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3.  Congruence and Symmetry 
 
 It is possible for metric spaces which are not isometric to have subsets that are 
isometric, and we shall have occasion to consider such possibilities.  For this reason, 
we formulate the following definition. 
 
 Definition.  Let X and Y be metric spaces with metrics dX and dY, respectively; 
and let S ⊂ X and T ⊂ Y.  We call a function f : S → T is an isometry from S to T if f is an 
isometry from S with the metric 

€ 

dX
S  to T with the metric 

€ 

dY
T, where 

€ 

dX
S  is the restriction of 

the metric dX to S and

€ 

dY
T is the restriction of the metric dY to T.  Thus, f : S → T is an  

isometry from S to T if and only if 

• f : S → T is distance preserving: dY(f(x),f(x´)) = dX(x,x´)) for all x, x´ ∈ S, and  

• f : S → T is surjective: f(S) = T.   

If there is an isometry from S to T, then we say that S is isometric to T. 
 
 Two subsets of a metric space may be isometric, or they may satisfy a potentially 
stronger relationship known as congruence which we now define. 
 

Definition.  If S and T are subsets of a metric space X and if there is a rigid 
motion f : X → X of X such that f(S) = T, then we say that S it congruent to T and we 
write S ≅ T. 
 
 Theorem 3.1.  Let X be a metric space.  Then: 

a)  For every subset S of X, S ≅ S. 

b)  For all subsets S and T of X, if S ≅ T, then T ≅ S. 

c)  For all subsets R, S and T of X, if R ≅ S and S ≅ T, then R ≅ T. 
 
 Remark.  Theorem 3.1 says that congruence is an equivalence relation on the 
collection of all subsets of a metric space X. 
 
 Homework Problem 3.1.  Prove Theorem 3.1. 
 
 In-Class Exercise 3.A.  Which of the following pairs of subsets of ℝ are 
congruent?  Justify your answers.  (One way to establish a congruence between two  
subsets S and T of ℝ is to exhibit a rigid motion of ℝ that moves S to T.)  

a)  { 3, 7, 12 } and { –3, 1, 6 }   b)  { 5, 6, 10 } and { 8, 12, 13 } 

c)  { 4, 9, 17 } and { –12, –5, 1 }   d)  { 1, 3, 4, 7 } and { 8, 9, 12, 14 } 

e)  { 10n, 10n + 1, 10n + 3 : n ∈ ℤ }  =  { … –10, –9, –7, 0, 1, 3, 10, 11, 13, … } and 
{ 10n, 10n + 1, 10n + 8 : n ∈ ℤ }  =  { … –10, –9, –2, 0, 1, 8, 10, 11, 18, … }. 
(Recall that ℤ = { –2, –1, 0, 1, 2, … } is the set of all integers.) 



 28 

 Remark.  Let S and T be subsets of a metric space X.  If S is congruent to T, 
then there is a rigid motion f : X → X such that f(S) = T.  In this situation, if we form the 
restriction f | S, then f | S : S → T is an isometry from S to T.  (In other words,  
f | S : S → T is a distance preserving surjective function.)  Hence, S is isometric to T.  
We have just proved that if S is congruent to T, then S is isometric to T.  We now raise 
the question about whether the converse of this statement is true.  In other words, is it 
true that if S is isometric to T, then must S be congruent to T?  If S is isometric to T, then 
there is a distance preserving surjective function g : S → T.  However, g is not a rigid 
motion of X because its domain and range are S and T, not X.  If it were the case that g 
extends to a rigid motion of X, then it would follow that S is congruent to T, but we don’t 
know that such an extension of g exists.  In general, isometries between subsets of a 
metric space X may not extend to rigid motions of X.  Hence, in general, isometric 
subsets may not be congruent.   
 
 A metric space X may have the property that any two isometric subsets of X are 
congruent.  In this case, we say that in X, isometry implies congruence.  However, 
another metric space Y may contain two isometric subsets that are not congruent, in 
which case we would say that in Y, isometry fails to imply congruence.  We will consider 
examples of both types of behavior. 
 
 We call attention to the fact that we have already established isometry-implies-
congruence theorems for subsets of ℝ and Cr that have two elements.  We are referring 
here to Theorems 2.5 and 2.19.  Indeed, Theorem 2.5 says that if x1, x2, y1 and y2 ∈ ℝ 
and d(x1,x2) = d(y1,y2), then there is a rigid motion f : ℝ → ℝ such that f(x1) = y1 and f(x2) 
= y2.  Observe that the condition d(x1,x2) = d(y1,y2) is equivalent to saying that the 
function g : { x1, x2 } → { y1, y2 } defined by g(x1) = y1 and g(x2) = y2 is an isometry from   
{ x1, x2 } to { y1, y2 }, and the existence of the rigid motion f : ℝ → ℝ such that f(x1) = y1 
and f(x2) = y2 implies that { x1, x2 } is congruent to { y1, y2 }.  So Theorem 2.5 implies that 
if the two-element subsets { x1, x2 } and { y1, y2 } of ℝ are isometric, then they are 
congruent.  
 

