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6.  Isometries of Euclidean Spaces 
 
 In this chapter we will investigate distance preserving functions between 
Euclidean spaces.  We first review results we obtained in Chapters 2 and 3 concerning 
distance preserving functions from ℝ to itself because the pattern of these results is 
foreshadows the theorems about distance preserving functions between Euclidean 
spaces.  Theorem 2.6 tells us that if two distance preserving functions f : ℝ → ℝ and g : 
ℝ → ℝ agree at two distinct points, then f = g.  Theorems 2.5 and 3.2 say that every 
isometry g : S → T between two subsets S and T of ℝ extends to a rigid motion f : ℝ → 
ℝ and f is either a reflection or a composition of two reflections.  (Theorem 2.5 actually 
says that f is either a reflection or a translation, but every translation is a composition of 
two reflections by Theorem 2.4.)  These results are then applied to prove the central 
theorem of Chapter 2: Theorem 2.7 which asserts that every distance preserving 
function from ℝ to itself is either a reflection or a composition of two reflections.  
Theorem 2.7 has two immediate corollaries which say that every distance preserving 
function from ℝ to itself is a rigid motion of ℝ, and every rigid motion of ℝ is either a 
reflection or a composition of two reflections.  Each of these theorems generalizes to a 
theorem about distance preserving functions between Euclidean spaces.  The theorems 
that result from this generalization process form the content of this chapter. 
 

We beginning by formulating the appropriate analogue of Theorem 2.6 for 
Euclidean spaces.  Theorem 2.6 says that if two distance preserving functions f : ℝ → ℝ 
and g : ℝ → ℝ agree at two distinct points, then f = g.  If f and g are instead distance 
preserving functions from Euclidean n-space 𝔼n to itself that agree on a finite set of 
points { x1, x2, … , xk }, we must answer the following question.  What property must the 
set { x1, x2, … , xk } have to force f and g to be equal?  If n > 1, it is not sufficient to 
require that the points x1, x2, … , xk simply be distinct.  Indeed, in Euclidean 2-space 𝔼2, 
if k distinct points x1, x2, … , xk all lie in the same line L, then id𝔼n and the reflection of 𝔼2 
in the line L are two unequal rigid motions of 𝔼2 that agree on the k points x1, x2, … , xk.  
The key property possessed by two distinct points in ℝ that makes it possible to prove 
Theorem 2.6 is expressed in Theorem 1.5: every point in ℝ is uniquely determined by its 
distances from two distinct points.  The analogous property in 𝔼n is expressed by 
Theorem 5.17: if x1, x2, … , xk are non-coplanar points in 𝔼n, then every point of 𝔼n is 
uniquely determined by its distances from x1, x2, … , xk.  Non-coplanarity is the key 
property needed to generalize Theorem 2.6 to Euclidean n-space.  Theorem 6.1 is the 
generalization of Theorem 2.6 to 𝔼n.  Theorem 6.1 says that if x1, x2, … , xk are non-
coplanar points in 𝔼n and if f : 𝔼n → 𝔼n and g : 𝔼n → 𝔼n are distance preserving functions 
that agree on x1, x2, … , xk, then f = g.  For technical reasons, we must also assume 
that one of the two functions f and g is both distance preserving and onto.  In other 
words, we must assume that one of f and g is a rigid motion of 𝔼n.  Theorem 6.1 
remains true if we omit this extra hypothesis, but we don’t have the tools needed to 
prove it at this point. 
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Theorem 6.1.  Suppose x1, x2, … , xk are non-coplanar points in 𝔼n.  If  
f : 𝔼n → 𝔼n is a distance preserving function, g : 𝔼n → 𝔼n is a rigid motion of 𝔼n and  
f(x1) = g(x1), f(x2) = g(x2), … , f(xk) = g(xk), then f = g. 
 

Proof.  Assume  x1, x2, … , xk are non-coplanar points in 𝔼n, and assume that 
f : 𝔼n → 𝔼n is a distance preserving function and g : 𝔼n → 𝔼n is a rigid motion of 𝔼n such 
that f(x1) = g(x1), f(x2) = g(x2), … , f(xk) = g(xk).  Let y ∈ 𝔼n.  We must prove f(y) = g(y). 
 
 Since g : 𝔼n → 𝔼n is a rigid motion, then Theorem 2.1 implies g has an inverse  
g–1 : 𝔼n → 𝔼n that is also a rigid motion.  Hence, according to Theorem 2.1, the  
composition g–1

ºf : 𝔼
n → 𝔼n is distance preserving.  Observe that for 1 ≤ i ≤ k,  

g–1
ºf(xi)  =  g–1(f(xi))  =  g–1(g(xi))  =  g–1

ºg(xi)  =  id𝔼n(xi)  =  xi. 

