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I. Topological Spaces

A. Topologies

The topological structure of a space expresses the limit or convergence
phenomena which occur within the space.  There are many ways to specify this
structure.  For instance, one could specify which generalized sequences (sequences of
possibly uncountable length) converge.  Or one could specify a "closure operator" which
assigns to each subset of the space its "closure".  Or in special cases one could specify
a metric (distance function) on the space.  We follow the course that has through time
become the standard approach.  We specify the collection of "open sets" or the
"topology" of the space.

Definition.  A topology on a set X is a collection  T of subsets of X satisfying the
following three conditions.
a)  ∅, X ∈ T,.
b)  if U ⊂ T, then ∪ U ∈ T, and
c)  if U, V ∈ T, then U ∩ V ∈ T.

For definitions and illustrations of elementary usage of set theoretic notation like
the union symbol "∪" and the intersection symbol "∩", we refer the student to Section A
of Chapter 0.

Observe that property c) together with an induction argument imply that if
U1, U2, ... , Un ∈ T, then U1 ∩ U2 ∩ ... ∩ Un ∈ T.

Definition.  Let X be a set, and let T be a topology on X.  Then the pair ( X,  T  )
is called a topological space.   When we don't wish to name the topology, we simply say
"X is a topological space".  The elements of T are called open subsets  of X.

Example I.1.  { ∅, X } is the called the indiscrete topology on the set X.

Example I.2. P(X) = { A : A ⊂ X } is called the discrete topology on the set X.

Example I.3.  Let X = { x, y, z } be a three-point set.  Then
{ ∅, {x}, {y}, {x,y}, {x,z}, {x,y,z} }  is a topology on X.  (See the following figure.)
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Exercise.  Verify that the collections defined in examples I.1 through I.3 are
topologies.

Example I.4.  { ∅ } ∪ { U ⊂ X : X–U is finite }  is called the finite complement
topology  on the set X.

Proof that the finite complement topology is a topology.  Set T =
{ ∅ } ∪ { U ⊂ X : X–U is finite }.
 

a)  Clearly ∅ ∈ T.  X ∈ T because X – X = ∅ is a finite set.

b)  Let U ⊂ T.  If U = ∅ or { ∅ }, then ∪ U = ∅ ∈ T.  Now assume U ≠ ∅ or { ∅ }.
Let U0 ∈ U – { ∅ }.  By De Morgan's Laws,  X – (∪U)  =  ∩U ∈ U  ( X – U )  ⊂  X – U0.
Since X – U0 is finite, then X – (∪U) is finite.  So ∪  U ∈ T.

c)  Let U, V ∈ T.  If U or V = ∅, then U ∩ V = ∅ ∈ T.  Now assume U ≠ ∅ ≠ V.
By De Morgan's Laws,  X – ( U ∩ V )  =  ( X – U ) ∪ ( X – V ).  Since X – U and X – V
are finite, then ( X – U ) ∪ ( X – V ) is finite.  Hence, X – (U ∩ V) is finite.  So U ∩ V ∈ T.


Definition.  Let T and U be topologies on a set X.  If T ⊂ U, we say T is smaller
or coarser than U, and U is larger or finer than T.

Observe that if T is any topology on a set X, then

the indiscrete topology on X  ⊂  T  ⊂  the discrete topology on X.

B. Bases

To specify a topology on a set, one need not list the entire topology.  It suffices to
specify a generating subcollection or "basis" for the topology.  In practice, a topology is
often determined by specifying its basis, because it is easier or clearer to describe the
basis than the entire topology.

Definition.  Let ( X,  T  ) be a topological space.  A collection B of subsets of X is
a basis  for T if
a) B ⊂ T, and
b)  for every x ∈ U ∈ T, there is a B ∈ B such that x ∈ B ⊂ U.
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Theorem I.1.  Let ( X,  T  ) be a topological space, and let B be a collection of
subsets of X.  Then B is a basis for T if and only if T = { ∪  C : C ⊂ B }.

Observe that this equation specifies the exact relationship between a basis and
the topology it "generates".

Proof.  First assume B is a basis for T.  Then by definition, B ⊂ T.  So C ⊂ B ⇒
C ⊂ T ⇒  ∪C ∈ T.  Hence, T ⊃ { ∪  C : C ⊂ B }.

Let U ∈ T.  Then for each x ∈ U, there is a Bx ∈ B such that x ∈ Bx ⊂ U.  Set D
= { Bx : x ∈ U }.  Then D ⊂ B and ∪ D = ∪x ∈ U Bx = U.  So U equals the union of the
elements of the subset D of B.  In other words U ∈ { ∪  C : C ⊂ B }.  This proves
T ⊂ { ∪ C : C ⊂ B }.

We conclude that T = { ∪  C : C ⊂ B }.

Second assume T = { ∪  C : C ⊂ B }.

To prove B ⊂ T, let B ∈ B.  Then { B } ⊂ B and ∪{ B } = B.  Hence, B ∈
{ ∪  C : C ⊂ B }.  So B ∈ T.  This proves B ⊂ T.

Let x ∈ U ∈ T.  We must prove there is a B ∈ B such that x ∈ B ⊂ U.  Since U ∈
T = { ∪ C : C ⊂ B }, then there is a C ⊂ B such that U = ∪ C.  So x ∈ ∪ C.  Hence,
there is a B ∈ C such that x ∈ B.  Therefore, B ∈ B and x ∈ B ⊂ ∪  C = U.

We conclude that B is a basis for T. 

Corollary.  If B is a basis for a topology T on a set X, then T is uniquely
determined by the formula T = { ∪ C : C ⊂ B }. 

According to this corollary, each basis determines a unique topology.  However,
simple examples show that a single topology may have many different bases.

Exercise.  Prove that if the set X has more than one point, then the discrete
topology on X has more than one basis.

We now present a criterion for a collection of subsets of a set to be a basis for
some topology on the set.
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Definition.  If C is a collection of subsets of a set X such that ∪ C = X, then we
say that C covers X and we call C a cover of X.  Thus, C covers X ⇔ for every x ∈ X,
there is a C ∈ C such that x ∈ C.

Theorem I.2.  Let B be a collection of subsets of a set X. B is a basis for some
topology on X if and only if
a) B covers X, and
b)  for all B1, B2 ∈  B, for every x ∈ B1 ∩ B2 , there is a B3 ∈ B such that
x ∈ B3 ⊂ B1 ∩ B2.

Problem I.1.  Prove Theorem I.2 ⇒.

Proof of Theorem I.2 ⇐.  Assume B satisfies conditions a) and b).  Set T =
{ ∪  C : C ⊂ B }.  We will prove that T is a topology on X and that B is a basis for T.

∅ ∈ T because ∅ ⊂ B and ∪∅ = ∅.  X ∈ T because B ⊂ B and ∪ B = X.

Let V ⊂ T.  Then for every V ∈ V, there is a CV ⊂ B such that V = ∪ CV.  Set C =
∪V ∈ V          CV; i.e., B ∈ C ⇔ B ∈ CV for some V ∈ V.  Then C ⊂ B and ∪ C = ∪V ∈ V (∪CV) =
∪V.  Hence, ∪ V ∈ T.

