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5.  Lines and Hyperplanes 
 
 In 𝔼n, lines and hyperplanes ((n – 1)-dimensional planes) are subsets of special 
geometric significance.  We now explore their properties. 
 

Definition.  Let a and b be distinct points of 𝔼n (i.e., a ≠ b).  Define the line in 𝔼n  
determined by a and b to be the set  

L(a,b)  =  { (1 – t)a + tb : t ∈ ℝ }. 

A subset of 𝔼n is called a line if and only if it is a set of the form L(a,b) where a and b ∈ 
𝔼n and a ≠ b.  
 

Observe that if a and b are distinct points of 𝔼n, the the following statements are  
equivalent: 

• x ∈ L(a,b). 

• There is a t ∈ ℝ such that x = (1 – t)a + tb.   

• There is a t ∈ ℝ such that x = a + t(b – a).   

• There exist s and t ∈ ℝ such that s + t = 1 and x = sa + tb. 
 

 
                                                                                                            a + 3(b – a)  
                  
                    
                                                                                                    a + 2(b – a) 

          
                                                    
                                                    b 
                   a + (1/2)(b – a)  
        a                                                    L(a,b) 

                 
     a + (–1)(b – a) 
 
 
 The first important theorems about lines is: 
 
 Theorem 5.1. The Existence and Uniqueness of Lines.  If a and b are any two 
distinct points of 𝔼n, then L(a,b) is the one and only line in 𝔼n that contains a and b. 
 
 Proof.  Assume a and b are distinct points of 𝔼n. We must prove that L(a,b) 
contains a and b, and that L(a,b) is the only line that contains a and b. 
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 Since a = 1a + 0b and b = 0a + 1b and 1 + 0 = 1 = 0 + 1, then a and b ∈ L(a,b).  
Hence, L(a,b) contains a and b. 
 
 To prove that (a,b) is the only line that contains a and b, assume M is a line that 
contains a and b.  We will prove that M = L(a,b).  Since M is a line, then there are 
distinct elements c and d of 𝔼n such that M = L(c,d).  So a and b are elements of L(c,d).   
 
 We now prove a lemma to help carry out the proof. 
 
 Lemma 5.2.  If a, b, c and d ∈ 𝔼n such that a ≠ b and c ≠ d and if a and b ∈ 
L(c,d), then L(a,b) ⊂ L(c,d). 
 
 Proof.  We assume a and b ∈ L(c,d).  Hence, there are real numbers r and s  
such that  

a  =  (1 – r)c + rd  and  b  =  (1 – s)c + sd. 

Let x ∈ L(a,b).  Then there is a real number t such that  x  =  (1 – t)a + tb.  Hence, 

 x  =  (1 – t)( (1 – r)c + rd ) + t( ( 1 – s)c + sd ) 

    =   ( (1 – t)(1 – r) + t(1 – s) )c + ( (1 – t)r + ts )d. 

Let  u  =  ( (1 – t)(1 – r) + t(1 – s) )  and let  v  =  ( (1 – t)r + ts ).  Then u and v are real  
numbers such that x = uc + vb.  Furthermore,  

 u + v =  ( (1 – t)(1 – r) + t(1 – s) )  +  ( (1 – t)r + ts ) 

 =  (1 – t)(1 – r) + (1 – t)r + t(1 – s) + ts   

 =  (1 – t)(1 – r + r) + t(1 – s + s)   

 =  (1 – t) + t  =  1. 

Since x = uc + vb and u + v = 1, then x ∈ L(c,d).  This proves L(a,b) ⊂ L(c,d). p 
 
 Returning to the proof of Theorem 5.1, we have distinct points a and b of 𝔼n, and 
we have assumed that a and b ∈ M = L(c,d) where c and d are distinct points of 𝔼n.  
Hence, Lemma 5.2 implies L(a,b) ⊂ L(c,d). 
  
 Next we will prove that c and d ∈ L(a,b).  Since a and b ∈ L(c,d), then there are  
real numbers r and s such that the following equations hold:  

 a  =  (1 – r)c + rd  and  b  =  (1 – s)c + sd   (∗) 

Since a ≠ b, then r ≠ s.  Hence, r – s ≠ 0 and s – r ≠ 0.  We now solve the equations in  
(∗) to express c in terms of a and b.  Observe that  

sa  =  (1 – r)sc + rsd  and  rb  =  r(1 – s)c + rsd. 

Hence, 
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sa – rb  =  ( (1 – r)s – r(1 – s) )c  =  (s – r)c. 
We divide both sides of this equation by s – r to obtain:   

c = s
s – r

a + – r
s – r

b. 

Since   
s

s – r
  +  – r

s – r
   =  1, 

then c ∈ L(a,b).  Similarly, we solve the equations in (∗) to express d in terms of a and  
b.  Observe that  

(1 – s)a  =  (1 – r)(1 – s)c + r(1 – s)d  and  (1 – r)b  =  (1 – r)(1 – s)c + (1 – r)sd. 

Hence, 

(1 – s)a – (1 – r)b  =  ( r(1 – s) – (1 – r)s )d  =  (r – s)d. 