In a similar vein, we observe that in each part of In-Class Exercise 3.A, if the two 
subsets of ℝ are isometric, then they are congruent.  Indeed, isometry implies 
congruence for all subsets of ℝ.  We will a formulate theorem to this effect below. 
 
 You may already be familiar with an isometry implies congruence principle in 
plane geometry, namely the Side-Side-Side Congruence Principle for triangles in the 
plane equipped with the Euclidean metric.  The Side-Side-Side Principle says that if the 
lengths of the three sides of one triangle Δxyz equal the lengths of the three sides of a 
second triangle Δx´y´z´, then the two triangles are congruent.  Since the length of a side  
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of a triangle equals the distance between the two endpoints of that side, then saying 
that the lengths of the sides of Δxyz equal the lengths of the sides of Δx´y´z´ is 
equivalent to saying that there is an isometry from the set { x, y, z } of vertices of the 
first triangle and the set { x´, y´, z´ } of vertices of the second triangle.  Saying that Δxyz 
is congruent to Δx´y´z´ is equivalent to saying that { x, y, z } is congruent to { x´, y´, z´ }, 
because a planar rigid motion moves Δxyz to Δx´y´z´ if and only if it moves { x, y, z } to  
{ x´, y´, z´ }.  Thus, the Side-Side-Side Principle can be reinterpreted to say that if the 
two three-point sets { x, y, z } and { x´, y´, z´ } are isometric, then they are congruent.  In 
other words, the Side-Side-Side Congruence Principle is an isometry implies 
congruence principle for three-point subsets of the Euclidean plane. 
 
 In-Class Exercise 3.B.  Consider a set X with the discrete metric.  Are isometric 
subsets of X necessarily congruent? 
 
 Homework Problem 3.2.  The goal of this exercise is to illustrate that in ℝ2 with 
the taxicab metric, there are isometric subsets that are not congruent.  Specifically, in ℝ2 
with the taxicab metric, consider the two subsets S = { (0,0), (1,0) } and T =  
{ (0,0), (1/2,1/2) }.  Prove that S and T are isometric but not congruent. 
 
 Hint.  First prove the following lemma.  If X is a metric space, x and y are points 
of X such that there is a unique midpoint between x and y, and f : X → X is a rigid 
motion, then there is a unique midpoint between f(x) and f(y).  Then use what you 
learned from Homework Problem 1.6  about the uniqueness of midpoints in ℝ2 with the 
taxicab metric. 
  
 As we stated above, isometric subsets are congruent in ℝ.  We will now state this 
assertion as a theorem.  It is also the case that in ℝ2 with the Euclidean metric (as well 
as in all higher dimensional Euclidean spaces), isometry implies congruence.  A formally 
stated theorem to this effect appears in a later lesson. 
 
 Theorem 3.2.  Any two isometric subsets of ℝ are congruent. 
 
 Proof.  Suppose that S and T are isometric subsets of ℝ and g : S → T is an 
isometry.  We break the proof into three cases. 
 
 Case 1: S has one point.  We may write S = { a }.  Let b = g(a).  Then T = g(S) = 
{ g(a) } = { b }.  The translation Tb – a is a rigid motion of ℝ and Tb – a(a) = a + ( b – a ) = b.  
Therefore, Tb – a(S) = { Tb – a(a) } = { b } = T.  Thus, S is congruent to T.  (Alternatively, if 
c = (1/2)( a + b ), then Zc is a rigid motion of ℝ such that Zc(a) = b and, hence, Zc(S) = T.) 
 
 Case 2: S has two point.  We may write S = { a1, a2 } where a1 ≠ a2.  Let b1 = 
g(a1) and b2 = g(a2).  Then T = g(S) = { g(a1), g(a2) } = { b1, b2 }.  Since g is an isometry, 
then d(a1,a2) = d(g(a1),g(a2)) = d(b1,b2).  Therefore, Theorem 2.5 implies there is a rigid 
motion f : ℝ → ℝ such that f(a1) = b1 and f(a2) = b2.  Therefore, f(S) = { f(a1), f(a2) } = 
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{ b1, b2 } = T.  Therefore S is congruent to T. 
 
