,, ... , X,) € X; x X, x ... x X,,. For
eacha=(a, a, ...,a,) € X, x X, x ... x X, and for 1 <i < n, define the " injection
function

€.t XK= Xy x Xy x . x X,
by the equation e,(x) = (a;, ..., a1, X, @,4, .. , &, ) for each x € X.
Lemma 1.30. Let X,, X,, ..., X, be topological spaces, let X, x X, x ... x X, have
the product topology, and leta=(a;, a,, ..., a,) € X; x X, x ... x X,.
a) Tee,; =idy for1 <i<n.

b) For 1 <i=<n,if Vis an open subset of X, then i;"'(V) is an open subset of
X, x X, x ... x X.; and if D is a closed subset of X, then r;"(D) is a closed subset of
Xix Xy x .o x X,

c) For1<is<n,if Uis an open subset of X, x X, x ... x X,, then e,;7'(U) is an open
subset of X;; and if C is a closed subset of X, x X, x ... x X,, then e,;7(C) is a closed
subset of X.

Remark. When continuity is defined in Chapter Il, we will see that assertions b)
and c) are equivalent to the statements that i, : X; x X, x ... x X, = Xjand e,; : X, —
X; x X, x ... x X, are continuous functions.

Proof.a) Let1<i<n. Forx € X, mee,(X) =14( a;, ... , &1, X, 8yys -2, 8y ) = X
ThUS, T[ioeaj = idxi.

b) Let1<i<n.

Suppose V is an open subset of X.. Then
(V) =X, x oo x Xy x Vx Xipg x o x X

Hence, ' (V) is an open box. Therefore, i'(V) is an open subset of X, x X, x ... x X,..
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Next suppose D is a closed subset of X. LetV =X, —D. Then Vis an open
subset of X, and D = X, — V. Hence, i '(V) is an open subset of X; x X, x ... x X,.
Furthermore, (by Theorem 0.10.d)

(D) =7 '(X) —17(V) = ( Xy x Xy x . x X, ) =117(V).

Thus, 7'(D) is a closed subset of X, x X, x ... x X,..
c) Let1<i=<n.

First we show that if B is an open box in X; x X, x ... x X, then e, ”'(B) is an
open subset of X,. Suppose B=V, xV, x ... x V, is an open box in X; x X, x ... x X.
Forx € X, since e, (x) =(ay, ..., a_y, X, &1, ..., &, ), thene,;(x) EV,; x V,x ... xV, =B
if and only if a, € V, for all j =i and x € V,. Therefore, x € e,;7'(B) if and only if a € V, for
alljziandx €V, Hence, e, '(B)=V,ifa €V forallj#i,ande, ' (B) = Jif a, &V, for
some j #i. Consequently, either e, '(B) =V, or e, (B) = &. This proves e,;'(B) is an
open subset of X.

€,,(X)
(a1’""ai—1aai+1,--.,an)———>I /\ /
i box B
€a i box B’
X‘1>< XXi_1XXi+1X .Xxn\ i
P Xy x X x L x X,
| T
' \/
ea,ﬁ(B)/ \xi
€, (B) =0

Now suppose U is an arbitrary open subset of X, x X, x ... x X,. Since the open
boxes in X, x X, x ... x X, form a basis for the product topology, then Theorem I.1
implies that U can be expressed as a union of open boxes. Thus, there is a collection ¥

of open boxes in X, x X, x ... x X, such that U = U%. Then (by Theorem 0.10.b)

e, '(U)=U{e,'(B):BEF }.
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Since each B € ¢’is an open box, then e, (B) is an open subset of X; for each B € %.
Hence, e, (U) is an open subset of X.

Finally, suppose C is a closed subset of X; x X, x ... x X,. LetU =
(X;x X, x...xX,)—C. Then U is an open subset of X, x X, x ... x X,, and C =
(X;x X, x ... xX,)—U. Hence, e, ;"'(U) is an open subset of X;. Furthermore, (by
Theorem 0.10.d) e, (C) =€, ( X; x X, x ... x X, ) — €, (U) = X;— e, (U). Thus,
€., '(C) is a closed subset of X,. O

Next we state and prove a theorem which tells us the extent to which the
topological properties we have been studying pass between a finite collection of spaces
and their Cartesian product.