Let U, V ∈ T.  Then there are C, D ⊂ B such that U = ∪  C and V = ∪ D.  Let x ∈
U ∩ V.  Then x ∈ (∪C) ∩ (∪ D).  So there is a Cx ∈ C and a Dx ∈ D such that x ∈ Cx

and x ∈ Dx.  Furthermore, Cx ⊂ ∪C = U and Dx ⊂ ∪D = V.  Thus, Cx ∩ Dx ⊂  U ∩ V. 
Since Cx, Dx ∈ B, then condition b) provides an Ex ∈ B such that x ∈ Ex ⊂ Cx ∩ Dx.
Hence, x ∈ Ex ⊂ U ∩ V.  Therefore, { Ex : x ∈ U ∩ V } ⊂ B and U ∩ V =
∪ { Ex : x ∈ U ∩ V }.  Hence, U ∩ V ∈ T.

This proves T is a topology on X.  Since T = { ∪ C : C ⊂ B }, then Theorem I.1
implies B is a basis for T. 

Corollary.  If B is a collection of subsets of a set X satisfying
a) B covers X, and
b)  for all B, C ∈ B, either B ∩ C = ∅ or B ∩ C ∈ B,
then B is a basis for some topology on X. 

This corollary provides a sufficient (but not necessary) criterion for a collection of
sets to be a basis for a topology, which is simpler than the one stated in Theorem I.2.
Moreover, this simple criterion often applies.  In particular, it applies in the following
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three examples.  Thus, we define the topologies in these examples by specifying their
bases and invoking the corollary.

The first two of these examples are the most important spaces in topology.

Example I.5.  Let R denote the set of real numbers.  For x, y ∈  R, let

(x,y) =  { z ∈ R : x < z < y },

and call this set an open interval in R.  Observe that the intersection of two open
intervals is either the empty set or an open interval.  Hence, the set of all open intervals
in R is a basis for a topology on R called the standard topology on R.

Example I.6.  For n ≥ 1, let

Rn   = R ×  R × …  ×  R (the Cartesian product of n copies of R)

       = { ( x1, x2, … , xn ) : xi ∈ R for 1 ≤ i ≤ n }.

An open box in Rn is a subset of Rn of the form  J1 × J2 × … × Jn where Ji is an open
interval in R for 1 ≤ i ≤ n.  The collection of open boxes covers Rn.  (Why?)  Observe that
if Ji, Ki ⊂ R for 1 ≤ i ≤ n, then

( J1 × J2 × … × Jn ) ∩ ( K1 × K2 × … × Kn )  =  ( J1 ∩ K1 ) × ( J2 ∩ K2 ) × … × ( Jn ∩ Kn ).

Since the intersection of two open intervals is either the empty set or an open interval, it
follows that the intersection of two open boxes in Rn is either the empty set or an open
box in  Rn.  Hence, the set of all open boxes in Rn is a basis for a topology on Rn called
the standard topology on Rn.

Example I.7.  For x, y ∈ R, let
[x,y)  =  { z ∈ R : x ≤ z < y },

and call this set a closed–open interval in R.  Observe that the intersection of two
closed–open intervals is either the empty set or a closed–open intervals.  Hence, the set
of all closed-open intervals in R is a basis for a topology on R called the closed–open
interval topology on R. R with the closed-open interval topology is called  Rbad.

Two different bases on a set may or may not generate the same topology.  The
following theorem and its corollary provide a necessary and sufficient criterion for when
two bases determine the same topology.
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Theorem I.3.  For i = 1, 2, suppose Bi is a basis for a topology Ti on a set X.
Then T1 ⊂ T2 if and only if for every x ∈ B1 ∈ B1, there is a B2 ∈ B2 such that x ∈ B2 ⊂
B1.

Proof.  First assume T1 ⊂ T2.  Suppose x ∈ B1 ∈ B1.  Since B1 ⊂  T1 ⊂ T2, then
B1 ∈  T2.  Since B2 is a basis for T2, then there is a B2 ∈ B2 such that x ∈ B2 ⊂ B1.

Second assume that for every x ∈ B1 ∈ B1, there is a B2 ∈ B2 such that x ∈ B2 ⊂
B1.  To prove T1 ⊂ T2, let U ∈  T1.  Since B1 is a basis for T1, then for each x ∈ U, there
is a B1,x ∈ B1 such that x ∈ B1,x ⊂ U.  Then, by hypothesis, for each x ∈ U, there is a B2,x

∈ B2 such that x ∈ B2,x ⊂ B1,x.  Thus, for each x ∈ U, there is a B2,x ∈ B2 such that x ∈
B2,x ⊂ U.  Then clearly, U = ∪x ∈ U B2,x.  Since each B2,x ∈ B2 ⊂ T2, then U ∈ T2.  This
proves T1 ⊂ T2. 

Corollary.  For i = 1, 2, suppose Bi is a basis for a topology Ti on a set X.  Then
T1 = T2 if and only for every x ∈ B1 ∈ B1, there is a B2 ∈ B2 such that x ∈ B2 ⊂ B1, and
for every x ∈ B2 ∈ B2, there is a B1 ∈ B1 such that x ∈ B1 ⊂ B2. 

Observe that Theorem I.3 implies that the standard topology on R is strictly
smaller than the closed-open interval topology on R.  For if x ∈ (y, z), then x ∈ [x, z) ⊂
(y, z);  but there is no open interval (u, v) in R such that 0 ∈ (u, v) ⊂ [0, 1). A
fundamental question that can be asked about a topological space concerns the
cardinality of its basis.  How small a basis does a topology have?   The following
definitions provide terminology to discuss this issue.

Definition.  A topological space is second countable (or satisfies the second
axiom of countability) if its topology has a countable basis.

Definition.  Let ( X, T   ) be a topological space.  Let x ∈ X.  A collection Bx of
subsets of X is a basis for T at x if
a)  Bx ⊂ T,
b)  x ∈ B for every B ∈ Bx, and
c)  for every U ∈ T such that x ∈ U, there is a B ∈ Bx such that B ⊂ U.

Observe that if for every x ∈ X, Bx is a basis for T at x, then ∪x ∈ X  Bx is a basis
for T.

Definition.  A topological space ( X,  T  ) is first countable (or satisfies the first
axiom of countability) if for every x ∈ X, there is a countable basis for T at x.
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Definition.  Let X be a topological space.  A subset D of X is dense in X if D
intersects every non-empty open subset of X.  X is separable if it has a countable dense
subset.

Exercise.  Let X be a topological space.  Formulate conjectures about the
possible logical relationships between the statements: "X is second countable", "X is
first countable", and "X is separable".  Keep these conjectures in mind when working
Problems I.3 and I.4(n) below.

Theorem I.4.  Every second countable topological space is first countable.

Proof.  Assume ( X,  T  ) is a second countable space.   Then X has a countable
basis B.  Let x ∈ X.  Define

Bx =  { B ∈ B : x ∈ B }.

We will prove that Bx is a countable basis for T at x.  Since Bx ⊂ B and B is
countable, then Bx is countable.  Also since B ⊂ T, then Bx ⊂ T.  By definition, every
element of Bx contains the point x.  If x ∈ U ∈ T, then x ∈ B ⊂ U for some B ∈ B,
because B is a basis for T.  But then B ∈ Bx and B ⊂ U.  This completes the proof that
Bx is a countable basis for T at x.  It follows that X is first countable. 

Theorem I.5.  Every second countable topological space is separable.

Problem I.2.  Prove Theorem I.5.

Exercise.  Prove that a topological space which contains uncountably many
pairwise disjoint non-empty open subsets is not separable.

