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2.  Isometries and Rigid Motions of the Real Line 
 
 Suppose two metric spaces have different names but are essentially the same 
geometrically.  Then we need a way of relating the two spaces.  Similarly, suppose two 
subsets of a metric space are located in different places but are geometrically identical; 
in other words, suppose the two subsets are congruent.  Again in this situation we need 
a concept that allows us to relate the two subsets.  The notion of an isometry is exactly 
the concept needed here.  
 
 Definition.  Let X and Y be metric spaces with metrics dX and dY, respectively.  
Suppose f : X → Y is a function.  We say that f : X → Y is distance preserving if for all x 
and x´ ∈ X, dY(f(x),f(x´)) = dX(x,x´)).  We call f : X → Y an isometry from X to Y if  
f : X → Y is distance preserving and surjective.  If there is an isometry from X to Y, then 
we say that X is isometric to Y. 
 
 Theorem 2.1.  Let X, Y and Z be metric spaces.  Then: 

a)  The identity function idX is an isometry from X to itself. 

b)  Every distance preserving function f : X → Y is injective.  Hence, every isometry  
f : X → Y is a bijection.  Therefore (by Theorem 0.5), every isometry f : X → Y has an  
inverse f–1 : Y → X. 

c)  If f : X → Y and g : Y → Z are distance preserving functions, then so is their 
composition gºf : X → Z.  Hence, if f : X → Y and g : Y → Z are isometries, then so is  
gºf : X → Z (with the help of Theorem 0.4.b). 

d)  If f : X → Y is an isometry, then so is its inverse f–1 : Y → X. 
 
 In-Class Exercise 2.A.  Prove parts a), b) and c) of Theorem 2.1. 
 
 Proof of part d).  Let dX and dY be the given metrics on X and Y, respectively.  
Let f : X → Y be an isometry.  Then by part b), f : X → Y is a bijection and has an 
inverse f–1 : Y → X.  We must prove f–1 : Y → X is an isometry.  Since f–1

ºf  =  idX and  
idX : X → X is surjective, then f–1 : Y → X is surjective (by Theorem 0.4.d).  It remains to 
prove that f–1 : Y → X is distance preserving.  To this end, let y and y´ ∈ Y.  We must 
show that dX(f–1(y),f–1(y´)) = dY(y,y´).  Let x = f–1(y) and x´ = f–1(y´).  Then f(x) = f(f–1(y)) = 
fºf

–1(y)) = idY(y) = y and f(x´) = f(f–1(y´)) = fºf
–1(y´)) = idY(y´) = y´.  Since f : X → Y is an  

isometry, then  

dX(x,x´) = dY(f(x),f(x´)). 

Therefore, after replacing x, x´, f(x) and f(x´) by f–1(y), f–1(y´), y and y´ for x, x´, f(x), 
respectively, we obtain  

dX(f–1(y),f–1(y´)) = dY(y,y´). 
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This proves f–1 is a distance preserving surjection and, hence, an isometry. ! 
 
 In-Class Exercise 2.B.  Let X and Y be sets with the discrete metric.  Can you 
think of a purely set-theoretic (non-metric) relationship between X and Y that would 
make X isometric to Y? 
 
 Definition.  Let X be a metric space.  If f : X → X is an isometry from a metric 
space X to itself, then f is also called a rigid motion of X.  Thus, f : X → X is a rigid 
motion if and only if f is distance preserving and surjective. 
 
 In-Class Exercise 2.C.  Let X be a metric space.  Must a distance preserving 
function from X to itself be surjective? 
 
 In-Class Exercise 2.D. a)  Give examples of different types of rigid motions of ℝ. 
(As mentioned in Lesson 1, we assume that ℝ is equipped with the standard metric, 
unless an alternative is specified.) 

b)  Give examples of different types of rigid motions of ℝ2 with the Euclidean metric. 
 
 We now begin an exploration of the rigid motions of ℝ.  Our goal is reveal what 
all the different types of rigid motions of ℝ are, and to uncover simple relationships 
between different rigid motions of ℝ.   We begin by introducing notation for two types of 
rigid motions of ℝ. 
 