Dividing both sides of this equation by r – s, we obtain: 

d = 1 – s
r – s

a + r – 1
r – s

b. 

Since 

1 – s
r – s

  +  r – 1
r – s

  =  1, 

then d ∈ L(a,b).  We have now proved that c and d ∈ L(a,b).   
 
 Since c and d ∈ L(a,b), then Lemma 5.2 (with the roles of a and b interchanged 
with the roles of c and d) implies L(c,d) ⊂ L(a,b).  We have now shown that L(a,b) ⊂ 
L(c,d) and L(c,d) ⊂ L(a,b).  Hence, L(a,b) = L(c,d).  Therefore, M = L(a,b).  It follows 
that L(a,b) is the one and only line in 𝔼n that contains a and b.  This completes the proof 
of Theorem 5.1. p 
 
 The following theorem allows us to detect which subsets of 𝔼n are lines from their 
metric properties. 
 
 Theorem 5.3.  The Metric Characterization of Lines.  A subset L of 𝔼n is a line if 
and only if L is isometric to ℝ. 
 
 Proof.  First assume L is a line.  Then there are distinct points a and b in 𝔼n such  
that L = L(a,b).  Let  

u  =  
1

 b – a 
(b – a). 
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Then || u || = 1.  Observe that  

a + u = a + 
1

 b – a 
(b – a). 

Hence, a and a + u ∈ L(a,b).  Also, since u ≠ 0, then a ≠ a + u.  Hence, Theorem 5.1 
implies L(a,b) = L(a,a + u).  Hence, L = L(a,a + u). 
 
 Define f : ℝ → 𝔼n by f(t) = a + tu.  Then for s, t ∈ ℝ,  

d(f(s),f(t))  =  || f(s) – f(t) ||  =  || (a + su) – (a + tu) ||  =   

|| (s – t)u ||  =  | s – t | || u ||  =  | s – t | (1)  =  | s – t |  =  d(s,t). 

Hence, f : ℝ → 𝔼n is distance preserving.   
 

Next we prove f(ℝ) = L.  If t ∈ ℝ, then  

f(t)  =  a + tu  =  a – ta + ta + tu  =  (1 – t)a + t(a + u)  ∈  L(a,a + u)  =  L. 

This proves f(ℝ) ⊂ L.  To prove L ⊂ f(ℝ), let x ∈ L.  Since L = L(a,a + u), then there is a t 
∈ ℝ such that  

x  =  (1 – t)a + t(a + u)  =  a – ta + ta + tu  =  a + tu  = f(t)  ∈  f(ℝ). 

We conclude that L ⊂ f(ℝ).  Since f(ℝ) ⊂ L and L ⊂ f(ℝ), then f(ℝ) = L. 
 
 Since f : ℝ → 𝔼n is distance preserving and f(ℝ) = L, then f : ℝ → L is a distance 
preserving onto function.  Hence, f : ℝ → L is an isometry.  Therefore, L is isometric to 
ℝ.  This completes the proof in one direction. 
 
 To complete the proof in the other direction, assume L is a subset of 𝔼n that is 
isometric to ℝ.  We must prove that L is a line.  Since L is isometric to ℝ, then there is 
an isometry f : ℝ → L.  Therefore, f : ℝ → 𝔼n is distance preserving and f(ℝ) = L.  Let a = 
f(0) and b = f(1).  We will prove that L = L(a,b).  Since f : ℝ → 𝔼n is distance preserving, 
then we may invoke Theorem 4.13 to conclude that f : ℝ → 𝔼n is affine.  Therefore, for  
every t ∈ ℝ,  

f(t)  =  f((1 – t)0 + t1)  =  (1 – t)f(0) + tf(1)  =  (1 – t)a + tb  ∈  L(a,b). 

Thus,  f(ℝ) ⊂ L(a,b).  So L ⊂ L(a,b).  To prove the opposite inclusion, let x ∈ L(a,b).   
Then there is a t ∈ ℝ such that x = (1 – t)a + tb.  We just showed that f(t) = (1 – t)a + tb.  
Hence, f(t) = x.  Therefore, x ∈ f(ℝ) = L.  We conclude that L(a,b) ⊂ L.  Since L ⊂ L(a,b).   
and L(a,b) ⊂ L, then L = L(a,b).  We have now prove that if L is a subset of 𝔼n which is 
isometric to ℝ, then L is a line. p 
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 Homework Problem 5.1.  This problem asks you to show that one direction of  
Theorem 5.3 holds in ℝ2 with the taxicab metric, but the other does not. 

a)  Prove that if a and b are distinct points of ℝ2, then the subset L(a,b) of ℝ2 with the  
taxicab metric is isometric to ℝ. 

b)  Find a subset of ℝ2 with the taxicab metric that is isometric to ℝ but is not of the form 
L(a,b) for any two distinct points a and b of ℝ2. 
 
 Here is an application of Theorem 5.3. 
 
 Corollary 5.4.  If L is a line in 𝔼m and f : 𝔼m → 𝔼n is a distance preserving 
function, then f(L) is a line in 𝔼n. 
 