We now consider whether the topological spaces described in Examples I.1
through I.7 are second countable, first countable or separable.  We will settle this issue
for some of these spaces and leave the others as problems for the student.

Examples I.1 and I.3 are second countable, first countable and separable.  This
is because in both these examples, the topology T on the set X is a finite set.  Hence, T
itself is a countable (in fact, finite) basis for the topology T.  So X is second countable.
Hence, Theorems I.4 and I.5 imply that X is first countable and separable.

Problem I.3(2).  Decide whether or under what conditions the space described in
Example I.2 (the set X with the discrete topology) is
a) second countable,
b) first countable,
c) separable.
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Problem I.3(4).  Decide whether or under what conditions the space described in
Example I.4 (the set X with the finite complement topology) is
a) second countable,
b) first countable,
c) separable.

Problems I.3(2) and I.3(4) are the first two in a sequence of problems.  In
general, Problem I.3(n) asks whether the space described in Example I.n is second
countable, first countable or separable.  We will formulate this problem for many of the
examples subsequently introduced in this chapter.

Example I.5 – R with the standard topology – is second countable, first countable
and separable.  Our candidate for a countable basis for R is the collection

B  =  { ( u, v) : ( u, v ) ∈ Q × Q and u < v }.

Here Q = { m/n : m, n ∈ Z and n ≠ 0 } denotes the set of all rational numbers.
Unfortunately, in this formula for B, the notation ( u, v) is used ambiguously: the first
instance of ( u, v ) represents an open interval and the second instance represents an
ordered pair.  Since Q is a countable set (Theorem 0.18), then Q × Q is countable
(Theorem 0.17).  Therefore, the subset { ( u, v ) ∈ Q × Q : u < v } of Q × Q is countable.
Since the elements of the latter set index the elements of B, then it follows that B is a
countable set.  We now argue that B is a basis for the standard topology on R.  First
notice that since each element of B is an open interval, then B is a subset of the
standard topology on R.  Now suppose x ∈ U where U is an element of the standard
topology on R.  Then, by definition, there is an open interval ( y, z ) such that x ∈ ( y, z )
⊂ U.  Hence, y < x < z.  Since, the set Q of rational numbers is dense in the set R of real
numbers, then there exist u, v ∈ Q such that u ∈ ( y, x ) and v ∈ ( x, z ).  Thus, ( u, v ) ∈
Q × Q and u < v.  Therefore, ( u, v ) ∈ B and x ∈ ( u, v ) ⊂ ( y, z ) ⊂ U.  This completes
the proof that B is a basis for the standard topology on R.  Since B is a countable set,
then it follows that R with the standard topology is second countable.  It follows from
Theorems I.4 and I.5 imply that R with the standard topology is first countable and
separable.

Example I.6 – Rn with the standard topology – is second countable, first
countable and separable.  Let B denote the countable basis for the standard topology
on R described in the preceding paragraph.  Our candidate for a countable basis for Rn

is the collection
B*  =  { J1 × J2 × … × Jn : ( J1, J2, … , Jn ) ∈ B × B × … × B }.

Since B is a countable set, then B × B × … × B (n copies) is also countable.  (This
follows by induction from Theorem 0.17.)  Since the elements of B × B × … × B index
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the elements of B*, then B* must be countable.  We now argue that B* is a basis for
the standard topology on Rn.  First notice that if J1 × J2 × … × Jn ∈ B*, then each Ji is an
open interval in R with rational endponts.  Thus, each J1 × J2 × … × Jn ∈ B* is an open
box in Rn.  Therefore, B* is a subset of the standard topology on Rn.  Now suppose
( x1, x2, … , xn ) ∈ U where U is an element of the standard topology on Rn.  Then, by
definition, there is an open box in Rn of the form  J1 × J2 × … × Jn such that
( x1, x2, … , xn ) ∈ J1 × J2 × … × Jn ⊂ U.  Hence, for 1 ≤ i ≤ n, xi ∈ Ji where Ji, being an
open interval in R, is an element of the standard topology on R.  Since B is a basis for
the standard topology on R, then there is a Ki ∈ B such that xi ∈ Ki ⊂ Ji for 1 ≤ i ≤ n.
Hence, K1 × K2 × … × Kn ∈ B* and ( x1, x2, … , xn ) ∈ K1 × K2 × … × Kn ⊂ J1 × J2 × … × Jn

⊂ U.  This completes the proof that B* is a basis for the standard topology on Rn.  Since
B* is a countable set, then it follows that Rn with the standard topology is second
countable.  It follows from Theorems I.4 and I.5 imply that Rn with the standard topology
is first countable and separable.

Problem I.3(7).  Decide whether the space Rbad described in Example I.7 is
a) second countable,
b) first countable,
c) separable.

Example I.8.  Let N = { 1, 2, 3, … }, let ∞ denote a point which is not an element
of N × N, and let X denote the countable set ( N × N   ) ∪ { ∞ }.  We now describe a basis
B for a topology on X.  First,  let NN denote the set of all functions from N to itself; and
for each f ∈ NN, define the set N(f) containing ∞ by the formula

N(f)  =  { ∞ } ∪ { ( x, y ) ∈ N × N : f(x) ≤ y }.

Let

B  =  { { p } : p ∈ N × N } ∪ { N(f) : f ∈ NN }.

To prove that B is a basis for a topology on X, we will prove that  the intersection of any
two elements of B is either the empty set or an element of B.  Indeed, observe that if
p, q ∈ N × N and  f, g ∈ NN,  then:

• {p} ∩ {q} = ∅ or {p},

• {p} ∩ N(f) = ∅ or {p}, and

• N(f) ∩ N(g) = N(h) where h is the element of NN defined by the formula
h(x) = max { f(x), g(x) } for x ∈ N.
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Since the intersection of any two elements of B is either an element of B or empty, it
follows from Corollary following Theorem I.2 that B � is a basis for a topology on X =
( N × N   ) ∪ { ∞ }.  We endow X with this topology.

                                 ∞

                                                                N(f)

6
5
4
3

                                                                                f
2

1
     1     2     3    4    5     6

Exercise.  Formulate a conjecture involving first countability to which Example
I.8 is relevant.

Problem I.3(8).  Decide whether the space describe in Example I.8 is
a) second countable,
b) first countable,
c) separable.

C. Linearly Ordered Spaces

The linearly ordered spaces form a class of topological spaces which are easily
visualized because of their linear character.  This simplicity is deceptive.  This class
contains some very interesting spaces.

Definition.  Let X be a set. Any subset of X × X is called a relation on X.  If R is a
relation on X and ( x, y ) ∈ R, we write  xRy.
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Definition.  A relation < on a set X is a linear order on X if it satisfies the
following two conditions.
a)  Transitivity:  For all x, y, z ∈ X,  x < y and y < z  ⇒  x < z.

b)  Trichotomy:  For all x, y ∈ X, exactly one of the following holds:  x < y, x = y, y < x.

Definition.  Let < be a linear order on a set X.  Then the pair ( X,< ) is called a
linearly ordered set.  In this situation, the relation ≤ on X is defined by:
x ≤ y  ⇔  x < y  or  x = y.