Theorem 1.31. Let X,, X,, ..., X, be topological spaces, and let X, x X, x ... x X,
have the product topology. Then:

a) X, xX,x...xX,is second countable if and only if each of X,, X,, ..., X, is second
countable.

b) X, x X, x ... x X, is first countable if and only if each of X,, X,, ..., X, is first
countable.

c) X, x X, x ... x X, is separable if and only if each of X,, X,, ..., X, is separable.
d) X, x X, x ... x X, is T, if and only if each of X, X,, ..., X, is T,.

e) X, x X, x ... x X, is Hausdorff if and only if each of X, X,, ... , X, is Hausdorff.
f) X, x X, x ... x X, is regular if and only if each of X;, X,, ..., X, is regular.

g) If X, x X, x ... x X, is normal, then each of X,, X,, ..., X, is normal.

Proof. For 1 <i<n, let 7, denote the topology on X, and let 7 denote the
product topology on X, x X, x ... x X,. Alsochoosea=(a;,a, ...,a,)€E
X; x X, x ... x X,. We now prove the various parts of Theorem 1.31.

Proof of a) =. Assume that X, x X, x ... x X, is second countable. Then the
product topology 7 has a countable basis #. Let 1 <i<n. We will prove that X; is
second countable by showing that the countable set{ e, '(B) : B € £} is a basis for the
topology 7, on X,. Since & C .7, then Lemma 1.30.c implies that e,;(B) € Z; for each B
€ %. Hence,{e, 'B):BeB}C Z. NowletxeV e Z. Thenm (V) € Zby Lemma
1.30.c. Also, e,;(x) €ET'(V). (Proof: mee,; = idy (by Lemma [.30.a) = Ti(e,;(X)) =X E
V = e, (x) € '(V).) Since Zis a basis for 7 it follows that there is a B € % such that
€,i(X) EB C (V). Hence, x € e,;'(B). Furthermore, e, (B) C V. (Proof: BC 1 (V)
= e, (B) C e, (m(V)) = (mee,) (V) = (idy) (V) = V.) Thus, x € e, '(B)C V. This
completes the proof that{ e,;'(B) : B € £ }is a basis for 7. We conclude that X; is
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second countable. (See the figure below.)

el

1 . 1

O NG A
v/ ! / i

L €ai(x) I €a:i(Xi) :
ié”i_1 (V) %i i €.

Proof of a) —=. Assume that X, is second countable for each i between 1 and n.
Then for 1 <i = n, the topology Z; on X; has a countable basis 4. Since %,, 8,, -, %,
are all countable sets, then their Cartesian product %, x %4, x ... x %, is also a
countable set (according to Theorem 0.17). Hence, the collection

B={B,xBy,xxB,:(B,B,, ,B,)EAB, x B, x...x B, }

is countable as well. According to Theorem 1.27.a, the collection £ is a basis for the
product topology Zon X, x X, x ... x X,. Thus, Zhas a countable basis. We conclude
that X, x X, x ... x X, is second countable.

Proof of b) =. Assume that X, x X, x ... x X, is first countable. Let1 <i<n and
let x € X;. We will show that .7, has a countable basis at x. Lety =e,;(x). Sincey €
Xy x X, x ... x X,and X, x X, x ... x X, is first countable, then Zhas a countable basis
%, aty. We will prove that the countable set{ e, "(B) : B € 4, } is a basis for .7, at x.
The proof is essentially the same as the proof of a) =. First since %, C 7, then Lemma
1.30.c implies that e, '(B) € 7, for each B € %,. Hence,{e,'(B):BE %,}C J.
Second, for each B € %, since e,;(x) =y € B, then x € e,;7'(B). Third and last, letx € V
€ 7. Then, as in the proof of a) =, m7'(V) € Zandy = e, (x) Em'(V). Since %, is a
basis for Zat y, it follows that there is a B € % such that e,(x) =y € B C (V).
Therefore, as in the proof of a) =, x € e,;"(B) and e, (B) C V. This completes the
proof that { '(B) : B € %, } is a countable basis for .7, at x. We have shown that .7,
has a countable basis at every point of X.. We conclude that X is first countable.