Since g–1
ºf is distance preserving, then it follows that  

d(y,xi)  =  d(g–1
ºf(y),g–1

ºf(xi))  =  d(g–1
ºf(y),xi)  . 

for 1 ≤ i ≤ k.  Thus, the points y and g–1
ºf(y) have equal distances from xi for 1 ≤ i ≤ k.  

Since x1, x2, … , xk are non-coplanar, then Theorem 5.17 tells us that each point of 𝔼n is 
uniquely determined by its distances from x1, x2, … , xk.  It follows that y = g–1

ºf(y).   
Hence,  

g(y)  =  g(g–1
ºf(y))  =  gº(g

–1
ºf)(y)  =  (gºg

–1)ºf(y)  =  id𝔼nºf(y)  =  f(y). 

We conclude that f = g. p 
 
 Lemma 5.16 tells us that the n + 1 points 0, e1, e2, … , en are non-coplanar in 𝔼n.  
Combining this fact with the preceding theorem, we have: 
 
 Corollary 6.2.  If f : 𝔼n → 𝔼n is a distance preserving function, g : 𝔼n → 𝔼n is a 
rigid motion of 𝔼n and f(0) = g(0), f(e1) = g(e1), f(e2) = g(e2), … , f(en) = g(en), then  
f = g. p 
 
 Our next goal is to establish an analogue of Theorems 2.5 and 3.2 for 𝔼n.  We will 
prove that if S and T are finite subsets of 𝔼n and g : S → T is an isometry, then there is a 
rigid motion f : 𝔼n → 𝔼n that extends g, and f is a composition of finitely many reflections.  
Before we can state and prove this theorem, we must define reflections in 𝔼n and 
establish some of their properties. 
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 Definition.  Let u ∈ 𝔼n such that || u || = 1 and let a ∈ ℝ.  Define the function  
Zu,a : 𝔼n → 𝔼n by the formula 

Zu,a(x)  =  x – 2(x•u – a)u 

for each x ∈ 𝔼n.  The function Zu,a is called reflection in the hyperplane P(u,a). 
 
 
 

                 x 
  

    –2(x•u – a)u 
 

      (x•u)u  
 
 
 
              au 

   Zu,a(x)                        (x•u – a)u 
                                     
 
 
 
    u 
 

               P(u,a) 
      0 

 
 
 Theorem 6.3.  If u ∈ 𝔼n such that || u || = 1 and a ∈ ℝ, then the reflection  
Zu,a : 𝔼n → 𝔼n has the following properties. 

a)  Zu,a : 𝔼n → 𝔼n is a rigid motion of 𝔼n. 

b)  Zu,a
–1 = Zu,a. 

c)  For x ∈ 𝔼n, Zu,a(x) = x if and only if x ∈ P(u,a). 

d)  If U and V are the opposite sides of P(u,a), then Zu,a(U) = V and Zu,a(V) = U. 
 
 Much of the proof of this theorem involves calculations. 
 
 Proof of a) and b).  First we prove Zu,a : 𝔼n → 𝔼n is distance preserving.  Let x  
and y ∈ 𝔼n.  Then 

 ( d(Zu,a(x),Zu,a(y)) )2  =  || Zu,a(x) – Zu,a(y) ||2  =   

 || (x – 2(x•u – a)u) – (y – 2(y•u – a)u) ||2  =   
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 || x – 2(x•u)u + 2au – y + 2(y•u)u – 2au ||2  = 

 || (x – y) – 2((x – y)•u)u ||2  =   

 || x – y ||2 – 4((x – y)•u)2 + || 2((x – y)•u)u ||2  (by Lemma 4.7.a)  = 

 || x – y ||2 – 4((x – y)•u)2 + 4((x – y)•u)2 || u ||2  = 

 || x – y ||2 – 4((x – y)•u)2 + 4((x – y)•u)2 || (because || u || = 1)  =   

 || x – y ||2  =  ( d(x,y) )2. 

Hence, d(Zu,a(x),Zu,a(y)) = d(x,y), proving Zu,a is distance preserving. 
 
 Second we prove Zu,aºZu,a = id𝔼n.  Let x ∈ 𝔼n.  To begin observe that 

 Zu,aºZu,a(x)  =  Zu,a(Zu,a(x))  =  Zu,a(x) – 2( (Zu,a(x))•u – a )u. 

  To continue this calculation, we compute (Zu,a(x))•u – a. 

 (Zu,a(x))•u – a  =  ( x – 2(x•u – a)u )•u – a  = 

 (x•u) – 2(x•u)(u•u) + 2a(u•u) – a  =   

 (x•u) – 2(x•u) + 2a – a   (because u•u = || u ||2 = 1)   =  – (x•u) + a. 