Definition.  Let ( X, < ) be a linearly ordered set.  Let x, y ∈ X.  Let

( x, y ) = { z ∈ X : x < z < y },   ( x, ∞ ) = { z ∈ X : x < z }  and  ( –∞, y ) = { z ∈ X : z < y };

and call these sets open intervals in X.  Let

[ x, y ] = { z ∈ X : x ≤ z ≤ y },   [ x, ∞ ) = { z ∈ X : x ≤ z }  and  ( –∞, y ] = { z ∈ X : z ≤ y };

and call these sets closed intervals in X.  Let

[ x, y ) = { z ∈ X : x ≤ z < y }  and  ( x, y ] = { z ∈ X : x < z ≤ y };

and call these sets half-open intervals in X.

Definition.  Let ( X, < ) be a linearly ordered set.  Observe that the intersection of
two open intervals in X is either the empty set or an open interval in X.  Hence, the set

{ ( x, y ) : x, y ∈ X } ∪ { ( x, ∞ ) : x ∈ X } ∪ { ( –∞, y ) : y ∈ X }

of all open intervals in X is a basis for a topology on X called the order topology on X.  A
linearly ordered set with the order topology is called a linearly ordered space.

Observe that the order topology on R is the standard topology.

Example I.9.  Let [ 0, 1 ] = { x ∈ R : 0 ≤ x ≤ 1 } and  [ 0, 1 ]2 = [ 0, 1 ] × [ 0, 1 ].  A
linear order on [ 0, 1 ]2, called the lexicographic order, is defined as follows.  For ( x, y )
and ( x´, y´ ) ∈ [ 0, 1 ]2,

( x, y ) < ( x´, y´ )    if either    x < x´ or ( x = x´ and y < y´ ).
The order topology on [ 0, 1 ]2 associated to the lexicographic order on [ 0, 1 ]2 is called
the lexicographic order topology on [ 0, 1 ]2.

Next we observe that the space described in Example I.9 – [ 0, 1 ]2 with the
lexicographic order topology – is neither second countable nor separable.  First note
that for all distinct x, y ∈ [ 0, 1 ], the open intervals ( ( x, 0 ), ( x, 1) ) = { x } × ( 0, 1 ) and
( ( y, 0 ), ( y, 1) ) = { y } × ( 0, 1 ) are disjoint open subsets of [ 0, 1 ]2.  Hence,
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{ ( ( x, 0 ), ( x, 1) ) : x ∈ [ 0, 1 ] } is an uncountable pairwise disjoint collection of open
subsets of [ 0, 1 ]2.  Every dense subset of [ 0, 1 ]2 must intersect each element of this
collection.   Consequently no countable subset of [ 0, 1 ]2 can be dense.  Thus, [ 0, 1 ]2

is not separable.  It follows by Theorem I.5 that [ 0, 1 ]2 is not second countable.

On the other hand, [ 0, 1 ]2 with the lexicographic order topology is first
countable.  To prove this, we will describe a countable basis at each point of [ 0, 1 ]2.
There are five different types of points in [ 0, 1 ]2, and the description of the countable
basis at a point depends on the type of the point.  First consider a point of the type
( x, y ) ∈ [ 0, 1 ]2 where x ∈ [ 0, 1 ] and 0 < y < 1.  At such a point, the countable
collection  of open intervals

{ ( ( x, u ), ( x, v ) ) :  0 < u < y < v < 1 and u, v ∈ Q }

forms a basis.  We leave it to the student to verify that any open subset of [ 0, 1 ]2 that
contains ( x, y ) also contains an interval from this collection.  Second we consider a
point of the type ( x, 0 ) ∈ [ 0, 1 ]2 where x ∈ ( 0, 1 ].  At such a point, the countable
collection of open intervals

{ ( ( u, 1 ), ( x, v ) ) :  0 < u < x, 0 < v < 1 and u, v ∈ Q }

forms a basis.  Again, we leave it to the student to verify that any open subset of [ 0, 1 ]2

that contains ( x, 0 ) also contains an interval from this collection.  Similarly, at a point of
the type ( x, 1 ) ∈ [ 0, 1 ]2 where x ∈ [ 0, 1 ), the countable collection of open intervals

{ ( ( x, u ), ( v, 0 ) ) :  0 < u < 1, x < v < 1 and u, v ∈ Q }

forms a basis.  (Again the student should verify this assertion.)  At the point ( 0, 0 ) ∈
[ 0, 1 ]2, the countable collection of open intervals

{ ( –∞, ( 0, v ) ) : 0 < v < 1 and v ∈ Q }

forms a basis; and at the point ( 1, 1 ) ∈ [ 0, 1 ]2, the countable collection of open
intervals

{ ( ( 1, v ), ∞ ) : 0 < v < 1 and v ∈ Q }

forms a basis.  (Again verify these assertions.)  We conclude that there is a countable
basis at every point of [ 0, 1 ]2.  Hence, [ 0, 1 ]2 with the lexicographic order topology is
first countable.

Definition.  Let ( X, < ) be a linearly ordered set.  Let Y ⊂ X and let x ∈ X.  x is
the minimum or least element of Y (abbreviated  x = min(Y)) if x ∈ Y and x ≤ y for every
y ∈ Y.  x is the maximum or greatest element of Y (abbreviated  x = max(Y)) if x ∈ Y
and y ≤ x for every y ∈ Y.  If every non-empty subset of X has a least element, then we
say that < well orders X, we call < a well ordering of X, and we call ( X, < ) a well
ordered set.
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Observe that N = { 1, 2, 3, ... } is well ordered by its natural linear order.
However, Z = { ... , -2, -1, 0, 1, 2, ... }, Q = { m/n : m, n ∈ Z and n ≠ 0 }, and R are not
well ordered by their natural linear orders.

The question of whether the set of real numbers R admits a (non-natural) well-
ordering, or more generally, whether every non-empty set can be well-ordered is the
subject of the following set-theoretic principle.

Zermelo's Well Ordering Principle.  Every non-empty set can be well ordered.

The Well Ordering Principle is one of the powerful set theoretic principles
mentioned in Chapter 0, Section B that is logically equivalent to the Axiom of Choice.  In
other words, the Well Ordering Principle can be proved from the Axiom of Choice and
vice versa.  At first glance, this equivalence may seem remarkable because the two
propositions seem unrelated.  As was noted in Chapter 0, these principles are not
obviously self evident.  In fact, neither these principles nor their negations can be
proved from more self evident set theoretic propositions.  None the less, they are
considered to be true statements which can be used in a proof when no other approach
to the proof can be found.  In such a case, however, the dependence of the proof on the
Axiom of Choice or the Well Ordering Principle is usually remarked upon.

Example I.10.  There is a well ordered set ( Ω, < ) such that Ω is uncountable,
but ( –∞, x ) is countable for every x ∈ Ω.  We give Ω the order topology.

The construction of Ω.  The construction begins with an uncountable well
ordered set ( X, < ).  To obtain X quickly, we simply use Zermelo's Well Ordering
Principle to well order R.  (It is, in fact, possible to prove the existence of an
uncountable well ordered set without invoking Zermelo's Principle or any other
equivalent of the Axiom of Choice.  However, for the sake of brevity, we avoid this
approach.)  Next let Y = { x ∈ X : ( –∞, x ) is uncountable }.  If Y = ∅, set Ω = X.  On the
other hand, if Y ≠ ∅, then Y has a least element y0, because X is well ordered.  In this
case, set Ω = ( –∞, y0 ).  In either case, it is easily verified that Ω is an uncountable set
such that ( –∞, x ) is countable for every x ∈ Ω.  To obtain a well ordering of Ω, restrict
the well ordering < on X to Ω; i.e., replace < by < ∩ ( Ω × Ω ).  Then, clearly, ( Ω, < ) is a
well-ordered set. 