 Definition.  Let a ∈ ℝ..  Define the function Ta : ℝ → ℝ by  

Ta(x)  =  x + a 

for x ∈ ℝ.  We call Ta : ℝ → ℝ a translation of ℝ.  Observe that T0 = idℝ, and that if  
a ≠ 0, then Ta(x) ≠ x for every x ∈ ℝ.   
 
 Definition.  Let a ∈ ℝ.  Define the function Za : ℝ → ℝ by  

Za(x)  =  x – 2(x – a)  =  2a – x 

for x ∈ ℝ.  We call Za : ℝ → ℝ a reflection of ℝ.  Observe that Za(a) = a and that if x ∈ ℝ 
and x ≠ a, then Za(x) ≠ x. 
 
 Definition.  Suppose f : X → X is a function.  An element x ∈ X is a fixed point of 
f if f(x) = x.   
 

Observe that every point of ℝ is a fixed point of T0, but if a ∈ ℝ and a ≠ 0, then Ta 
has no fixed points.  Also observe that for every a ∈ ℝ, a is the only fixed point of Za. 
 
 Theorem 2.2.  For every a ∈ ℝ, the translation Ta : ℝ → ℝ is a rigid motion of ℝ 
such that (Ta)–1 = T–a. 
  



 23 

 Proof.  Let a ∈ ℝ.  Then for each x ∈ ℝ, T–aºTa(x) = ( x + a ) + (–a) = x = idℝ(x) 
and  TaºT–a(x) = ( x + (–a) ) + a = x = idℝ(x).  Hence, T–aºTa = TaºT–a = idℝ.  Thus, T–a is  
the inverse of Ta; i.e., (Ta)–1 = T–a.  Since TaºT–a = idℝ and idℝ is surjective, then Ta is 
surjective (Theorem 0.4 d).  It remains to prove that Ta : ℝ → ℝ is distance preserving.   
To this end, let x, y ∈ ℝ.  Then       

d(Ta(x),Ta(y))  =  | Ta(x) – Ta(y) |  =  | ( x + a ) – ( y + a ) |  =  | x – y |  =  d(x,y). 

Therefore, Ta is a distance preserving surjection.  Hence, Ta is a rigid motion of ℝ. ! 
 
 Theorem 2.3.  Let a ∈ ℝ.  

a) The reflection Za : ℝ → ℝ is a rigid motion of ℝ such that (Za)–1 = Za. 

b) For x and y ∈ ℝ, Za(x) = y if and only if a is the midpoint between x and y. 
 
 Homework Problem 2.1.  Prove Theorem 2.3. 
 
 For a, b ∈ ℝ, Theorem 2.1 d) implies that the four compositions TaºTb, ZaºZb, 
TaºZb and ZaºTb must be rigid motions of ℝ.  We now analyze these four compositions to 
try to discover what types of rigid motions they are. 
 
 Theorem 2.4.  For a, b ∈ ℝ, TaºTb = Ta + b,  ZaºZb = T2(a – b),  TaºZb = Zb + (a/2)  and  
ZaºTb  = Za – (b/2). 
 
 Proof.  Let x ∈ ℝ.  Then: 

   TaºTb(x)  =  ( x + a ) + b  =  x + ( a + b )  =  Ta + b(x), 

   ZaºZb(x)  =  2a – ( 2b – x )  =  x + 2( a – b )  =  T2(a – b)(x), 

   TaºZb(x)  =  ( 2b – x ) + a  =  2( b + (a/2) ) – x  =  Zb + (a/2)(x) and 

  ZaºTb(x)  =  2a – ( x + b )  =  2(a – (b/2)) – x  =  Za – (b/2)(x). ! 
 