Returning to the calculation of Zu,aºZu,a(x), we substitute  – (x•u) + a  for (Zu,a(x))•u – a  
to obtain: 

 Zu,aºZu,a(x)  =  ( x – 2(x•u – a)u ) – 2( – (x•u) + a )u  = 

 ( x – 2(x•u)u + 2au ) + ( 2(x•u)u – 2au )  =  x  =  id𝔼n(x).   

Hence, Zu,aºZu,a = id𝔼n.  Since id𝔼n : 𝔼n → 𝔼n is onto, then Zu,a : 𝔼n → 𝔼n must be onto by 
Theorem 0.4.d.  Therefore, Zu,a is a rigid motion of 𝔼n.  Also, Zu,aºZu,a = id𝔼n implies  
Zu,a

–1 = Zu,a. p 
 
 Proof of c).  Let x ∈ 𝔼n.  Statement c) follows from the observation that the  
following statements are equivalent. 

 Zu,a(x) = x.  x – 2(x•u – a)u = x.  2(x•u – a)u = 0  

 x•u – a = 0.  x•u = a.   x ∈ P(u,a). p 
 
 Proof of d).  Assume U and V are the opposite sides of P(u,a).  Then according 
to Theorems 5.9 and 5.10, we may further assume that U = { x ∈ 𝔼n : x•u > a } and V =  
{ x ∈ 𝔼n : x•u < a }.  We observe that for each x ∈ 𝔼n

, Zu,a(x)•u – a  =  – ( x•u – a ).  
Here is the proof: 
 Zu,a(x)•u – a  =  (x – 2(x•u – a)u)•u – a  =  x•u – 2(x•u)(u•u) + 2a(u•u) – a  =   

 x•u – 2(x•u) + 2a – a  (because u•u = || u ||2 = 1)  =  – (x•u) + a  =  – ( x•u – a ). 
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The equation  Zu,a(x)•u – a  =  – ( x•u – a ) implies that if  x•u – a > 0  then   
Zu,a(x)•u – a < 0,  and if  x•u – a < 0  then  Zu,a(x)•u – a > 0.  These observations help 
us see that each statement in the following chain of statements implies the statement  
that follows it. 

 x ∈ U.  x•u > a.  x•u – a > 0.  Zu,a(x)•u – a < 0.  Zu,a(x)•u < a.  Zu,a(x) ∈ V. 

Similarly each statement in the following chain of statements implies the statement  
that follows it. 

 x ∈ V.  x•u < a.  x•u – a < 0.  Zu,a(x)•u – a > 0.  Zu,a(x)•u > a.  Zu,a(x) ∈ U. 

From the first chain of statements, we conclude: if x ∈ U, then Zu,a(x) ∈ V.  Hence, 
Zu,a(U) ⊂ V.  From the second chain of statements, we conclude: if x ∈ V, then Zu,a(x) ∈ 
U.  Hence, Zu,a(V) ⊂ U.  From the inclusions  Zu,a(U) ⊂ V  and  Zu,a(V) ⊂ U  together with 
the fact (proved above) that Zu,aºZu,a = id𝔼n, we derive the following strings of equalities  
and inclusions: 

 U = id𝔼n(U) = Zu,aºZu,a(U) = Zu,a(Zu,a(U)) ⊂ Zu,a(V),  

and 

 V = id𝔼n(V) = Zu,aºZu,a(V) = Zu,a(Zu,a(V)) ⊂ Zu,a(U). 

Hence, we have established that  Zu,a(U) ⊂ V,  V ⊂ Zu,a(U),  Zu,a(V) ⊂ U  and   
U ⊂ Zu,a(V).  We conclude that Zu,a(U) = V and Zu,a(V) = U. p 
 
 Definition.  If f : X → X is a function from a set X to itself, and if x is an element 
of X such that f(x) = x, then we say that f fixes x and we call x a fixed point of f.  
Furthermore, we call the set { x ∈ X : f(x) = x } the fixed point set of f.  Hence, statement 
c) of Theorem 6.3 says that P(u,a) is the fixed point set of Zu,a. 
 
 Homework Problem 6.1.  Suppose f : 𝔼n → 𝔼n is a distance preserving function 
and a and b are distinct points of 𝔼n.  Prove that if a and b are fixed points of f, then 
every point of L(a,b) is a fixed point of f. 
 
 Hint.  Recall that distance preserving functions are affine (Theorem 4.13). 
 
 Recall that Theorem 5.5 tells us that two hyperplanes P(u,a) and P(v,b) are equal 
if and only if either u = v and a = b or u = – v and a = – b.  The next theorem extends 
this relation to the associated reflections Zu,a and Zv,b. 
 