We establish two useful properties of Ω for future reference.

Lemma I.6. a)  For each x ∈ Ω, there is an x+ ∈ Ω such that x < x+ and there is
no y ∈ Ω such that x < y < x+.  x+ is called an immediate successor of x.

b)  If A is a countable subset of Ω, then there is an x ∈ Ω such that A ⊂ ( –∞, x ).
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Proof of a).  Let x ∈ Ω.  Since ( –∞, x ] = ( –∞, x ) ∪ { x } is a countable set and Ω
is an uncountable set, then ( x, ∞ ) = Ω – ( –∞, x ] is non-empty.  Since Ω is well
ordered, then ( x, ∞ ) has a least element which we denote x+.  Then clearly x < x+ and
there is no y ∈ Ω such that x < y < x+.

Proof of b).  Let A be a countable subset of Ω.  Then ∪a ∈ A ( –∞, a ] is the union
of a countable collection of countable sets.  Hence, ∪a ∈ A ( –∞, a ] is itself countable by
Theorem 0.19.  Since Ω is uncountable , then Ω – ( ∪a ∈ A ( –∞, a ] ) is non-empty.
Choose x ∈ Ω – ( ∪a ∈ A ( –∞, a ] ).  Then a ∈ A  ⇒  x ∉ ( –∞, a ]  ⇒  a ∈ ( –∞, x ).  This
proves A ⊂ ( –∞, x ). 

Lemma I.6 helps us establish that Ω is first countable but neither second
countable nor separable.  To see that Ω isn’t separable, suppose that D is a countable
subset of Ω.  Then Lemma I.6 b) provides an x ∈ Ω such that D ⊂ ( –∞, x ).  Since x+ ∈
( x, ∞) by Lemma I.6 a), then ( x,∞ ) is a non-empty open subset of Ω that is disjoint
from D.  Hence, D isn’t a dense subset of Ω.  Thus, no countable subset of Ω is dense.
Consequently, Ω is not separable.  It then follows by Theorem I.5 that Ω is not second
countable.  Let x ∈ Ω.  To prove Ω is first countable at x, we must consider two cases.
If x = min(Ω), then { ( –∞, x+ ) } is a one–element basis at x.  On the other hand, if x >
min(Ω), then { ( y, x+ ) : y ∈ ( –∞, x) } is a countable basis at x.  (The student should
verify these assertions.)  Hence, Ω is first countable.

Example I.11.  Let ω+ be a point not in Ω.  Set Ω+ = Ω ∪ { ω+ }.  Extend < to a well
ordering of Ω+ by declaring that x < ω+ for every x ∈ Ω.  We give Ω+ the order topology.

Problem I.3(11).  Decide whether the space Ω+ describe in Example I.11 is
a) second countable,
b) first countable,
c) separable.
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Definition.  Let ( X, < ) be a linearly ordered set.  Let Y ⊂ X and let x ∈ X.

x is a lower bound of Y if x ≤ y for every y ∈ Y.

x is an upper bound of Y if y ≤ x for every y ∈ Y.

Y is bounded below if it has a lower bound.

Y is bounded above if it has an upper bound.
Y is bounded if it has both a lower bound and an upper bound.
x is the greatest lower bound or infimum of Y (abbreviated x = inf(Y)) if x is a lower
bound of Y and if x´ ≤ x for every other lower bound x´ of Y.
x is a least upper bound or supremum of Y  (abbreviated x = sup(Y)) if x is an upper
bound of Y and if x ≤ x´ for every other upper bound x´ of Y.
We call < a complete linear order on X, and we call ( X, < ) a complete linearly ordered
set if every non-empty subset of X which is bounded below has a greatest lower bound.

Observe that the natural linear orders on N, Z and R are complete; but the
natural linear order on Q is not complete.

We chose to define completeness in terms of lower bounds rather than upper
bounds.  The following lemma shows that it doesn't matter which choice we make.

Lemma I.7.  A linearly ordered set ( X, < ) is complete if and only if every non-
empty subset of X which is bounded above has a least upper bound.

Proof.  Let us define a linearly ordered set ( X, < ) to be L-complete if every non-
empty subset of X which is bounded below has a greatest lower bound, and define ( X,
< ) to be U-complete if every non-empty subset of X which is bounded above has a least
upper bound.  Thus "L-complete" is the same as "complete", and we must prove that
( X, < ) is L-complete if and only if it is U-complete.

Aside.  In the special case that X is R with the natural linear ordering, the proof is
simpler than in the general case.  The reason is that R has an order reversing bijection:
multiplication by –1.  (In general, linearly ordered sets don't have order reversing
bijections; for example, N = { 1, 2, 3, ... } has none.)  In this special case, the proof goes
as follows.  Assume R is L-complete.  To prove it is U-complete, let A be a non-empty
subset of R that is bounded above.  Then –A =  { –x : x ∈ A } is a non-empty subset of R
that is bounded below.  (If u is an upper bound of A, then –u is a lower bound of –A.)
Since R is L-complete, then –A has a greatest lower bound b.  It then follows that –b is
a least upper bound of A.  (Verify this.)  This proves R is U-complete.  The proof that U-
completeness implies L-completeness in this special case is similar.
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Back to the proof in the general case.  Assume ( X, < ) is L-complete.  To
prove ( X, < ) is U-complete, let A be a non-empty subset of X that is bounded above.
Let B be the (non-empty) set of all upper bounds of A.  Then every element of A is a
lower bound of B.  (Verify this.)  Hence, B is a non-empty subset of X that is bounded
below.  Since X is L-complete, then B has a greatest lower bound c.  Since every
element of A is a lower bound of B and c is the greatest lower bound of B, then c is an
upper bound of A.  Since c is a lower bound of B and B is the set of all upper bounds of
A, then c is ≤ every upper bound of A.  We conclude that c is a least upper bound of A.
This proves ( X, < ) is U-complete.

Exercise.  Finish this proof by showing that if a linearly ordered set is U-
complete, then it is L-complete. 

Problem I.4.  Assume that ( X, < ) is a complete linearly ordered set.  Prove that
if { In : n ∈ N }  is a collection of non-empty bounded closed intervals in X such that
I1 ⊃ I2 ⊃ I3 ⊃ …, then  ∩n ∈ N In ≠ ∅.

Well ordered sets are complete.  This is because in a well ordered set, every
non-empty subset has a least element, and this least element is the greatest lower
bound of the subset.  Hence, the well ordered sets Ω and Ω+ are complete.

Problem I.5.  Is [ 0, 1 ]2 with the lexicographic order topology (described in
Example I.9) complete?

D. Metric Spaces

Metric spaces form perhaps the most useful and important class of topological
spaces.  If a space admits a metric or distance function, then geometric intuition can be
applied to analyze the space.  Sets of functions frequently have natural metrics that
allowgeometric concepts to illuminate their structure.  This observation plays a
fundamental and crucial role in analysis.

Definition.  A metric  on a set X is a function ρ : X × X → [0, ∞)  such that for all
x, y, z ∈ X:

a)  ρ(x,y) = 0  ⇔  x = y,

b)  ρ(x,y) = ρ(y,x), and

c)  the triangle inequality:  ρ(x,z) ≤ ρ(x,y) + ρ(y,z).