 Proof.  Since L is a line in 𝔼m, then Theorem 5.3 implies there is an isometry  
g : ℝ → L.  Since f : 𝔼m → 𝔼n is distance preserving and the restriction f | L : L → f(L) is 
onto, then f | L : L → f(L) is an isometry.  Hence, the composition (f | L)ºg : ℝ → f(L) is 
an isometry by Theorem 2.1.c.  Thus, f(L) is isometric to ℝ.  Now a second application 
of Theorem 5.3 implies f(L) is a line in 𝔼n. p 
 
 Definition.  Let u ∈ 𝔼n such that || u || = 1 and let a ∈ ℝ.  Define 

P(u,a)  =  { x ∈ 𝔼n : x•u = a }. 

A subset of 𝔼n is called a hyperplane if and only if it is of the form P(u,a) where u ∈ 𝔼n,  
|| u || = 1 and a ∈ ℝ.   
 
 A hyperplane in 𝔼n is, intuitively, a flat subset of 𝔼n of dimension n – 1.  Since the 
word plane is usually reserved for 2-dimensional objects, then the only hyperplanes that 
are called planes are the hyperplanes in 𝔼3. 
 
 
 
                                   au              P(u,a) 
 
 
 
 
 
                       u 
 
 
                                                                  

                      0                       P(u,0) 
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Observe that if u ∈ 𝔼n, || u || = 1 and a ∈ ℝ, then au ∈ P(u,a) because (au)•u =  
a || u ||2 = a•1 = a.  Since P(u,0) = { x ∈ 𝔼n : x•u = 0 }, then we can visualize P(u,0) as 
the (n – 1)–dimensional plane in 𝔼n that passes through the origin 0 and is 
perpendicular to u.  Then the translation which moves 0 to au moves P(u,0) to P(u,a). 
  

Theorem 5.5.  Suppose u and v ∈ 𝔼n such that || u || = || v || = 1 and let a and b 
∈ ℝ.  Then P(u,a) = P(v,b) if and only if: either u = v and a = b, or u = – v and a = – b. 
 
 We break the proof of Theorem 5.5 into two lemmas which we assign as 
homework problems. 
 
 Lemma 5.6.  Suppose u and v ∈ 𝔼n such that || u || = || v || = 1 and let a and b ∈ 
ℝ.  If either u = v and a = b, or u = – v and a = –b, then P(u,a) = P(v,b). 
 
 Homework Problem 5.2.  Prove Lemma 5.6. 
 
 Lemma 5.7.  Suppose u and v ∈ 𝔼n such that || u || = || v || = 1 and let a and b ∈ 
ℝ.  If P(u,a) ⊂ P(v,b), then either u = v and a = b, or u = – v and a = – b. 
 
 Homework Problem 5.3.  Prove Lemma 5.7. 
 
 Hint of Homework Problem 5.3.  Suppose u and v ∈ 𝔼n such that || u || = || v ||  
= 1 and let a and b ∈ ℝ.  Assume P(u,a) ⊂ P(v,b).  Let x = v – (u•v)u. 

Step 1:  Prove au and au + x ∈ P(u,a).   

Step 2:  Prove au and au + x ∈ P(v,b). 

Step 3:  Prove a(u•v) = b and x•v = 0.   

Step 4:  Prove u•v = ± 1. 

Step 5:  Prove u = ± v.  

Step 6:  Prove u = v  ⇒  a = b, and u = – v  ⇒  a = – b. 
 
 

           au                au + x 
 

   
 

        x  =  v – (u•v)u 
             u                     

                v 
 
 

   0 
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 We now show how to prove Theorem 5.5 from Lemmas 5.6 and 5.7. 
 
 Proof of Theorem 5.5.  Suppose u and v ∈ 𝔼n such that || u || = || v || = 1 and let 
a and b ∈ ℝ.   
 

First assume P(u,a) = P(v,b).  Then P(u,a) ⊂ P(v,b).  Therefore Lemma 5.7 
implies either u = v and a = b, or u = – v and a = – b. 
 

Second assume either u = v and a = b, or u = – v and a = – b.  Then Lemma 5.6 
implies P(u,a) = P(v,b). p 

 
Lemmas 5.6 and 5.7 yield another result which we will use later. 
 
Corollary 5.8.  If P and Q are hyperplanes in 𝔼n and P ⊂ Q, then P = Q. 
 
Proof.  Suppose P and Q are hyperplanes in 𝔼n such that P ⊂ Q.   Then there 

exist u and v ∈ 𝔼n such that || u || = || v || = 1 and there exist a and b ∈ ℝ such that P = 
P(u,a) and Q = P(v,b).  Hence P(u,a) ⊂ P(v,b).  Therefore, Lemma 5.7 implies either u 
= v and a = b, or u = – v and a = – b.  Consequently, Lemma 5.6 implies P(u,a) = 
P(v,b).  Thus, P = Q. p 

 
Definition.  Let a and b be distinct points of 𝔼n (i.e., a ≠ b).  Define the line  

segment in 𝔼n joining a to b to be the set 

J(a,b)  =  { (1 – t)a + tb : t ∈ [0,1] }. 