 Theorem 6.4.  Let u and v ∈ 𝔼n such that || u || = || v || = 1 and let a and b ∈ ℝ.   
Then the following three statements are equivalent. 

a)  Zu,a = Zv,b.     b)  P(u,a) = P(v,b).     c)  Either u = v and a = b, or u = – v and a = – b. 
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 Proof.  Theorem 5.5 tells us that statements b) and c) are equivalent. 
 
 Proof that a) implies b).  Assume Zu,a = Zv,b.  Let x ∈ 𝔼n.  Then with the aid of  
Theorem 6.3.c, we see that the following statements are equivalent: 

x ∈ P(u,a).     Zu,a(x) = x.     Zv,b(x) = x.     x ∈ P(v,b). 

Consequently, P(u,a) = P(v,b). p 
 
 Proof that b) implies a).  Assume P(u,a) = P(v,b).  Then Theorem 5.5 implies 
either u = v and a = b, or u = – v and a = – b.  In the first case: if u = v and a = b, then  
Zu,a = Zv,b by substitution.  In the second case: if u = – v and a = – b, then Zu,a = Z – v, – b, 
and it remains to show that Z – v, – b = Zv,b.  Here is a proof that Z – v, – b = Zv,b.  Let x ∈ 𝔼n 
𝔼n.  Then 

 Z – v, – b(x)  =  x – 2(x•( – v) – ( – b))( – v)  =  x – 2(( – 1)x•v – ( – 1)b)( – 1)v  =   

 x – 2( – 1)(x•v – b)( – 1)v  =  x – 2( – 1)( – 1)(x•v – b)v  =  x – 2(x•v – b)v  =    

 Zv,b(x). p 
 
 Recall that if x and y are distinct points of 𝔼n, then Theorem 5.18 tells us that the 
set E(x,y) = { z ∈ 𝔼n : d(x,z) = d(y,z) } is a hyperplane.  The next theorem tells us that 
the reflection which interchanges the points x and y is precisely the reflection in this 
hyperplane. 
 
 Theorem 6.5.  Let x and y be distinct points of 𝔼n, and let u ∈ 𝔼n such that || u || 
= 1 and let a ∈ ℝ.  Then Zu,a(x) = y if and only if P(u,a) = E(x,y). 
 
 Proof.  First assume Zu,a(x) = y. 
 
 We begin by proving P(u,a) ⊂ E(x,y).  Let z ∈ P(u,a).  Then Theorem 6.3.c tells  
us that Zu,a(z) = z.  Since Zu,a is distance preseving (by Theorem 6.3.a), then   

d(x,z)  =  d(Zu,a(x),Zu,a(z))  =  d(y,z). 

Hence, z ∈ E(x,y).  This proves P(u,a) ⊂ E(x,y).   
 
 P(u,a) is, by definition, a hyperplane; and E(x,y) is a hyperplane by Theorem 
5.18.  Since P(u,a) ⊂ E(x,y), then Corollary 5.8 implies P(u,a) = E(x,y).  This completes 
the proof of the forward direction of Theorem 6.5. 
 
 Next we present the proof of the reverse direction of Theorem 6.5.  Assume 
P(u,a) = E(x,y).  We must prove Zu,a(x) = y.  Theorem 5.18 tells us that E(x,y) is equal  
to the hyperplane P(v,b) where  

v  =  
y – x

 y – x 
,     m  =  (1/2)( x + y )     and     b = m•v. 
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Hence, P(u,a) = P(v,b).  Therefore, Theorem 6.4 implies Zu,a = Zv,b.  Hence,  

Zu,a(x)  =  Zv,b(x)  =  x – 2(x•v – b)v  =  x – 2(x•v – m•v)v  =  x – 2((x – m)•v)v. 

Since     

x – m  =  x – (1/2)( x + y )  =  – (1/2)( y – x ), 

then  

(x – m)•v  =  – (1/2)( y – x )•
y – x

 y – x 
  =  – (1/2)

 y – x 
2

 y – x 
  =  – (1/2) || y – x ||. 

Therefore,  

2((x – m)•v)v  =  2( – (1/2) || y – x || )
y – x

 y – x 
  =  – ( y – x )  =  x – y. 

Hence, Zu,a(x)  =  x – ( x – y )  =  y.  This completes the proof of Theorem 6.5 in the 
reverse direction. p  
 
 We extract from Theorem 6.5 and other previous results a simple corollary that 
will be useful in subsequent theorems. 
 
 Corollary 6.6.  If x and y be distinct points of 𝔼n, then there is a reflection Zu,a of    
𝔼n such that  

 a)  Zu,a(x) = y and 

 b)  if z ∈ 𝔼n and d(x,z) = d(y,z), then Zu,a(z) = z. 
 