Proof of b) <. Assume that X is first countable for each i between 1 and n. Let
X=(Xq Xgy ..., X,) € Xy x X, x ... x X,. We will show that 7 has a countable basis at x.
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For 1 <i<n, since X is first countable, then .7; has a countable basis 4 at x;. Since the
sets 4,, %,, ... , B, are all countable, then their Cartesian product 8, x %8, x ... x B, is
also countable (according to Theorem 0.17). Hence, the collection

B ={B;xBy,x...xB,:(B;,B,, ..., B,)€E%, x B, x...x B, }

is countable as well. According to Theorem 1.29.b, the collection £ is a basis for Zat
x. Thus, Zhas a countable basis at x. We have shown that 7 has a countable basis at
every point of X, x X, x ... x X,. We conclude that X, x X, x ... x X, is first countable.

Proof of d) =. Assume X, x X, x ... x X, is T,. Let1 <i<nandletxandy be
distinct points of X,. Then

ea,i(X)= (3.1, oy 8is1y Xy @iy ...,an) and ea,i(Y)=(a1’ Ty 8isy Y Qigy ...,an)

are distinct points of X; x X, x ... x X,. Since X, x X, x ... x X, is T,, there is an open
subset U of X; x X, x ... x X, such that e,;(x) € U and g(y) € U. Thenx Ee,;'(U)andy
& e, '(U). Furthermore, Lemma 1.30.c implies that e,;"(U) is an open subset of X. This
proves X is T,.

Proof of d) <. Assume that X, is T, for each i between 1 and n. Letx =
(X4 Xo oy X, ) € Xy x X, x ... x X,. Then{x,}is a closed subset of X, for 1 =i <n, by
Theorem 1.23.a. Observethat { X} ={( Xy, Xp, -.. , X)) }={X; }x{ X } x ... x {X, }-
Therefore, Theorem 1.29.c implies that { x } is a closed subset of X, x X, x ... x X,..
According to Theorem 1.23.a, this proves X, x X, x ... x X, is T,.

Proof of e) =. Assume X, x X, x ... x X, is Hausdorff. Let 1 <i<n and let x and
y be distinct points of X.. Then

ea,i(X)= (3.1, oy 8is1y Xy @iy ...,an) and ea,i(Y)=(a1’ Ty @iz Y Qigy ...,an)

are distinct points of X; x X, x ... x X,. Since X, x X, x ... x X, is Hausdorff, there are
disjoint open subsets U and V of X, x X, x ... x X, such that e,;(x) € U and e, (y) € V.
Thenx € e, '(U),y € e, (V), and (by Theorem 0.10.c)

ea,i_1(U) m ea,i_1 (V) = ea,i_1( U m V ) = ea,i_1(@) = @

Furthermore, Lemma 1.30.c implies that e,;(U) and e,;"'(V) are open subsets of X,
This proves X; is Hausdorff.

Proof of e) —=. Assume that X, is Hausdorff for each i between 1 and n. Let x =
(X4 Xoy ooy Xy)a@ndy=(yy, Vo ..., ¥o) be distinct points of X, x X, x ... x X,. Since x #
y, then x; # y, for some i between 1 and n. Since X; is Hausdorff and x; and y; are distinct
points of X, then there are disjoint open subsets U and V of X; such that x, € U and y, €
V. Since m(x) = x; and m(y) = y,, then r(x) € U and r(y) € V. Therefore, x € ;' (U) and
y €' (V). Also (by Theorem 0.10.c)
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mU)Nmi(V) = m(UNnVv) = (@) = 2.