Definition.  If ρ is a metric on a set X, then the pair ( X, ρ ) is called a metric
space.
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Definition.  Let ( X, ρ ) be a metric space.  For x ∈ X and ε > 0, the
ε–neighborhood of x in X  is the set  N(x,ε)  =  Nρ(x,ε)  =  { y ∈ X : ρ(x,y) < ε }.

Lemma I.8.  Let ( X, ρ ) be a metric space.  If x, y ∈ X such that ρ(x,y) < ε and
0 < δ ≤ ε – ρ(x,y), then N(y,δ) ⊂ N(x,ε).

Proof.  By hypothesis, ρ(x,y) + δ ≤ ε.  Consequently,
z ∈ N(y,δ)  ⇒  ρ(x,z) ≤ ρ(x,y) + ρ(y,z)  <  ρ(x,y) + δ  ≤  ε  ⇒  z ∈ N(x,ε).
This proves N(y,δ) ⊂ N(x,ε). 

Theorem I.9.  If ( X, ρ ) is a metric space, then { N(x,ε) : x ∈ X and ε > 0 } is a
basis for a topology on X.

Proof.  We will verify that { N(x,ε) : x ∈ X and ε > 0 } satisfies the criterion for a
basis expressed in Theorem I.2.

First,  { N(x,ε) : x ∈ X and ε > 0 } covers X because x ∈ N(x,1) for each x ∈ X.

Second, if z ∈ N(x,δ) ∩ N(y,ε), set γ = min { δ – ρ(x,z), ε – ρ(y,z) }.  Then γ > 0
and Lemma I.8 implies z ∈ N(z,γ) ⊂ N(x,δ) ∩ N(y,ε). 

Definition.  Let ( X, ρ ) be a metric space.  The topology on X with basis
{ N(x,ε) : x ∈ X and ε > 0 } is called the metric topology  on X or the topology on  X
induced by  the metric ρ.

Theorem I.10.  Let ( X, ρ ) be a metric space.  Then for every x ∈ X,
{ N(x,1/n) : n  ∈ N } is a countable basis for the metric topology at x.

Proof.  Let x ∈ X.  Let U be an open subset of X such that x ∈ U.  Then x ∈
N(y,ε) ⊂ U for some y ∈ X and ε > 0.  There is an n  ∈ N such that 1/n ≤ ε – ρ(x,y).  Then
Lemma I.8 implies N(x,1/n) ⊂ N(y,ε).  So x ∈ N(x,1/n) ⊂ U.  Consequently,
{ N(x,1/n) : n  ∈ N } is a basis for the metric topology at x. 

Corollary.  Every metric space is first countable. 

Definition.  A topological space X is metrizable  if there is a metric on X which
induces the given topology.

Example I.12.  The discrete metric  on a set X is defined by

ρ(x,y)  =  
0   if x = y

1  if x ≠ y
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Exercise.  Verify that ρ is a metric.

Observe that the discrete metric on a set X induces the discrete topology on X.
Indeed, for each x ∈ X, N(x,1) = { x }; so { x } is an open set.  It follows that every subset
of X is open with respect to the discrete metric.  In other words, the discrete metric
induces the discrete topology.  Consequently every topological space with the discrete
topology is metrizable.

An important class of metric spaces.  Normed vector spaces (which are
defined in Section 0.D) form an important class of metric spaces.  If ( V, || || ) is a
normed vector space, then a metric ρ is defined on V by the formula

ρ(v,w) = || v – w ||

for v, w ∈ V.

We verify that this formula defines a metric on V.
a)  ρ(v,w) = 0  ⇔  || v – w || = 0  ⇔  v – w = 0  ⇔  v = w.

b)  ρ(v,w)  =  || v – w ||  =  || (–1) ( w – v ) ||  =  |–1| || w – v ||  =  || w – v ||  =  ρ(w,v).

c)  ρ(u,w)  =  || u – w ||  =  || (u – v) + (v – w) ||  ≤  || u – v || + || v – w ||  =  ρ(u,v) +
ρ(v,w). 

Definition.  If ( V, || || ) is a normed vector space, then the topology on V induced
by the metric ρ(v,w) = || v – w || is called the norm topology on V or the topology on V
induced by the norm || ||.

Example I.13.  The standard metric  on R is defined by

ρ(x,y) = | x – y |     for x, y ∈ R.

Since ( R, |  | ) is a normed vector space, it follows that ρ is a metric on R.  Moreover, ρ
induces the standard topology on R.

We verify that the standard metric ρ on R induces the standard topology on R.
First we note that every ε–neighborhood in R is a bounded open interval.  Indeed, for x
∈ R and ε > 0, N(x,ε) = ( x – ε, x + ε ).  Second we note that every bounded open
interval in R is an ε–neighborhood of some point.  Indeed, for a < b in R, if we let x = ( a +

b )/2 and ε = ( b – a )/2, then ( a, b ) = N(x,ε).  Thus, the basis for the metric topology on R is
identical with the basis of the standard topology on R.  Consequently, the metric
topology on R and the standard topology on R  are equal.  It follows that R (with the
standard topology) is metrizable. 
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Example I.14.  For n ≥ 1, we define three metrics on Rn.

a)  The taxicab  or 1-metric:  ρ1(x,y) = 

€ 

| xi – yi |i=1

n
∑ .

b)  The Euclidean  or 2-metric:  ρ2(x,y) = 

€ 

xi – yi( )2
i=1

n
∑   

 
 
 
1
2 .

c)  The supremum  or ∞-metric:  ρ∞(x,y) = max { | xi – yi | : 1 ≤ i ≤ n }.

Here, x = ( x1, x2, … , xn ) and y = ( y1, y2, … , yn ) ∈ Rn.

Exercise.  Verify that these three formulas actually define metrics on Rn.
(Observe that these metrics are directly related to the three norms on Rn defined in
Section 0.D.  Use the information in Section 0.D about norms and inner products on
vector spaces to help with these verifications.)

Here are pictures of Nρ1
((0,0),1), Nρ2

((0,0),1) and Nρ∞
((0,0),1) in R2.

                           ( 0, 1 )                                 ( 0, 1 )                               ( 0, 1 )

                                     ( 1, 0 )                                  ( 1, 0 )                               ( 1, 0 )

                 Nρ1
((0,0),1)                          Nρ2

((0,0),1)                       Nρ∞
((0,0),1)

Definition.  Two metrics on a set X are equivalent  if they induce the same
topology on X.

Theorem I.11.  Two metrics ρ and σ on a set X are equivalent if and only if ∀ x ∈
X, ∀ ε > 0, ∃ δ > 0 such that Nρ(x,δ) ⊂ Nσ(x,ε) and Nσ(x,δ) ⊂ Nρ(x,ε).