Thus, x ∈ J(a,b) if and only if there is a t such that 0 ≤ t ≤ 1 and x = (1 – t)a + tb.  Since   
t ∈ [0,1]  ⇒  1 – t ∈ [0,1]  and  (1 – t)a + tb  =  a + t(b – a),  then it is also true that: 

x ∈ J(a,b) if and only if there exist s and t ∈ [0,1] such that s + t = 1 and x = sa + tb 

and 

x ∈ J(a,b) if and only if there is a t ∈ [0,1] such that x = a + t(b – a). 

The points a and b are called the endpoints of J(a,b), and J(a,b) is also called the line 
segment in 𝔼n with endpoints a and b.  A subset of 𝔼n is called a line segment if and 
only if it is a set of the form J(a,b) where a and b ∈ 𝔼n and a ≠ b. 
 
 Definition.  A subset S of 𝔼n is convex if a and b ∈ S and a ≠ b implies J(a,b) ⊂ 
S.  In other words, S is convex if and only if S contains J(a,b) whenever S contains a 
and b and a ≠ b. 
 
 Theorem 5.9.  The Hyperplane Separation Theorem.  Suppose P = P(u,c) is a 
hyperplane in 𝔼n where u ∈ 𝔼n, || u || = 1 and c ∈ ℝ.  Let U = { x ∈ 𝔼n : x•u > c }  and   
V = { x ∈ 𝔼n : x•u < c }.  Then U and V are non-empty disjoint convex subsets of 𝔼n 
such that 𝔼n – P = U ∪ V and if a ∈ U and b ∈ V, then J(a,b) ∩ P ≠ ∅. 
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Proof.  Suppose P = P(u,c) is a hyperplane in 𝔼n where u ∈ 𝔼n, || u || = 1 and c ∈ 
ℝ.  Let U = { x ∈ 𝔼n : x•u > c }  and  V = { x ∈ 𝔼n : x•u < c }.  The definition of P(u,c) 
implies P = { x ∈ 𝔼n : x•u = c }. 
 

Since ((c + 1)u)•u = (c + 1)|| u ||2  = c + 1 and  ((c – 1)u)•u = (c – 1)|| u ||2  =  
c – 1, then (c + 1)u ∈ U and (c – 1)u ∈ V.  Therefore, U and V are non-empty. 
 

Since for each x ∈ 𝔼n, x must satisfy exactly one of the conditions x•u = c, x•u > 
c and x•u < c, then x belongs to exactly one of the sets P, U and V.  Hence, 𝔼n =  
P ∪ U ∪ V and P ∩ U = P ∩ V = U ∩ V = ∅.  Therefore, U ∩ V = ∅ and 𝔼n – P = U ∪ V. 
 
 Next we prove that U is a convex subset of 𝔼n.  Assume a and b ∈ U and a ≠ b.  
We must prove J(a,b) ⊂ U.  To this end let x ∈ J(a,b).  We must prove x ∈ U.  Since x ∈ 
J(a,b), then there is a t ∈ [0,1] such that x = (1 – t)a + tb.  If t = 0, then x = a ∈ U, and if 
t = 1, then x = b ∈ U.  So we may assume 0 < t < 1.  Therefore t > 0 and 1 – t > 0.  
Since a and b ∈ U, then a•u > c and b•u > c.  It follows that (1 – t)a•u > (1 – t)c and 
tb•u > tc.  Hence, 

x•u  =  ((1 – t)a + tb)•u  =  (1 – t)a•u + tb•u  >  (1 – t)c + tc  =  c. 

Thus, x ∈ U.  This completes the proof that J(a,b) ⊂ U.  We conclude that U is convex. 
 
 The proof that V is a convex subset of 𝔼n is similar.  Assume a and b ∈ V and a ≠ 
b.  Let x ∈ J(a,b).  Then there is a t ∈ [0,1] such that x = (1 – t)a + tb.  We may assume 
0 < t < 1, because if t = 0, then x = a ∈ V, and if t = 1, then x = b ∈ V.  Therefore t > 0 
and 1 – t > 0.  Since a and b ∈ V, then a•u < c and b•u < c. It follows that (1 – t)a•u <  
(1 – t)c and tb•u < tc.  Hence, 

x•u  =  ((1 – t)a + tb)•u  =  (1 – t)a•u + tb•u  <  (1 – t)c + tc  =  c. 

Thus, x ∈ V.  It follows that J(a,b) ⊂ V, thereby proving V is convex. 
 
 Finally, assume a ∈ U and b ∈ V.  We must prove J(a,b) ∩ P ≠ ∅.  Since a ∈ U 

and b ∈ V, then a•u > c > b•u.  Therefore, 0 < a•u – c < a•u – b•u.  Let t  =  
a•u – c
a•u – b•u.   

Then 0 < t < 1 and t(a•u – b•u) = a•u – c.  Therefore, t(b•u – a•u) = c – a•u.  Let  
x = a + t(b – a).  Since 0 < t < 1, then x ∈ J(a,b).  We will now prove x ∈ P. 

x•u  =  (a + t(b – a))•u  =  a•u + t(b•u – a•u)  =  a•u + (c – a•u)  =  c. 