 Case 3: S has more than two points.  We may choose distinct points a1 and a2 
∈ S.  Let b1 = g(a1) and b2 = g(a2).  Then b1 and b2 ∈ g(S) = T.  Since g is an isometry, 
then d(a1,a2) = d(g(a1),g(a2)) = d(b1,b2).  Therefore, Theorem 2.5 implies there is a rigid 
motion f : ℝ → ℝ such that f(a1) = b1 and f(a2) = b2.   
 

We will now prove that f(x) = g(x) for every x ∈ S.  First observe that since g is 
distance preserving, it is injective.  Therefore, since a1 ≠ a2, then g(a1) ≠ g(a2).  Hence,  
b1 ≠ b2.  Let x ∈ S.  Since both g and f are distance preserving, then 

d(b1,g(x)) = d(g(a1),g(x)) = d(a1,x) = d(f(a1),f(x)) = d(b1,f(x)) 

and 

d(b2,g(x)) = d(g(a2),g(x)) = d(a2,x) = d(f(a2),f(x)) = d(b2,f(x)). 

Thus, b1 and b2 are distinct points of ℝ and g(x) and f(x) are equidistant from b1 and 
from b2.  In this situation, Theorem 1.5 implies f(x) = g(x).   
 
 Since f(x) = g(x) for every x ∈ S, then f(S) = g(S) = T.  Therefore, S is congruent 
to T. 
 
 Since Cases 1, 2 and 3 exhaust all possibilities, the proof is complete. ! 
 
 Definition.  If S = { x1, x2, … , xn } is a finite subset of ℝ with n distinct elements  
(so xi ≠ xj for i ≠ j), then define the mean or center of gravity of S to be  

µ(S) = ( x1 + x2 + … + xn )/n. 
 
 Theorem 3.3.  If S is a finite subset of ℝ and f : ℝ → ℝ is a rigid motion, then 
f(µ(S)) = µ(f(S)).  
 
 Homework Problem 3.3.  Prove Theorem 3.3. 
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 In-Class Exercise 3.C.  The eight figures on this and the next page exhibit 
symmetry.  What makes each figure symmetric?  In what way is the symmetry of one 
figure the same as or different from that of the other figures? 
 
a) 

 

                             b)         

 
 
c) 

 

       d) 
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e) 

 
 
(Imagine that this figure extends to the right and left forever.) 
 
 
 
 
f) 

 

              g) 

 
 

             (Imagine that this figure fills its  
              plane, extending right, left, up  

                  and down forever.) 
 
 
 
 
h) 
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 Mathematicians associate the symmetry of a subset S of a metric space X with 
the rigid motions of X that move S onto itself.  For instance, if a reflection moves S to 
itself, then S is said to have reflectional or mirror symmetry.  If a rotation moves S to 
itself, then S is said to have rotational symmetry.  The collection of all rigid motions of X 
that move S onto itself captures all the symmetry of S.  This idea motivates the following 
definition. 
 
 Definition.  Let X be a metric space.  Let S be a subset of X.  A rigid motion        
f : X → X such that f(S) = S is called a symmetry of S. The set of all symmetries of S is 
called the symmetry group of S and is denoted Sym(S).  Observe that Sym(X) is the set 
of all rigid motions of X. 
 
 Theorem 3.4.  Let X be a metric space and let S be a subset of X.  Then: 

a)  idX ∈ Sym(S). 

b)  If f, g ∈ Sym(S), then gºf ∈ Sym(S). 

c)  If f ∈ Sym(S), then f–1 ∈ Sym(S). 
 
 Homework Problem 3.4.  Prove Theorem 3.4. 
 
 Remark.  Theorem 3.4 says that the symmetry group of a set S is a group in the 
mathematical sense.  In other words, Sym(S) is a set that is equipped with an operation 
– in this case composition of functions.  The operation is associative: hº(gºf) = (hºg)ºf.  
The operation has an identity element – in this case idX.  Finally each element has an 
inverse. 
 
 In-Class Exercise 3.D.  a)  Let x ∈ ℝ. List all the elements of Sym( { x } ).  

b)  Let x and y be distinct points of ℝ. List all the elements of Sym( { x, y } ). 

c)  List all the elements of Sym( { 1, 2, 3 } ). 

d)  List all the elements of Sym( { 1, 2, 4 } ). 

e)  Recall that ℤ = { –2, –1, 0, 1, 2, … } is the set of all integers.  Regard ℤ as a subset  
of ℝ and describe all the elements of Sym(ℤ). 

f)  Let T be an equilateral triangle in the plane ℝ2 equipped with the Euclidean metric.  
List all the elements of Sym(T). 
 