Furthermore, Lemma 1.30.b implies that ri'(U) and 17" (V) are open subsets of
Xy x X, x ... x X,. This proves X, x X, x ... x X, is Hausdorff.

The following three problems complete this proof. O

Problem 1.18. Prove part c) of Theorem 1.31.

Problem 1.19. Prove part f) of Theorem 1.31.

Problem 1.20. Prove part g) of Theorem 1.31.

Theorems 1.27 and 1.31, by failing to make obvious assertions about normal
spaces, raise two natural questions. Are all subspaces of normal spaces normal? Are
all Cartesian products of two normal spaces normal? The following two examples shed

light on these questions.

Example 1.18. Let X be an uncountable set, let p € X, and set
T = PAX-{p})U{UCX:X-Uisfinite }.

Then Zis a topology on X. Endow X with the topology 7. SetY ={0}U{"/,:nEN},
and regard Y as a subspace of R. Let X x Y have the product topology.

o T e
< o
I S S R
B SS———— §
| \/ !
- e—"o— %

S
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Problem 1.21. Parts a, b and c of this problem refer to the space X x Y described
in Example 1.18.

a) Verify that 7is a topology on X.
b) Prove that X x Y is a normal Hausdorff space.

(The fact that X x Y is normal will follow without difficulty from results in a later chapter.
This is because X and Y are easily seen to be compact Hausdorff spaces. Then
theorems in a subsequent chapter will imply that X x Y is a compact Hausdorff space
and, hence, a normal space. However, for the present problem, you are asked to prove
that X x Y is normal from the definition of “normal” without appealing to the notion of

compactness which will be introduced later.)

¢) Prove that the subspace ( X x Y ) —{ (p,0) } of X x Y is not normal.

Hint: Consider the two disjoint subsets (X —{p})x{0}and{p}x(Y—-{0}).

d) Prove that X x Y is not completely normal. (The definition of “completely normal”
follows Problem 1.14.)

Problem 1.21 reveals that a subspace of a normal space need not be normal.

Recall the space R,,, described in Example 1.7. In Problem 1.15(7) the question
of whether R, is normal was decided.

Example 1.19. Consider the Cartesian product R, 4 x R,4 with the product
topology.

Problem 1.22. Is R, x R,,4 normal?

Problem 1.22 resolves the question of whether the Cartesian product of two
normal spaces must be normal.

Theorem 1.32. Let ( X, p;), ( X5, p2), ---, ( X, P, ) b€ metric spaces. Then
three metrics on X, x X, x ... x X, are defined by the following formulas. For
X=(Xq, Xgy oeny, Xp)ANAY = (Y1, Vo «ov 5 V) €E Xy x Xp x oo x X

a) oy(x,y) in=1pi(xi’yi)’

b) oy(xy) = (EL(pi(xi,yi))z)%

c) o.(X)y) = max{p(x,y):1=<i=sn}

Moreover, o,, o, and o, are equivalent metrics and induce the product topology on
Xix Xy x .o x X,
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Proof. ForAe{1,2, 0}, xE X, xX,x ... x X,and ¢ >0, let
N, (x,e) ={yEX; x X, x ... x X, : G,(X,y) < ¢ }.

Recall that the taxicab norm Il Il;, the Euclidean norm Il |l, and the supremum norm Il 1l
on R" are defined and shown to be norms in 0.D. Observe that if x = ( Xy, X,, ..., X;,)

and y = (y1’ y2’ e yn) € X1 X X2 X .o X Xn’ and If r= ( p1(X1’y1)’ p2(X2’y2)’ et pn(Xn’yn) )
eR" thenforhe{1,2, 0},

o,(x,y) =1l rll,.