Hence, x ∈ P.  Since x ∈ J(a,b) and x ∈ P, then J(a,b) ∩ P ≠ ∅. p  
 
Definition.  If P is a hyperplane in 𝔼n and if U and V are non-empty disjoint 

convex subsets of 𝔼n such that 𝔼n – P = U ∪ V and every line segment joining a point of 
U to a point of V intersects P, then we call U and V opposite sides of P.  
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Theorem 5.9 tells us that if P = P(u,c) where u ∈ 𝔼n, || u || = 1 and c ∈ ℝ, then 
the sets U = { x ∈ 𝔼n : x•u > c }  and V = { x ∈ 𝔼n : x•u < c } are opposite sides of P.  
Our next result tells us that these two sets are the only possible opposite sides of P. 

 
Theorem 5.10.  If P is a hyperplane in 𝔼n and U and V are opposite sides of P, 

then U and V are unique in the following sense.  If U´ and V´ are also opposite sides of 
P, then either U = U´ and V = V´, or U = V´ and V = U´. 

 
Remark. The second sentence of Theorem 5.10 is equivalent to: If U´ and V´ are 

also opposite sides of P, then { U, V } = { U´, V´ }. 
 
We base our proof of Theorem 5.10 on the following lemma. 
 
Lemma 5.11.  Suppose P is a hyperplane in 𝔼n and U and V are opposite sides 

of P.  If a ∈ U, b ∈ 𝔼n, a ≠ b and J(a,b) ∩ P = ∅, then b ∈ U. 
 
Proof.  Since 𝔼n – P = U ∪ V, then b is an element of either P, U or V.  However, 

since b ∈ J(a,b) and  J(a,b) ∩ P = ∅, then b ∉ P.  Hence, either b ∈ U or b ∈ V.  If b ∈ 
V, then J(a,b) ∩ P ≠ ∅, by the definition of opposite sides.  However, J(a,b) ∩ P = ∅ by 
hypothesis.  We conclude that b ∈ U. p 

 
Proof of Theorem 5.10.  Assume that both U and V and U´ and V´ are opposite 

sides of P.  Let a ∈ U.  Then a ∈ 𝔼n – P = U´ ∪ V´.  Hence, either a ∈ U´ or a ∈ V´. 
 
Case 1: a ∈ U´. 
 
First we prove U ⊂ U´.  Let b ∈ U such that a ≠ b.  Since U is convex, then J(a,b) 

⊂ U.  Hence, J(a,b) ∩ P = ∅.  Since a ∈ U´, then Lemma 5.11 implies b ∈ U´.  This 
proves U ⊂ U´.   

 
Second we prove U´ ⊂ U by essentially the same argument with U and U´ 

switched.  Let b ∈ U´ such that a ≠ b.  Since U´ is convex, then J(a,b) ⊂ U´.  Hence, 
J(a,b) ∩ P = ∅.  Since a ∈ U, then Lemma 5.11 implies b ∈ U.  This proves U´ ⊂ U. 

 
Since U ⊂ U´ and U´ ⊂ U, then U = U´.  Consequently, 

V  =  (𝔼n – P) – U  =  (𝔼n – P) – U´  =  V´. 

We conclude that U = U´ and V = V´. 
 
 Case 2: a ∈ V´. 
 
 The proof of Case 2 is essentially the same as the proof of Case 1 with the roles 
of U´ and V´ interchanged.  The conclusion of Case 2 is: U = V´ and V = U´. 
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 Homework Problem 5.4.  Write out the proof of Case 2. 
 
 Since Cases 1 and 2 exhaust all possibilities, we conclude that either U = U´ and 
V = V´ or U = V´ and V = U´.  The proof of Theorem 5.10 is now complete. p 
 
 Remark.  If P is a hyperplane in 𝔼n and U and V are opposite sides P, then 
Theorem 5.10 justifies our calling U and V the opposite sides of P.   
 
 Recall that there is a metric characterization of lines in 𝔼n as subsets of 𝔼n that 
are isometric to ℝ.  There is a similar metric characterization of hyperplanes in 𝔼n which 
says that a subset of 𝔼n is a hyperplane if and only if it is isometric to 𝔼n – 1.  We can’t 
prove this theorem yet because the proof requires results from the next chapter. 
 
 In 𝔼2, lines and hyperplanes are the same objects.  We will now prove this.  Our 
proof requires us to develop some special techniques that apply only in 𝔼2.  These 
techniques have many applications in 2-dimensional geometry. 
 
 Definition.  For every x = (x1,x2) ∈ 𝔼2, define x⊥ ∈ 𝔼2 by the formula 

x⊥  =  (–x2,x1). 
 
                                                     x⊥ 
 
 

                           
              x 

 
      0 

 
 
 Lemma 5.12.  a)  For each x ∈ 𝔼2, || x⊥ || = || x || and x•x⊥ = 0. 
b)  For each x ∈ 𝔼2, (x⊥)⊥ = – x  and (((x⊥)⊥)⊥)⊥ = x. 
 
 In-Class Exercise 5.A.  Prove Lemma 5.12. 
 