 In-Class Exercise 2.E.  a)  Let a and b ∈ ℝ.  Use the equation ZaºZb = T2(a – b) to 
solve for c and d ∈ ℝ such that Ta = ZcºZb and Ta = ZbºZd.  Once we know the values of 
c and d, we can give alternative proofs of the equations TaºZb = Zb + (a/2)  and  ZaºTb  =  
Za – (b/2) as follows.  TaºZb = (ZcºZb)ºZb = Zcº(ZbºZb) = Zcº(Zbº(Zb)–1) = Zcºidℝ = Zc and  
ZbºTa = Zbº(ZbºZd) = (ZbºZb)ºZd = (Zbº(Zb)–1)ºZd = = idℝºZd = Zd. 

b)  Let a, b and c ∈ ℝ and identify the three-fold composition ZaºZbºZc as a specific 
reflection or translation. 
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 Theorem 2.4 says that we can’t generate any new types of rigid motions of ℝ by 
composing translations and reflections of ℝ in any combination or order.  This suggests 
the conjecture that all rigid motions of ℝ are either translations or reflections. 
 
 The next few theorems are devoted to answering the following questions. 
 

Question 1.  Are all distance preserving functions from ℝ to itself surjective and, 
hence, rigid motions? 

 
Question 2.  Are all rigid motions of ℝ either reflections or translations? 
 

 We will need the help of the following two theorems to answer these questions.  
The first of these theorems shows that reflections and translations are versatile at 
moving pairs of points around in ℝ. 
 
 Theorem 2.5.  If x1, x2, y1 and y2 ∈ ℝ such that d(x1,x2) = d(y1,y2), then there is a 
rigid motion f : ℝ → ℝ such that f(x1) = y1, f(x2) = y2 and f is either a reflection or a 
translation. 
 

Proof.  Let a = (1/2)( x1 + y1 ), the midpoint between x1 and y1.  Then Theorem 2.3 
b) implies that Za(x1) = y1. 

 
We now break the proof into two cases. 
 
Case 1: Za(x2) = y2.  In this case, we are done because Za : ℝ → ℝ is a reflection 

and, hence, a rigid motion of ℝ such that Za(x1) = y1 and Za(x2) = y2.   
 

 
                                          Za 
 
 
         x1          x2                   a                    y2          y1 

 

Case 2: Za(x2) ≠ y2.  Let b = y1 = Za(x1).  Then  

d(b,Za(x2)) = d(Za(x1),Za(x2)) = d(x1,x2) = d(y1,y2) = d(b,y2). 

Hence, b is equidistant from Za(x2) and y2.  Therefore, b is the midpoint between Za(x2)  
and y2 by Theorem 1.4.  Hence, Theorem 2.3 b) implies Zb(Za(x2)) = y2.  Also  
 
 

                                          Za               Zb 
 
 
         x1          x2                   a                Za(x2)     y1 = b        y2 
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Zb(Za(x1)) = Zb(b) = b = y1.  Thus, ZbºZa(x1) = y1 and ZbºZa(x2) = y2.  Theorem 2.4 tells us 
that ZbºZa = T2(b – a).  Therefore, T2(b – a)(x1) = y1 and T2(b – a)(x2) = y2.  This completes the 
proof in Case 2 because T2(b – a) : ℝ → ℝ is a translation and, hence, a rigid motion of ℝ 
such that T2(b – a)(x1) = y1 and T2(b – a)(x2) = y2. ! 
 
 The second of our “helper” theorems shows that distance preserving functions 
from ℝ to itself are uniquely determined by their values at two points. 
 

Theorem 2.6.  If f : ℝ → ℝ and g : ℝ → ℝ are distance preserving functions, and 
if there are two distinct points x and y of ℝ such that f(x) = g(x) and f(y) = g(y), then  
f = g. 
 
 Proof.  Assume f : ℝ → ℝ and g : ℝ → ℝ are distance preserving functions and x 
and y are distinct points of ℝ such that f(x) = g(x) and f(y) = g(y).  Let z ∈ ℝ.  We must 
prove f(z) = g(z). 
 
 Since distance preserving functions are injective (by Theorem 2.1.b) and x ≠ y,  
then f(x) ≠ f(y).  Since f(x) = g(x) and f(y) = g(y), then 

                                d(f(z),f(x)) = d(z,x) = d(g(z),g(x)) = d(g(z),f(x)) 

and 
d(f(z),f(y)) = d(z,y) = d(g(z),g(y)) = d(g(z),f(y)). 