 Proof.  Theorem 5.18 implies that E(x,y) is a hyperplane.  Hence, there exist u ∈ 
𝔼n such that || u || = 1 and a ∈ ℝ so that E(x,y) = P(u,a).  Then Theorem 6.5 implies 
Zu,a(x) = y.  Furthermore, if z ∈ 𝔼n and d(x,z) = d(y,z), then z ∈ E(x,y).  Therefore, z ∈ 
P(u,a).  In this situation Theorem 6.3.c implies Zu,a(z) = z. p 
 
 Reflections are the rigid motions of 𝔼n that play a special role in our development 
of the theory of isometries of 𝔼n.  Translations are another type of rigid motion of 𝔼n, but 
translations aren’t as central to the theory as are reflections.  None the less, since 
translations are easy to define and analyze, we do this next.     
 
 Definition.  Let p ∈ 𝔼n.  Define the function Tp : 𝔼n → 𝔼n by the formula 

Tp(x)  =  x + p 

for each x ∈ 𝔼n.  The function Tp is called the translation parallel to p. 
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               Tp(x) 
 
 

      x 
 

            p 
                  
 

  0 
 
 
 Theorem 6.7.  If p ∈ 𝔼n, then the translation Tp : 𝔼n → 𝔼n has the following  
properties. 

a)  Tp : 𝔼n → 𝔼n is a rigid motion of 𝔼n. 

b)  T0 = id𝔼n, Tp
–1 = T–p, and if q ∈ 𝔼n, then TqºTp = Tp + q. 

c)  If p ≠ 0, then Tp(x) ≠ x for every x ∈ 𝔼n.  In other words, if p ≠ 0, then Tp has no fixed  
points.  

d)  If p ≠ 0, u = 
p

 p 
, and a and b ∈ ℝ such that b = a + (1/2)|| p ||, then Tp = Zu,bºZu,a. 

 
Homework Problem 6.2.  Prove Theorem 6.7. 

 
Recall that Theorems 2.5 and 3.2 say that every isometry between two subsets 

of ℝ extends to a rigid motion of ℝ which is either a reflection or a composition of two 
reflections.  We now prove a version of this result for 𝔼n.  Our version of this theorem for 
𝔼n only applies to isometries between finite subsets of 𝔼n.  There is a version of this 
theorem that holds for isometries between infinite subsets of 𝔼n, but we aren’t prepared 
to prove it at this point. 

 
 Theorem 6.8.  For each k ≥ 1, if S and T are k-element subsets of 𝔼n and  
f : S → T is an isometry, then there is a rigid motion g : 𝔼n → 𝔼n such that g(x) = f(x) for 
every x ∈ S and g is the composition of k or fewer reflections. 
 
 Proof.  We will prove this theorem by induction on the number k of elements in 
the sets S and T. 
 
 Begin by assuming k = 1.  Then S has a single element we will call x and T has a 
single element we will call y, and the isometry f : S → T is the function determined by 
the equation f(x) = y.  We must produce a rigid motion g : 𝔼n → 𝔼n such that g(x) = f(x) = 
y.  We consider two cases: either x = y or x ≠ y.   
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In the case that x = y, we let g = id𝔼n.  Then g is a rigid motion of 𝔼n (by Theorem 
2.1.a) that is a composition of 0 reflections, and g(x) = x = y = f(x).   

 
Now consider the case in which x ≠ y.  In this situation, we invoke Corollary 6.6 

to obtain a reflection Zu,a : 𝔼n → 𝔼n such that Zu,a(x) = y, and we set g = Zu,a.  Then g is 
a rigid motion of 𝔼n (by Theorem 6.3.a) which is the composition of 1 reflection, and g(x) 
= Zu,a(x) = y = f(x).  This completes the proof of the k = 1 case of this theorem. 

 
To finish the proof, we must establish the inductive step.  Let k ≥ 1 and assume 

the inductive hypothesis: if S and T are k-element subsets of 𝔼n and f : S → T is an 
isometry, then there is a rigid motion g : 𝔼n → 𝔼n such that g(x) = f(x) for every x ∈ S 
and g is the composition of k or fewer reflections.  We must prove that this statement is 
true if k is replaced by k + 1.  To this end, suppose S and T are (k + 1)-element subsets 
of 𝔼n and f : S → T is an isometry.  We can write S = { x1, x2, … , xk, xk+1 }.  Let yi = f(xi) 
for 1 ≤ i ≤ k + 1.  Since f : S → T is a bijection, then T = { y1, y2, … , yk, yk+1 }.  Let S´ =  
S – { xk+1 } = { x1, x2, … , xk }, let T´ = T – { yk+1 } = { y1, y2, … , yk }, and let f´ be the 
restriction of f to S´.  Then f´ : S´ → T´ is an isometry.  (f´ is distance preserving because 
d(f´(xi),f´(xj)) = d(f(xi),f(xj)) = d(xi,xj) for 1 ≤ i, j ≤ k.  f´ is onto because for 1 ≤ I ≤ k, yi = 
f(xi) = f´(xi) and xi ∈ S´.)  Since S´ and T´ are k-element subsets of 𝔼n, then the inductive 
hypothesis implies there is an rigid motion g´ : 𝔼n → 𝔼n such that g´(x) = f´(x) for every x 
∈ S´ and g´ is the composition of k or fewer reflections.  Thus, for 1 ≤ i ≤ k, g´(xi) = f´(xi) 
= yi.  We now consider two cases: either g´(xk+1) = yk+1 or g´(xk+1) ≠ yk+1. 
 