We now verify that o,, 0, and o, are metrics on X, x X, x ... x X. LetA &
{1,2,0}. Letx=(X;, Xpy oea , %, ), Y=(Y1, Y2 ---sYn)andz=(2z,,2, ...,2,) €
X; x X, x ... x X,. Then clearly

X=y < x,=y,forisisn < p(x,y)=0for1<si=sn < o,(x,y) =0.
Also since pi(x;,y:) = pi(yi,x) for 1 =i < n, then c,(x,y) = 0,(y,X). To prove the triangle
inequality, define r, s and t € R" by
F=(pi(X1,Y1)s Po(X2:Yo)s - s Pu(Xni¥n) ),
s = (P1(Y1,21), P2(Y2:22), --- 5 PualYniZ4) ) @nd
t=(pi(X1,2y), P2(X0525), --- 5 Pr(XnyZp) )-

Then o, (x,y) = Il r Il,, o,(y,2z) =l s I, and ,(x,2z) =l tIl,. For 1 <i<n, since p(x;,z) is
the i"™ coordinate of t, p,(x,y,) + pi(Y,z) is the i coordinate of r + s, and 0 < p,(x;,z) <
pi(X,Y) + pi(Yi,z), then clearly Il tll, <llr + s ll,. Since the norm Il ll, satisfies the
triangle inequality, it follows that

ox,z) =t <llr+sl,<llrll, +I1lsll,=o0,(xy)+ 0,(y,2).
This completes the proof that o,, 0, and o., are metrics on X, x X, x ... x X,..

Observe that the definitions of the taxicab, Euclidean and supremum norms imply
that for r € R",

Hrile < lrll, = 1lrll; = nllrll,.

(Ilrll, < Ilrll, follows from the obvious fact that (Il rll,)*> < (Il rll, )%) Hence, for x
andy € X, x X, x ... x X,, we have

Gw(X,Y) = Gz(an) = 01(an) =n Gw(X,Y)
Thus, forx andy € X, x X, x ... x X, and ¢ >0,
0,(X,Y) < & = 0,(X,Y) <&, 0,(X,y) < £ = 0,(X,y) < &€ and o.(X,y) < e¢/n = o,(X,y) < .

Therefore, forx € X, x X, x ... x X, and ¢ > 0,
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N.(X,e/n) C N,(X,g) C N,(X,£) C N,(X,g).

Consequently, Theorem I.11 implies that o, 0, and o,, are equivalent metrics on
Xix Xo x .o x X,

Lastly, we prove that o, induces the product topology on X, x X, x ... x X,. Let
B, ={ No(X,e) : XxE X, x X, x ... x X, and ¢ >0 } and let %4, denote the collection of all
open boxes in X; x X, x ... x X,. Then %, is a basis for the topology induced on
X; x X, x ... x X, by the metric o.,, and 4, is a basis for the product topology on
X; x X, x ... x X,. We will use the Corollary to Theorem .3 to show that 4, and 4,,,
generate the same topology on X, x X, x ... x X,. To accomplish this, we must prove:

* ifxeB, € %.,thenthereisaB, € %, and x € B, C B,, and

* ifxe B, e %, then there is a B, € %, such that x € B, C B..

We begin by introducing more notation. For 1 <i<n,x & X,and ¢ >0, let
Mi(x,e) ={y € X : pi(X,y) < ¢ }.

Next observe that for x = ( X4, X5, ... , X, ) €EX; x X, x ... x X, and ¢ > 0:

V=(Y1, VYo .-, ¥n ) E Nu(X,8) & 0O.(X,y) <t <
p(x,y)<eforisisn < yeM(x,e)forisisn <
y € M, (X;,€) x My(Xp,€) x ... x M(X,,€).
This proves that for x = ( Xy, X5, ... , X, ) E X; x X, x ... x X, and ¢ > 0,
N.(X,€) = M,(X;,€) x My(X5,€) x ... x M, (X,,€).