Proof.  First assume that the metrics ρ and σ on the set X are equivalent.  Let x
∈ X and let ε > 0.  Since ρ and σ are equivalent metrics, then Nσ(x,ε) is an open subset
of X with respect to the topology induced by ρ.  Since x ∈ Nσ(x,ε), then Theorem I.10
implies there is a δ´ > 0 such that Nρ(x,δ´) ⊂ Nσ(x,ε).  Similarly, since ρ and σ are
equivalent metrics, then Nρ(x,ε) is an open subset of X with respect to the topology
induced by σ.  Since x ∈ Nρ(x,ε), then Theorem I.10 implies there is a δ´´ > 0 such that
Nσ(x,δ´´) ⊂ Nρ(x,ε).  Now set δ = min { δ´, δ´´ }.  Then Nρ(x,δ) ⊂ Nρ(x,δ´) ⊂ Nσ(x,ε) and
Nσ(x,δ) ⊂ Nσ(x,δ´´) ⊂ Nρ(x,ε).
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Second assume that ∀ x ∈ X, ∀ ε > 0, ∃ δ > 0 such that Nρ(x,δ) ⊂ Nσ(x,ε) and
Nσ(x,δ) ⊂ Nρ(x,ε).  Let Bρ = { Nρ(x,ε) : x ∈ X and ε > 0 } and let Bσ =
{ Nσ(x,ε) : x ∈ X and ε > 0 }.  Then Bρ is a basis for the topology on X induced by ρ, and
Bσ is a basis for the topology on X induced by σ.  We will rely on the Corollary to
Theorem I.3 to establish that Bρ and Bσ generate the same topology on X.  To this end,
let x ∈ B1 ∈ Bρ.  Then B1 = Nρ(y,γ) for some y ∈ X and some γ > 0.  Let ε = γ – ρ(x,y).
Then ε > 0 and Nρ(x,ε) ⊂  Nρ(y,γ) by Lemma I.8.  Now, by hypothesis, there is a , ∃ δ > 0
such that Nσ(x,δ) ⊂ Nρ(x,ε).  Let B2 = Nσ(x,δ).  Then B2 ∈ Bσ and x ∈ B2 = Nσ(x,δ) ⊂
Nρ(x,ε) ⊂  Nρ(y,γ) = B1.  This completes half of the proof.  The other half is similar.  Let x
∈ B2 ∈ Bσ.  Then B2 = Nσ(y,γ) for some y ∈ X and some γ > 0.  Let ε = γ – σ(x,y).  Then
ε > 0 and Nσ(x,ε) ⊂  Nσ(y,γ) by Lemma I.8.  Now, by hypothesis, there is a , ∃ δ > 0 such
that Nρ(x,δ) ⊂ Nσ(x,ε).  Let B1 = Nρ(x,δ).  Then B1 ∈ Bρ and x ∈ B1 = Nρ(x,δ) ⊂ Nσ(x,ε) ⊂ 
Nσ(y,γ) = B2.  This completes the second half of the proof.  At this point, the Corollary to
Theorem I.3 tells us that Bρ and Bσ generate the same topology on X.  In other words,
the metrics ρ and σ induce the same topology on X. 

The taxicab, Euclidean and supremum metrics on Rn are equivalent metrics that
induce the standard topology on Rn.  Thus, Rn with the standard topology is metrizable.
We will verify part of this assertion and leave part of it as a problem for students.

We first show that the taxicab and supremum metrics on Rn are equivalent.  To
begin, we observe that for x = ( x1, x2, … , xn ) and y = ( y1, y2, … , yn ) ∈ Rn,

ρ∞(x,y) ≤ ρ1(x,y) ≤ nρ∞(x,y).

We claim these inequalities are obvious consequences of the definitions of ρ1 and ρ∞
and say no more about it.  It follows that for x, y ∈ Rn and ε > 0, ρ∞(x,y) < ε/n ⇒
ρ1(x,y) < ε and ρ1(x,y) < ε ⇒ ρ∞(x,y) < ε.  Hence, for each x ∈ Rn and each ε > 0,
Nρ∞

(x,ε/n) ⊂ Nρ1
(x,ε) and Nρ1

(x,ε/n) ⊂ Nρ∞
(x,ε).  It now follows from Theorem I.11 that the

taxicab metric ρ1 and the supremum metric ρ∞ are equivalent.

Problem I.6.  Prove that the taxicab metric ρ1 and the Euclidean metric ρ2 are
equivalent metrics on Rn.

Now we show that the supremum metric induces the standard topology on Rn.
Let Bρ∞ = { Nρ∞

(x,ε) : x ∈ Rn and ε > 0 } and let Bbox denote the collection of all open
boxes in Rn.  Then Bρ∞ is a basis for the topology induced on Rn by the supremum
metric ρ∞, and Bbox is a basis for the standard topology on Rn.  We will use the Corollary
to Theorem I.3 to show that Bρ∞ and Bbox generate the same topology on Rn.  First
suppose x ∈ B1 ∈ Bρ∞.  Then there is a y = ( y1, y2, … , yn ) ∈ Rn and an ε > 0 such that
B1 = Nρ∞

(y,ε).  Observe that
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z = ( z1, z2, … , zn ) ∈ B1 = Nρ∞
(y,ε)  ⇔  ρ∞(y,z) < ε  ⇔

| yi – zi | < ε for 1 ≤ i ≤ n   ⇔  zi ∈ ( yi – ε, yi + ε ) for 1 ≤ i ≤ n   ⇔

z ∈ ( y1 – ε, y1 + ε ) × ( y2 – ε, y2 + ε ) × … × ( yn – ε, yn + ε ).

Thus, B1 = ( y1 – ε, y1 + ε ) × ( y2 – ε, y2 + ε ) × … × ( yn – ε, yn + ε ).  In other words, B1 is
an open box.  So if we set B2 = B1, then B2 ∈ Bbox and x ∈ B2 ⊂ B1.  This completes half
of the proof.  Second suppose x = ( x1, x2, … , xn ) ∈ B2 ∈ Bbox.  Since B2 is an open box,
then B2 is a Cartesian product of open intervals.  Therefore, for 1 ≤ i ≤ n, there are real
numbers ai < bi such that B2 = ( a1, b1 ) × ( a2, b2 ) × … × ( an, bn ).  Hence, xi ∈ ( ai, bi )
for 1 ≤ i ≤ n.  Let ε =  min { x1 – a1, b1 – x1, x2 – a2, b2 – x2, … , xn – an, bn – xn }.  Then
( xi – ε, xi + ε ) ⊂ ( ai, bi ) for 1 ≤ i ≤ n.  Hence,

Nρ∞
(x,ε)  =  ( x1 – ε, x1 + ε ) × ( x2 – ε, x2 + ε ) × … × ( xn – ε, xn + ε )  ⊂

( a1, b1 ) × ( a2, b2 ) × … × ( an, bn )  =  B2.

Let B1 = Nρ∞
(x,ε).  Then B1 ∈ Bρ∞ and x ∈ B1 ⊂ B2.  This completes the second half of

the proof.  It now follows from the Corollary to Theorem I.3 that Bρ∞ and Bbox generate
the same topology on Rn.  Hence, the supremum metric ρ∞ induces the standard
topology on Rn.  Consequently, the standard topology on Rn is metrizable.

Definition.  Let ( X, ρ ) be a metric space.  Let A ⊂ X.  The diameter  of A is
sup { ρ(x,y) : x, y ∈ A } ∈ [0,∞], and is denoted diam(A) or diamρ(A).  A is bounded if
diam(A) < ∞.  If X is bounded, we say that the metric ρ is bounded.

Theorem I.12.  Let ( X, ρ ) be a metric space.  Define 

€ 

ρ : X × X → [0,1] by

€ 

ρ(x,y)  =  min { ρ(x,y), 1 }.

Then ρ is a bounded metric on X which is equivalent to ρ.

Proof.  First we verify that 

€ 

ρ is a metric on X.  Let x, y and z ∈ X.  Clearly 

€ 

ρ

a) 

€ 

ρ(x,y) = 0  ⇔  min { ρ(x,y), 1 }  =  0  ⇔  ρ(x,y) = 0  ⇔  x = y, and

b) 

€ 

ρ(x,y)  =  min { ρ(x,y), 1 }  =  min { ρ(y,x), 1 }  = 

€ 

ρ(y,x).