 Lemma 5.13. a)  The function x ↦ x⊥ : 𝔼2 → 𝔼2 is linear; in other words  
(ax + by)⊥ = a(x⊥) + b(y⊥) for all x and y ∈ 𝔼2 and all a and b ∈ ℝ. 

b)  0⊥ = 0.  Also the function x ↦ x⊥ : 𝔼2 → 𝔼2 preserves dot product; in other words,  
(x⊥)•(y⊥) = x•y for all x and y ∈ 𝔼2.  Hence, (x⊥)•y = – x•(y⊥) for all x and y ∈ 𝔼2.   

c)  The function x ↦ x⊥ : 𝔼2 → 𝔼2 is a rigid motion of 𝔼2, and its inverse is the function  
x ↦ ((x⊥)⊥)⊥ : 𝔼2 → 𝔼2. 
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Homework Problem 5.5.  Prove Lemma 5.13. 
 
 Theorem 5.14.  If u ∈ 𝔼2 and || u || = 1, then for every x ∈ 𝔼2, 

x  =  (x•u)u + (x•u⊥)u⊥. 
 
 Proof.  Let x = (x1,x2) and let u = (u1,u2).  Then u⊥ = (–u2,u1) and u1

2 + u2
2  =   

|| u ||2  =  1.  Hence, 
(x•u)u + (x•u⊥)u⊥  =  ((x1,x2)•(u1,u2))(u1,u2) + ((x1,x2)•(–u2,u1))(–u2,u1) 

=  (x1u1 + x2u2)(u1,u2) + (–x1u2 + x2u1)(–u2,u1)  =   

(x1u1
2 + x2u1u2, x1u1u2 + x2u2

2) + (x1u2
2 – x2u1u2, –x1u1u2 + x2u1

2)  = 

(x1u1
2 + x1u2

2 + x2u1u2 – x2u1u2, x1u1u2 – x1u1u2 + x2u2
2 + x2u1

2)  = 

(x1(u1
2 + u2

2) + 0, 0 + x2(u2
2 + u1

2))  =  (x1•1, x2•1)  =  (x1, x2)  = x. p 
 
 In-Class Exercise 5.B.  Let u = ( 3/5, 4/5 ).  Observe that || u || = 1.  Fill in the  
following blanks with real numbers. 

( 2, 3 )  =  ______  u + ______ u⊥. 
 
 We are now ready to prove that in 𝔼2, lines and hyperplanes coincide. 
 
 Theorem 5.15.  In 𝔼2, every line is a hyperplane and every hyperplane is a line.   
More precisely:  

a)  if a and b are distinct points in 𝔼2, then L(a,b) = P(u⊥,c) where u = 
1

 b – a 
(b – a)   

and  c = a•u⊥; and  

b)  if u ∈ 𝔼2 such that || u || = 1 and a ∈ ℝ, then P(u,a) = L(au,au + u⊥).   
 
 Proof of a).  Let a and b be distinct points in 𝔼2.  We will prove that the line 

L(a,b) is a hyperplane.  Specifically, let u = 
1

 b – a 
(b – a)  and  c = a•u⊥.  We will 

prove L(a,b) = P(u⊥,c). 
 
 First we will prove L(a,b) ⊂ P(u⊥,c).  Let x ∈ L(a,b).  Then there is a t ∈ ℝ such 
that x = a + t(b – a).  Observe that b – a = || b – a || u.  Hence, x = a + (t || b – a ||) u.   
Therefore,  

x•u⊥  =  a•u⊥ + (t || b – a ||) u•u⊥  =  c + (t || b – a ||) 0  =  c. 

Thus, x ∈ P(u⊥,c).  This proves L(a,b) ⊂ P(u⊥,c).   
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 Second we prove P(u⊥,c) ⊂ L(a,b).  Let x ∈ P(u⊥,c).  Therefore, x•u⊥ =  c.  
Hence, x•u⊥ =  a•u⊥.  Theorem 5.11 allows us to express x in the form 
x = (x•u)u + (x•u⊥)u⊥.  Therefore, x  =  (x•u)u + (a•u⊥)u⊥.  Also Theorem 5.11 allows 
us to express a in the form a = (a•u)u + (a•u⊥)u⊥.  Thus, (a•u⊥)u⊥  =  a – (a•u)u.  We 
substitute this expression for (a•u⊥)u⊥ into the preceding equation for x to obtain 
x  =  (x•u)u + a – (a•u)u  =  a + (x•u – a•u)u  =  a + ((x – a)•u)u.   

Since u = 
1

 b – a 
(b – a), then  

x  =  a + ((x – a)•u)
1

 b – a 
(b – a)  =  a + 

(x – a)•u
 b – a 

(b – a). 

Since 
(x – a)•u

 b – a 
 ∈ ℝ, then it follows that x ∈ L(a,b).  This proves P(u⊥,c) ⊂ L(a,b).   

 Since L(a,b) ⊂ P(u⊥,c) and P(u⊥,c) ⊂ L(a,b), then L(a,b) = P(u⊥,c). p 
 
 Proof of b).  Assume u ∈ 𝔼2 such that || u || = 1 and a ∈ ℝ.  We will prove that 
the hyperplane P(u,a) is a line.  Specifically, we will prove that P(u,a) = L(au,au + u⊥). 
 