In the case that g´(xk+1) = yk+1, we let g = g´.  Since g´ is a rigid motion of 𝔼n that 
is the composition of k or fewer reflections, then so is g.  Hence, g is the composition of  
k + 1 or fewer reflections.  Also, for 1 ≤ i ≤ k + 1, g(xi) = g´(xi) = yi = f(xi).  Thus, g(x) = 
f(x) for every x ∈ S. 
 
 Now consider the case in which g´(xk+1) ≠ yk+1.  In this situation, we invoke 
Corollary 6.6 to obtain a reflection Zu,a : 𝔼n → 𝔼n such that Zu,a(g´(xk+1)) = yk+1 and such 
that Zu,a(z) = z whenever z ∈ 𝔼n and d(g´(xk+1),z) = d(yk+1,z).   We set g = Zu,aºg´. Since 
g´ and Zu,a are rigid motions of 𝔼n (by Theorem 6.3.a), then g is also rigid motion of 𝔼n 
(by Theorem 2.1.c).  Since g´ is the composition of k or fewer reflections, then g is 
clearly the composition of k + 1 or fewer reflections.  Observe that since g´ and f are  
 
distance preserving, and g´(xi) = yi = f(xi) for 1 ≤ i ≤ k, and f(xk+1) = yk+1, then for 1 ≤ i ≤  
k: 

d(g´(xk+1),g´(xi))  =  d(xk+1,xi)  =  d(f(xk+1),f(xi))  =  d(yk+1,yi)  =  d(yk+1,g´(xi)). 
Consequently, Zu,a(g´(xi)) = g´(xi)  for 1 ≤ i ≤ k.  Since g = Zu,aºg´ and Zu,a(g´(xi)) = g´(xi) 
= f´(xi) = f(xi) for 1 ≤ I ≤ k, then we have g(xi) = Zu,aºg´(xi) = Zu,a(g´(xi)) = f(xi) for 1 ≤ i ≤ k.  
Also since g = Zu,aºg´ and Zu,a(g´(xk+1)) = yk+1 = f(xk+1), then g(xk+1) = Zu,aºg´(xk+1) = 
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Zu,a(g´(xk+1)) = f(xk+1).  Thus, g(x) = f(x) for every x ∈ S.  This completes the proof of the 
inductive step. p 
 
 Homework Problem 6.3.  Suppose 1 ≤ r ≤ k, S and T are k-element subsets of 
𝔼n, and f : S → T is an isometry that fixes at least r points of S.  (Thus, S and T have at 
least r points in common.)  Prove that there is a rigid motion g : 𝔼n → 𝔼n such that g(x) = 
f(x) for every x ∈ S and g is the composition of k – r or fewer reflections. 
 
 We now come to Theorem 6.9 which can be considered the main result of this 
chapter.  Theorem 6.9 is the n-dimensional analogue of Theorem 2.7.  Theorem 2.7 
says that every distance preserving function from ℝ to itself is a rigid motion which is the 
composition of 2 or fewer reflections.  (Recall that each translation of ℝ is a composition 
of two reflections.)  
 

Theorem 6.9.  Every distance preserving function from 𝔼n to itself is a rigid 
motion of 𝔼n which is the composition of n + 1 or fewer reflections. 

 
Proof.  Let f : 𝔼n → 𝔼n be a distance preserving function.  Let S =  

{ 0, e1, e2, … , en }, and let T = { f(0), f(e1), f(e2), … , f(en) }.  Let f´ : S → T be the 
restriction of f to S.  Since f is distance preserving, then f´ : S → T is an isometry.  Since  
S has n + 1 elements, then Theorem 6.8 implies there is a rigid motion g : 𝔼n → 𝔼n such  
that g(x) = f´(x) for every x ∈ S and g is the composition of n + 1 or fewer reflections.  
Since g(x) = f´(x) = f(x) for every x ∈ S, then f(0) = g(0), f(e1) = g(e1), f(e2) = g(e2), … , 
f(en) = g(en).  Since f : 𝔼n → 𝔼n is distance preserving and g : 𝔼n → 𝔼n is a rigid motion, 
then Corollary 6.2 implies f = g.  We conclude that f is a rigid motion of 𝔼n that is the 
composition of n + 1 or fewer reflections. p 
 
 Homework Problem 6.4. a) Prove that for every p ∈ 𝔼n, the n + 1 points  
p, p + e1, p + e2, … , p + en are non-coplanar in 𝔼n.   

b)  Prove that if f : 𝔼n → 𝔼n is a distance preserving function with at least one 
fixed point, then f is a rigid motion of 𝔼n which is the composition of n or fewer 
reflections. 
 