Next we prove the triangle inequality.  First assume ρ(x,y) ≤ 1 and ρ(y,z) ≤ 1.  Then

€ 

ρ(x,y)  =  ρ(x,y)  and 

€ 

ρ(y,z)  =  ρ(y,z).  Hence,

€ 

ρ(x,z)  ≤  ρ(x,z)  ≤  ρ(x,y) + ρ(y,z)  = 

€ 

ρ(x,y) + 

€ 

ρ(y,z).

Second assume that either ρ(x,y) > 1 or ρ(y,z) > 1.  Then 

€ 

ρ(x,y) = 1 or 

€ 

ρ(y,z) = 1.
Hence, 

€ 

ρ(x,z)  ≤  1  ≤ 

€ 

ρ(x,y) + 

€ 

ρ(y,z).  It follows that 

€ 

ρ satisfies the triangle inequality
and is, therefore, a metric on X.
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Since 

€ 

ρ(x,y) ≤ 1 for all x, y ∈ X, then diam(X) ≤ 1.  Hence, 

€ 

ρ is a bounded metric
on X.

Finally we rely on Theorem I.11 to show that 

€ 

ρ is equivalent to ρ.  Let ε > 0.  Set
δ = min { ε, 1 }.  Let x ∈ X.  Then:

y ∈ Nρ(x,δ)     ⇒     ρ(x,y) < δ     ⇒     ρ(x,y) < ε

⇒     ρ(x,y) < ε  (because ρ ≤ ρ)     ⇒     y ∈ 

€ 

N
ρ
(x,ε).

This proves Nρ(x,δ) ⊂ 

€ 

N
ρ
(x,ε).  Also:

y ∈ 

€ 

N
ρ
(x,δ)     ⇒     ρ(x,y) < δ     ⇒     ρ(x,y) < 1     ⇒     ρ(x,y) = ρ(x,y)

⇒     ρ(x,y) < δ     ⇒     ρ(x,y) < ε     ⇒     y ∈ Nρ(x,ε).

This proves  

€ 

N
ρ
(x,δ) ⊂ Nρ(x,ε).  Now the equivalence of the metrics ρ and ρ follows by

Theorem I.11. 

Definition.  Let ( Y, ρ ) be a metric space.  A function f : X → Y is bounded if f(X)
is a bounded subset of Y (i.e., if diam(f(X)) < ∞).

Example I.15.  Let X be a set, let R have the standard metric, and let B(X)
denote the set of all bounded functions from X to R.  Define the supremum metric σ on
B(X) by the formula

σ(f,g) = sup { | f(x) – g(x) | : x ∈ X }

for f, g ∈ B(X).

We verify that the supremum metric σ is indeed a metric on B(X).

First we show that  σ(f,g) < ∞ for all f, g ∈ B(X).  Let f, g ∈ B(X) and fix x0 ∈ X.
Then for all x ∈ X,

| f(x) – g(x) |  ≤  | f(x) – f(x0) | + | f(x0) – g(x0) | + | g(x0) – g(x) | ≤
diam(f(X)) + | f(x0) – g(x0) | + diam(g(X)).

Thus, σ(f,g) ≤ diam(f(X)) + | f(x0) – g(x0) | + diam(g(X)) < ∞.

Next we verify that σ satisfies the three defining conditions for a metric.  Let f, g
and h ∈ B(X).  Then:

• σ(f,g) = 0  ⇔  | f(x) – g(x) | = 0 for all x ∈ X  ⇔  f = g.

• σ(f,g)  =  sup { | f(x) – g(x) | : x ∈ X }  = sup { | g(x) – f(x) | : x ∈ X }  =  σ(g,f).
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• σ(f,h)  =  sup { | f(x) – h(x) | : x ∈ X }  ≤  sup { | f(x) – g(x) | + | g(x) – h(x) | : x ∈ X }  ≤

sup { | f(x) – g(x) | : x ∈ X } + sup { | g(x) – h(x) | : x ∈ X }  =  σ(f,g) + σ(g,h).

This finishes the proof that σ is a metric on B(X).

The Corollary to Theorem I.10 tells us that every metric space is first countable.
In general, second countable topological spaces are separable but not vice versa.
Metric spaces need not be separable or second countable.  However, for metric spaces,
separability and second countability are equivalent.

Theorem I.13.  A metric space is second countable if and only if it is separable.

Remark.  Theorem I.5 tells us that every second countable topological space is
separable.  So it remains to prove only that every separable metric space is second
countable.

Problem I.7.  Prove that every separable metric space is second countable.

Problem I.3(15).  Decide whether or under what conditions the metric space
B(X) described in Example I.15 is
a) second countable,
b) first countable,
c) separable.

We now discuss the question of which of the spaces described in Examples I.1
through I.15 are metrizable.  Some of these spaces can be seen to be non-metrizable
by using the following simple observation: if x and y are distinct points of a metric space
( X, ρ ), then there are disjoint open subsets U and V of X such that x ∈ U and y ∈ V.

[Proof. Assume x and y are distinct points of a metric space ( X, ρ ).  Let δ =
(1/2)ρ(x,y), let U = N(x,δ) and V = N(y,δ).  Then U and V are open subsets of X such that
x ∈ U and y ∈ V.  We assert that U and V are disjoint.  Suppose not.  Then there is a
point z ∈ U ∩ V.  Hence, ρ(x,z) < δ and ρ(y,z) < δ.  Therefore, 2δ = ρ(x,y) ≤ ρ(x,z) +
ρ(z,y) < 2δ.  Since 2δ < 2δ is false, we have reached a contradiction.  We must conclude
that U ∩ V = ∅. ]

Next consider Example I.1: the set X with the indiscrete topology.  If X = { x }, a
one-point space, then X is metrizable by the metric ρ which is defined by ρ(x,x) = 0.
However, if X has more than one point and is endowed with the indiscrete topology,
then the preceding observation implies that X is non-metrizable because distinct points
in X do not lie in disjoint open sets.

A set X with the discrete topology (Example I.2) is always metrizable by the
discrete metric.  (See the remarks accompanying Example I.12.)
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The three–point space described in Example I.3 is not metrizable because the
distinct points x and z do not lie in disjoint open sets.

Problem I.8(4).  Decide whether or under what conditions the space described in
Example I.4 (the set X with the finite complement topology) is metrizable.

We saw that the space R of real numbers with the standard topology described in
Example I.5 is metrizable using the standard metric (Example I.13).  Similarly, then
space Rn with the standard topology described in Example I.6 is metrizable using either
the taxicab metric, the Euclidean metric or the supremum metric (Example I.14).

Problem I.8(7).  Decide whether the space Rbad described in Example I.7 is
metrizable.

The space described in Example I.8 is not first countable.  Hence, it is not
metrizable by Theorem I.13.

Problem I.8(9).  Decide whether the space [ 0, 1 ]2 with the lexicographic order
topology described in Example I.9 is metrizable.

Problem I.8(10).  Decide whether the space Ω described in Example I.10 is
metrizable.

The space Ω+ described in Example I.11 does not have a countable basis at the
point ω+.  Hence, it is not metrizable by Theorem I.13.

The spaces described in Examples I.12 through I.15 are all metric spaces by
definition.