Thus, the distances from f(z) to f(x) and f(y) equal the distances from g(z) to f(x) and 
f(y).  Since f(x) and f(y) are distinct points of ℝ, then Theorem 1.5 tells us that every  
point of ℝ is uniquely determined by its distances from f(x) and f(y).  It follows that f(z) = 
g(z).  We conclude that f = g. ! 
 
 We are now in a position to answer Questions 1 and 2. 
 
 Theorem 2.7.  Every distance preserving function from ℝ to itself is either a 
reflection or a translation. 
 
 Proof.  Let f : ℝ → ℝ be a distance preserving function.  Let x1 and x2 be distinct 
points of ℝ.  Let y1 = f(x1) and y2 = f(x2).  Then d(x1,x2) = d(f(x1),f(x2)) = d(y1,y2).  Hence, 
Theorem 2.5 implies there is a rigid motion g : ℝ → ℝ such that g(x1) = y1, g(x2) = y2 and 
g is either a reflection or a translation.  Observe that f : ℝ → ℝ and g : ℝ → ℝ are 
distance preserving functions such that f(x1) = g(x1) and f(x2) = g(x2).  Therefore, 
Theorem 2.6 implies f = g.  We conclude that f is either a reflection or a translation. !  
 
 Since all reflections and translations of ℝ are rigid motions, then Theorem 2.7 
yields an answer to Question 1. 
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 Corollary 2.8.  Every distance preserving function from ℝ to itself is a rigid 
motion. 
 
 Since all rigid motions of ℝ are distance preserving, then Theorem 2.7 also yields 
an answer to Question 2. 
 
 Corollary 2.9.  Every rigid motion of ℝ is either a reflection or a translation. 
 
 Since the translation Ta obeys the formula Ta(x) = x + a, and since the reflection 
Za obeys the formula Za(x) = –x + 2a, Corollary 2.9 yields the following conclusion. 
 
 Corollary 2.10.  Every rigid motion f : ℝ → ℝ is of the form  

f(x) = εx + a 

where ε ∈ { –1, 1 } and a ∈ ℝ. 
 
 We can use Corollary 2.10 to give an easy proof of the following result.   
 
 Corollary 2.11.  Every rigid motion f : ℝ → ℝ satisfies the equation  

f(x) = ( 1 – x )f(0) + xf(1) 

for every x ∈ ℝ. 
 
 Homework Problem 2.2.  Prove Corollary 2.11. 
 
 This completes our exploration of the rigid motions of ℝ.  We end this portion of 
Chapter 2 with two interesting homework problems. 
 
 Homework Problem 2.3.  Suppose X and Y are metric spaces with metrics dX 
and dY, respectively.  For x ∈ X, y ∈ Y and r > 0, let SX(x,r) = { x´ ∈ X : dX(x,x´) = r } and  
let SY(y,r) = { y´ ∈ Y : dY(y,y´) = r }.  

a)  Prove that if f : X → Y is an isometry, then for every x ∈ X and every r > 0, f(SX(x,r))  
= SY(f(x),r). 

b)  Prove that if f : X → Y is a function with the property that f(SX(x,r)) = SY(f(x),r) for  
every x ∈ X and every r > 0, then f : X → Y is an isometry. 

c)  Suppose f : X → Y is an isometry.  Let x0, x1 and x2 ∈ X.  Prove that x2 is a midpoint 
between x0 and x1 (in X) if and only if f(x2) is a midpoint between f(x0) and f(x1) (in Y). 
 
 Homework Problem 2.4.  a)  Is ℝ2 with the Euclidean metric dE isometric to ℝ2  
with the taxicab metric dT? 

b)  Is ℝ2 with the taxicab metric dT isometric to  ℝ2 with the maximum metric dM? 

c)  Is ℝ2 with the Euclidean metric dE isometric to  ℝ2 with the maximum metric dM? 