 First we will prove P(u,a) ⊂ L(au,au + u⊥).  Let x ∈ P(u,a).  Then x•u =  a.   
Theorem 5.11 allows us to express x in the form x = (x•u)u + (x•u⊥)u⊥.  Therefore, 

x  =  au + (x•u⊥)u⊥  =  au + (x•u⊥)((au + u⊥) – au). 

It follows that x ∈ L(au,au + u⊥).  This proves P(u,a) ⊂ L(au,au + u⊥).   
 
 Second we will prove L(au,au + u⊥) ⊂ P(u,a).  Let x ∈ L(au,au + u⊥).  Then there  
is a t ∈ ℝ such that x = au + t((au + u⊥) – au).  Hence, x = au + tu⊥.  Therefore,  

x•u  =  au•u + tu⊥•u  =  a || u ||2 + t(0)  =  a(1)  =  a. 

Consequently, x ∈ P(u,a).  This proves L(au,au + u⊥) ⊂ P(u,a).   
 
 Since P(u,a) ⊂ L(au,au + u⊥) and L(au,au + u⊥) ⊂ P(u,a), then P(u,a) =  
L(au,au + u⊥). p 
 
 One consequence of Theorem 5.15 is that in 𝔼2, hyperplanes may be replaced by 
lines in the statements of Theorems 5.9 and 5.10.  In this way we obtain the following 
two results. 
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 Corollary 5.16.  If L is a line in 𝔼2, then the complement 𝔼2 – L is the union of two 
non-empty disjoint convex subsets U and V of 𝔼2 and every line segment joining a point 
of U to a point of V intersects L. p 
 
 Definition. If L is a line in 𝔼2 and if U and V are non-empty disjoint convex 
subsets of 𝔼2 such that 𝔼2 – L = U ∪ V and every line segment joining a point of U to a 
point of V intersects L, then we call U and V opposite sides of L. 
 
 Corollary 5.17.  If L is a line in 𝔼2 and U and V are opposite sides of L, then U 
and V are unique in the following sense.  If U´ and V´ are also opposite sides of L, then 
either U = U´ and V = V´, or U = V´ and V = U´. 
 
 Homework Problem 5.6.  In this problem we ask whether a converse to 
Corollary 5.16 is true.  Before we formulate this converse, we need a definition.  If x ∈ 
𝔼n and r > 0, then the set N(x,r) = { y ∈ 𝔼n : d(x,y) < r } is called an open n-ball. 
 

Conjecture.  Suppose S, U and V are subsets of 𝔼2 that satisfy the following four  
conditions. 

a)  U and V are non-empty disjoint convex subsets of 𝔼n, 

b)  𝔼2 – S = U ∪ V, 

c)  every line segment joining a point of U to a point of V intersects S, and 

d)  S contains no open 2-balls. 

Then S is a line. 
 

Either prove this conjecture or find a counterexample to it.   
 

We remark that if hypothesis d) is omitted, then there are simple 
counterexamples to the resulting conjecture, even if we strengthen hypothesis c) to the 
statement: every line segment joining a point of U to a point of V intersects S in a one-
point set.  Try to find these counterexamples. 
 

If you succeed in deciding whether or not this conjecture is true, then consider 
the truth of the extension of this conjecture to Euclidean n-space.  In the conjecture, 
change 𝔼2 to 𝔼n, replace hypothesis d) by the statement “S contains no open n-balls”, 
and replace the conclusion by the statement “Then S is a hyperplane”.  Is this extension 
of the conjecture to Euclidean n-space true? 
 
 The last topic of this chapter is a generalization of Theorem 1.5.  That theorem 
said that if two points x and y in the real line ℝ are distinct, then every other point of ℝ is 
uniquely determined by its distances from x and y.  We now establish an analogue of 
Theorem 1.5 that works in dimensions greater than 1.  For n ≥ 2, the distinctness of a 
set S of points in 𝔼n is not a strong enough condition to insure that every other point 
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of 𝔼n is uniquely determined by its distances from the points in S.  In Theorem 5.20 we 
will state a condition on a set S of points in 𝔼n which insures that any other point of 𝔼n is 
uniquely determined by its distances from the points of S.  An essential step in proving 
Theorem 1.5 was identifying the set of points that are equidistant from two given distinct 
points.  Our proof of Theorem 5.20 will require us to perform a similar identification of 
the set of all points equidistant from two given distinct points in 𝔼n.  Theorem 1.5 played 
a crucial role in characterizing the isometries of the real line.  In a similar fashion 
Theorem 5.20 will help us characterize the isometries of 𝔼n in the next chapter. 
 
 Definition.  If x and y are distinct points of 𝔼n, let E(x,y) denote the set of all  
points that are equidistant from x and y.  In other words,  

E(x,y)  =  { z ∈ 𝔼n : d(x,z) = d(y,z) }. 
 
 We now prove that E(x,y) is a hyperplane. 
 
 Theorem 5.18.  If x and y are distinct points of 𝔼n, then E(x,y) = P(u,m•u) where 

u  =  
1

 y – x 
(y – x)  and  m  =  (1/2)( x + y ). 