 We state two immediate corollaries of Theorem 6.9 because these corollaries are 
significant statements in their own right. 
 

Corollary 6.10.  Every distance preserving function from 𝔼n to itself is a rigid 
motion of 𝔼n. p 

 
Corollary 6.11.  Every rigid motion of 𝔼n is the composition of n + 1 or fewer 

reflections. p 
 
Corollary 6.11 might be paraphrased by saying that reflections of 𝔼n are the 

atoms from which all other rigid motions of 𝔼n are built. 
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Corollary 6.10 resolves an issue raised by the hypotheses of Theorem 6.1 and 
Corollary 6.2.  Theorem 6.1 says that if two distance preserving functions f : 𝔼n → 𝔼n 
and g : 𝔼n → 𝔼n agree on a non-coplanar set, then f = g, provided one of f or g is a rigid 
motion of 𝔼n.  Since Corollary 6.10 tells that every distance preserving function from 𝔼n 
to itself is a rigid motion, we can now drop the rigid motion hypothesis.   

 
Corollary 6.12.  Suppose f : 𝔼n → 𝔼n and g : 𝔼n → 𝔼n are distance preserving 

functions.  If x1, x2, … , xk are non-coplanar points in 𝔼n such that f(xi) = g(xi) for 1 ≤ i ≤ 
k, then f = g.  In particular, if f(0) = g(0) and f(ei) = g(ei) for 1 ≤ i ≤ n, then f = g. p 
 

The chain of logic which led to Corollary 6.12 went from Theorem 6.1 to Corollary 
6.2 to Theorem 6.9 to Corollaries 6.10 and 6.12.  Hence, we must still begin this 
sequence of proofs by establishing the original version of Theorem 6.1 that includes the 
rigid motion hypothesis. 

 
Theorem 6.9 and its corollaries reveal information about distance preserving 

functions between Euclidean spaces of different dimensions. 
 
Corollary 6.13.  No distance preserving function between Eucldiean spaces can 

lower dimension.  In other words, if f : 𝔼m → 𝔼n is a distance preserving function, then  
m ≤ n. 
 
 Proof.  This is a proof by contradiction.  Assume f : 𝔼m → 𝔼n is a distance 
preserving function and m > n.   
 

Define the function g :  𝔼n → 𝔼m by g(x1, x2, … , xn) = (x1, x2, … , xn, 0, 0, … , 0).   
 
Then g is distance preserving.  Indeed, if x = (x1, x2, … , xn) and y =  

(y1, y2, … , yn) ∈ 𝔼n, then  

x – y = (x1 – y1, x2 – y2, … , xn – yn)  

and  

g(x) – g(y) = (x1 – y1, x2 – y2, … , xn – yn, 0, 0, … , 0).   

Hence,    

|| g(x) – g(y) ||2  =  (x1 – y1)2 + (x2 – y2)2 + … + (xn – yn)2 + 02 + 02 + … + 02  

=  (x1 – y1)2 + (x2 – y2)2 + … + (xn – yn)2  =  || x – y ||2. 

Therefore d(g(x),g(y)) = || g(x) – g(y) || = || x – y || = d(x,y).   
 

Also, g :  𝔼n → 𝔼m is not onto. Indeed, the element (0, 0, … , 0, 1) of 𝔼m is not an 
element of g(𝔼n), because the mth coordinate of every element of g(𝔼n) is 0.  Thus, g(𝔼n) 
≠ 𝔼m. 
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Now consider the function gºf : 𝔼
m → 𝔼m.  gºf : 𝔼

m → 𝔼m is distance preserving by 
Theorem 2.1.c because f and g are distance preserving.  gºf : 𝔼

m → 𝔼m is not onto 
because gºf(𝔼

m) = g(f(𝔼m)) ⊂ g(𝔼n) ≠ 𝔼m.  Thus, gºf : 𝔼
m → 𝔼m is a distance preserving 

function which is not a rigid motion of 𝔼m.  This contradicts Corollary 6.10.  We conclude 
that m ≤ n. p 

 
Corollary 6.14.  Every isometry between Euclidean spaces preserves dimension.  