Hence, for each x € X, x X, x ... x X, and € > 0, N.(X,¢) is an open box. Consequently,
B, C Boo- NOW suppose x € B, € 4,.. Then B, € %,.,. So if we set B, =B,, then B, €
PB,.x and x € B, C B,. This completes the first half of the proof that £, and %4,
generate the same topology on X, x X, x ... x X,. Second suppose X = ( Xy, Xp, .. , X, )
€ B, € %,... Since B, is an open box, then B, = U, x U, x ... x U, where U, is an open
subset X, for 1 <i<n. Thus, (X, X,, ..., X,) €U, x U, x ... x U,. Therefore, x, € U, for
1 <i=<n. Atthis point, Theorem I.10 implies that for 1 <i < n, there is an ¢, > 0 such that
Mi(x;,e) CU. Lete=min{e,, ¢, ..., ¢, }. Thene>0 and x; € M(x;,&e) C Mi(x,,&) C U, for
1 <i<n. Hence,

X =(Xqy Xoy ov s X ) € My(X4,8) x My(X0,8) x ... x M(X,,8) CU, x Uy x ... x U, =B..

We know that M,(x;,€) x My(X5,€) x ... x M, (X,,€) = No(X,&) and N.(X,e) € #.. So if we
set B, = N..(x,¢), then B, € 4., and x € B, C B,. This completes the second half of the
proof that 4., and %4,,, generate the same topology on X; x X, x ... x X,. We conclude
that the metric o,, induces the product topology on X, x X, x ... x X,.. Since the metrics
0,, 0, and o,, are equivalent, then all three metrics induce the product topology on
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Xix X, x ... xX,..O

Theorem 1.33. If X,, X,, ..., X, are topological spaces and X, x X, x ... x X,
has the product topology, then X, x X, x ... x X,, is metrizable if and only if each of
X, X, ..., X, is metrizable.

Proof. The <« direction of the proof follows from Theorem 1.32. The following
problem completes this proof. O

Problem 1.23. Suppose if X, X,, ..., X, are topological spaces and
X; x X, x ... x X, has the product topology. Prove thatif X, x X, x ... x X, is metrizable,
then each of X;, X,, ..., X, is metrizable.

Theorem 1.34. Let X,, X,, ..., X, be topological spaces, and let X, x X, x ... x X,
have the product topology. For 1 <i<n,let xj: N — X, be a sequence in X, and lety, €

X.. Define the sequence x: N — X, x X, x ... x X, in X; x X, x ... x X, by

X(K) = (%1(K), Xa(K), ... , X,(K) )
forkeN,andset y=(VY, Yo -5 Vn) EX; x X, x ... x X,. Then x convergestoy in
Xy x X, x ... x X, ifand only if x;,convergestoy;in X;for1 <i<n.

Proof. First assume that x convergestoyin X; x X, x ... x X,. We must prove
that x, converges to y;in X;for1 <i<n. Tothisend,let1<i<snandletV be a
neighborhood of y, in X.. Then Lemma 1.30.b implies that i;'(V) is an open subset of
X, x X, x ... x X,. Furthermore, since mi(y) = y,, then y € ;' (V). Since x converges to
y, then there is a k € N such that x(j) € (V) for all j € N such that j = k. Therefore,
mi(x(j)) € V for all j = k. Since m(x(j)) = x(j), then x,(j) € V for all j = k. We conclude that
X; converges to y; in X

Second assume that x; converges to y; in X, for 1 =i <n. We must prove that x
convergestoyin X, x X, x ... x X,. To this end, let U be a neighborhood of y in
Xy x X, x ... x X,. Since X, x X, x ... x X, has the product topology, then there is an
openbox V; x V, x ... x V in X; x X, x ... x X, suchthaty e V, xV,x...xV, CU.
Sincey=(yy, Yo ..., Yo ), then (y,, Vo, ..., ¥, ) EV, x V, x ... x V,. Hence, y, €V, for 1
<i=n. For1 <i=n, since x, converges to y, in X, then there is a k; € N such that x(j)
€ V,foralljEN such thatj=k. Letk=max{k,, k,, ..., k, }. Itfollows thatifjE N and |
>k, then x(j) € V,for 1 =i <n. Therefore, ifj €N and j = k, then x(j) =
( X4(3)s X(4), -+ s X()) ) E Vy x Vo x ... x V. Thus, x(j) € U for all j € N such that j = k. We
conclude that x convergestoyin X, x X, x ... x X,. O
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