 
                                                         T 
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 Homework Problem 3.5.  Let S be a bounded subset of ℝ.  (Recall that S is  
bounded if diam(S) < ∞.)  Consider the symmetry group Sym(S).   

a)  For different choices of S, how many elements can Sym(S) have? 

b)  For different choices of S, what kinds of elements can Sym(S) have?  Can Sym(S)  
contain reflections?  Can Sym(S) contain translations that are not the identity? 

c)  List all the different possible types of groups that can occur as the symmetry groups 
of various bounded sets S.  (This question is somewhat vague because we haven’t 
defined what different types of groups are.  As a hint about what this might mean, we 
remark that two groups with different numbers of elements are of different types.  Also if  
one group contains reflections and another does not, then these groups are of different  
types.)  Prove that your list is correct. 

 
 Homework Problem 3.6.  Let S be an unbounded subset of ℝ (i.e., diam(S) =  
∞).  Consider the symmetry group Sym(S). 

a)  Is there an unbounded set S for which Sym(S) is a finite group?  If so, how many  
different elements can Sym(S) contain? 

b)  If for some unbounded set S, Sym(S) contains a non-identity translation, must 
Sym(S) be infinite? 

c)  If for some unbounded set S, Sym(S) contains two different reflections, must Sym(S)  
contain a non-identity translation? 

d)  If for some unbounded set S, Sym(S) contains a non-identity translation and a 
reflection, then must Sym(S) contain more than one reflection?  Must Sym(S) contain  
infinitely many different reflections? 

e)  Is there an unbounded set S for which Sym(S) contains non-identity translations but  
no reflections? 

f)  Is there an unbounded set S such that Sym(S) contains a sequence of translations  
Ta(n), n ≥ 1, for which each a(n) > 0 and the sequence { a(n) } converges to 0? 

g)  List all the different possible types of groups that can occur as the symmetry groups 
of various unbounded sets S.  (The parenthetical remark in Homework Problem 3.5.c  
applies here.)  Prove that your list is correct. 
 
 Definition.  Let S be a subset of a metric space X with metric d.  Define the  
distance spectrum of S to be the set  

D-Spec(S)  =  { d(x,y) : x and y ∈ S and x ≠ y }. 

Observe that D-Spec(S) is a finite or infinite subset of (0,∞).  For example,  
D-Spec( { 1, 3, 8 } )  =  { 2, 5, 7 }. 
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 Homework Problem 3.7.  Let S and T be subsets of ℝ.  Here we investigate  
the following conjecture.  

If D-Spec(S) = D-Spec(T), then S must be congruent to T. 

Recall that according to Theorem 3.2, isometric subsets of ℝ are congruent.  On the 
other hand, congruent subsets of ℝ are clearly isometric.  (Why?)  Thus, the preceding  
conjecture is equivalent to the following conjecture.  

If D-Spec(S) = D-Spec(T), then S must be isometric to T? 

We break this conjecture into two parts. 

i)  If D-Spec(S) = D-Spec(T), then S and T  must have the same number of elements. 

ii)  If D-Spec(S) = D-Spec(T) and S and T have the same number of elements, then S  
must be isometric to T. 

Approach conjectures i) and ii) by solving the following problems. 

a)  Prove that conjectures i) and ii) are true if S has two elements. 

b)  Is conjecture i) true if S has 3 elements?  Is conjecture ii) true if S has 3 elements?   
Prove your answers. 

c)  Is conjecture i) true if S has 4 elements?  Is conjecture ii) true if S has 4 elements?   
Prove your answers. 

d)  Let 4 < n < ∞. Is conjecture i) true if S has n elements?  Is conjecture ii) true if S has  
n elements?  Prove your answers. 

e)  Is conjecture i) true if S has infinitely many elements?  Is conjecture ii) true if S has 
infinitely many elements?  Prove your answers. 
 
 Next we formulate a more delicate version of the distance spectrum. 
 
 Definition.  Let S be a finite subset of a metric space X with metric d.  For r > 0, 
define the distance multiplicity of r to be number of unordered pairs { x, y } such that x 
and y ∈ S and d(x,y) = r, and denote this number by µS(r).  Define the distance  
census of S to be the set  

D-Census(S)  =  { ( d(x,y), µS(d(x,y) ) : x and y ∈ S and x ≠ y }. 

Hence, D-Census(S) is a finite subset of (0,∞) × { 1, 2, 3, … }.  For example,  
D-Census( { 1, 2, 3, 5 } )  =  { (1,2), (2,2), (3,1), (4,1) }. 
 

Homework Problem 3.8. Is the following conjecture true or false? 

If S and T are finite subsets of ℝ and D-Census(S) = D-Census(T), then S is congruent 
to T. 
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