In other words, if f : 𝔼m → 𝔼n is an isometry, them m = n. 
 
Proof.  If f : 𝔼m → 𝔼n is an isometry, then so is f –1 : 𝔼n → 𝔼m by Theorem 2.1.d.  

Hence, both f : 𝔼m → 𝔼n and f –1 : 𝔼n → 𝔼m are distance preserving.  Now two 
applications of Corollary 6.13 tells us that m ≤ n and n ≤ m.  Therefore, m = n. p 
 
 We end this chapter with a discussion of conjugation of isometries.  Conjugation 
is a method of moving an isometry without changing its fundamental character.    
 
 Definition.  Two isometries f : 𝔼n → 𝔼n and g : 𝔼n → 𝔼n of 𝔼n are conjugate if 
there is an isometry h : 𝔼n → 𝔼n such that hºfºh

–1 = g.  If f : 𝔼n → 𝔼n and g : 𝔼n → 𝔼n are 
conjugate, then we say g is obtained from f by conjugation, we call g a conjugate of f 
and we call h the conjugating isometry. 
 
 Next we state a fundamental property of the conjugation relation.  
 
 Theorem 6.15.  If f : 𝔼n → 𝔼n, g : 𝔼n → 𝔼n and h : 𝔼n → 𝔼n are isometries of 𝔼n,  
then the following three statements hold. 

a)  f is conjugate to itself. 

b)  If f is conjugate to g, then g is conjugate to f. 

c)  If f is conjugate to g and g is conjugate to h, then f is conjugate to h. 
 
 Homework Problem 6.5.  Prove Theorem 6.15. 
 
 Theorem 6.15 says that conjugation is an equivalence relation on the set of all 
isometries of 𝔼n. 
 
 If two isometries are conjugate, then the conjugating isometry moves sets that 
have a significant relation to the first isometry to sets that have the same relation to the 
second isometry.  The following homework problem illustrates this pheomenon.  For 
example, it asserts that the conjugating isometry moves fixed points of the first isometry 
to fixed points of the second isometry. 
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 Definition.  Let f : 𝔼n → 𝔼n be an isometry.  The set { x ∈ 𝔼n : f(x) = x } is called 
the fixed point set of f.  For example, the fixed point set of a translation is empty, and  
the fixed point set of a reflection Zu,a is the hyperplane P(u,a).    If S is a subset of 𝔼n 
such that f(S) ⊂ S, then we call S an invariant set of f. 
 
 Homework Problem 6.6. a)  Let p ∈ 𝔼n.  Prove that for each x ∈ 𝔼n, the line  
L(x,x + p) is an invariant set of the translation Tp. 

b)  Let u ∈ 𝔼n such that || u || = 1 and let a ∈ ℝ.  Prove that for each x ∈ 𝔼n, the line  
L(x,x + u) is an invariant set of the reflection Zu,a. 

c)  Suppose f : 𝔼n → 𝔼n and g : 𝔼n → 𝔼n are conjugate isometries of 𝔼n and h : 𝔼n → 𝔼n 
is the conjugating isometry; in other words, hºfºh

–1 = g.  Prove that if F is the fixed point  
set of f, then h(F) is the fixed point set of g. 

d)  Suppose f : 𝔼n → 𝔼n and g : 𝔼n → 𝔼n are conjugate isometries of 𝔼n and h : 𝔼n → 𝔼n 
is the conjugating isometry; in other words, hºfºh

–1 = g.  Prove that if the subset S of 𝔼n 
is an invariant set of f, then h(S) is an invariant set of g. 
 
 As we said previously, conjugation moves an isometry without changing its 
character.  The next two theorems illustrate this assertion by revealing that each 
conjugate of a translation must be a translation, and each conjugate of a reflection must 
be a reflection. 
 
 Theorem 6.16.  If p ∈ 𝔼n and h : 𝔼n → 𝔼n is an isometry of 𝔼n, then hºTpºh

–1 = Tq 
where q = h(p) – h(0). 
 
 Homework Problem 6.7.  Prove Theorem 6.16. 
 
 Hint.  Use the fact that h is affine to prove hºTp = Tqºh. 
 
 Theorem 6.17.  If u ∈ 𝔼n such that || u || = 1, a ∈ ℝ and h : 𝔼n → 𝔼n is an 
isometry of 𝔼n, then hºZu,aºh

–1 = Zv,b where v = h(u) – h(0) and b = h(au)•v. 
 
 Homework Problem 6.8.  Prove Theorem 6.17. 
 
 Hint.  Prove || v || = 1, x•u – a = h(x)•v – b for all x ∈ 𝔼n, and hºZu,a = Zv,bºh.  
Use the facts that h preserves dot products of differences and that h is affine. 
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