 
 
                                                               x     

 
 
 
 
                                                                               
                          m 
                                      E(x,y) 
 
 
 

          y 
              

 
 
 Proof.  The proof consists of the observation that each statement in the following  
sequence is equivalent to the statements that precede and follow it. 

• z  ∈  E(x,y) 

• d(x,z)  =  d(y,z) 

• || x – z ||  =  || y – z || 

• || x – z ||2  =  || y – z ||2 
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• || x – z ||2 – || y – z ||2  =  0. 

• ( (x – z) + (y – z) )•( (x – z) – (y – z) )  =  0.  (See Lemma 4.4.b.) 

• ( (x + y) – 2z) )•( x – y )  =  0. 

• (1/2)
1

 y – x 
( ( (x + y) – 2z )•(x – y) )  =  (1/2)

1
 y – x 

(0). 

• ( (1/2)(x + y) – z )•( 1
 y – x 

(x – y ))  =  0. 

• (m – z)•u  =  0. 

• m•u  =  z•u. 

• z  ∈  P(u,m•u). p 
 

Theorem 5.18 says that E(x,y) is the hyperplane that passes through the 
midpoint m between x and y and is perpendicular to the line L(x,y).  Hence, we 
introduce the following terminology. 

 
Definition.  If x and y are distinct points of 𝔼n, then we call E(x,y) the 

perpendicular bisector of the line segment J(x,y). 
 
 Definition.  Let x1, x2, … , xk be points in 𝔼n.  The points x1, x2, … , xk are 
coplanar if there is a hyperplane P that contains x1, x2, … , xk.  If there is no hyperplane 
that contains x1, x2, … , xk, we say that x1, x2, … , xk are non-coplanar. 
 

Notation.  For n ≥ 1, define the elements e1, e2, … , en of 𝔼n by 

e1  =  ( 1, 0, … , 0, 0 ),   e2  =  ( 0, 1, … , 0, 0 ),   …   ,   en  =  ( 0, 0, … , 0, 1 ). 
 

 Lemma 5.19.  The n + 1 points 0, e1, e2, … , en in 𝔼n are non-coplanar. 
 
 Homework Problem 5.7.  Prove Lemma 5.19. 
 
 Hint.  Assume 0, e1, e2, … , en are coplanar and lie in a hyperplane P(u,a).  
Prove a = 0 by examining 0•u.  Then prove u = 0 by examining ei•u for 1 ≤ i ≤ n.  Why 
is this a contradiction? 
 
 Theorem 5.20.  Let x1, x2, … , xk be non-coplanar points in 𝔼n.  Then every point 
of 𝔼n is uniquely determined by its distances from x1, x2, … , xk.  In other words, each 
point y of 𝔼n is uniquely determined by the numbers d(x1,y), d(x2,y), … , d(xk,y). 
 
 Proof.  Assume y and z ∈ 𝔼n such that d(x1,y) = d(x1,z), d(x2,y) = d(x2,z), … , 
d(xk,y) = d(xk,z).  We must prove y = z. 
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 Assume y ≠ z.  Then x1, x2, … , xk are each elements of E(y,z).  Theorem 5.18 
implies E(y,z) is a hyperplane.  Hence, x1, x2, … , xk are all contained in a hyperplane.  
Therefore, x1, x2, … , xk are coplanar.  This contradicts our hypothese that x1, x2, … , xk 
are non-coplanar.  We conclude that y = z. p 
 
 Definition.  Let x1, x2, … , xk be points in 𝔼n.  The points x1, x2, … , xk are 
collinear if there is a line L that contains x1, x2, … , xk.  If there is no line that contains 
x1, x2, … , xk, we say that x1, x2, … , xk are non-collinear. 
 
 Since lines are hyperplanes and hyperplanes are lines in 𝔼2, then coplanar and 
collinear are equivalent in 𝔼2.  Hence, in 𝔼2, Theorem 5.20 takes the following form. 
 
 Corollary 5.21.  Let x1, x2, … , xk be non-collinear points in 𝔼2.  Then every point 
of 𝔼2 is uniquely determined by its distances from x1, x2, … , xk.  In other words, each 
point y of 𝔼2 is uniquely determined by the numbers d(x1,y), d(x2,y), … , d(xk,y). p 
 
 In 𝔼2, the three points  0,  e1 = ( 1, 0 )  and  e2 = ( 0, 1 )  are non-collinear, but 
any two distinct points x and y are collinear because they lie in the line L(x,y).  In 
general, in 𝔼n, the n + 1 points 0, e1, e2, … , en are non-coplanar but any n points are 
coplanar.  We won’t prove this now because we haven’t discussed the techniques 
needed to prove it.  
 
 Homework Problem 5.8.  Use your knowledge about vectors in 𝔼3 to prove that 
any three points in 𝔼3 are coplanar.   
 
 Hint.  Recall that for x and y ∈ 𝔼3, the cross product  x × y  is an element of 𝔼3  
with the following properties: 

• x•( x × y )  =  0  and  y•( x × y )  =  0, and 

• x × y  =  0  if and only if  one of x and y is a scalar multiple of the other. 


