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1.  Metric Spaces 
 
 In this course, we will take the point of view that geometry is the study of spaces 
in which the distance between two elements can be measured by a distance function.  
The elements of such a space are called points, the distance function is called a metric, 
and such spaces are called metric spaces. 
 
 Definition.  Let X be a set.  A metric on X is a function d which assigns to every 
pair of elements x and y of the set X a real number denoted d(x,y).  d(x,y) is called the 
distance between x and y.  Furthermore, to be a metric, the function d must satisfy the 
following three conditions. 

  1)  Positivity.  For all x, y ∈ X, d(x,y) ≥ 0, and d(x,y) = 0 if and only if x = y. 

  2)  Symmetry. For all x, y ∈ X, d(x,y) = d(y,x). 

  3)  The Triangle Inequality.  For all x, y and z ∈ X, d(x,z) ≤ d(x,y) + d(y,z). 

A set X equipped with a metric d is called a metric space.  The elements of a metric 
space are called points. 
 
 The triangle inequality is a generalization of a property of planar triangles.  If a 
triangle has vertices x, y and z and edge lengths a = d(x,y), b = d(y,z) and c = d(x,z), 
then each edge length is less than or equal to the sum of the other two edge lengths.  
Thus, c ≤ a + b, b ≤ a + c, and a ≤ b + c. 
 
        z 
                 b 
             c 
          y 
           a 
       x 
 
 
 Example.  Every set X admits an easily defined metric called the discrete metric  
on X.  We first define the discrete distance function on X by the formulas 

d(x,y) = 0 if x = y, and d(x,y) = 1 if x ≠ y. 
 
We will prove that the discrete distance function is a metric on X, after which we 

will call this function the discrete metric on X.  
 
 In-Class Exercise 1.A.  Verify that the discrete distance function is actually a 
metric on the set X.  In other words, prove that d satisfies the three defining properties 
of a metric: positivity, symmetry and the triangle inequality.  
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The discrete metric is interesting primarily because it is a very simple example of 
a metric that can be defined on any set.  A set with the discrete metric is too simple to 
have interesting geometry, but it does provide a toy example in which we can easily test 
new concepts before trying to analyze these concepts in situations that are more 
significant geometrically but are also more complex.      
 
 Perhaps the simplest example of a geometrically interesting metric space is the 
real line ℝ with its standard metric.  To define the standard metric on ℝ we first recall 
some basic terminology and concepts. 
  
 Notation.  Let a < b be real numbers.  We recall the standard notation for the  
subsets of ℝ known as intervals:   

The following sets are called open intervals: 

(a,b)  =  { x ∈ ℝ : a < x < b },     (a,∞) =  { x ∈ ℝ : a < x },     (–∞,b) =  { x ∈ ℝ : x < b }. 

The following sets are called closed intervals: 

[a,b]  =  { x ∈ ℝ : a ≤ x ≤ b },     [a,∞) =  { x ∈ ℝ : a ≤ x },     (–∞,b] =  { x ∈ ℝ : x ≤ b }. 

The following sets are called half open intervals: 

[a,b)  =  { x ∈ ℝ : a ≤ x < b },     (a,b]  =  { x ∈ ℝ : a < x ≤ b }. 
 
 Definition.  The squaring function x   

€ 

 x2 : [0,∞) → [0,∞) with domain and range 
[0,∞) is a bijection.  Hence, it has an inverse (by Theorem 0.5).  The inverse is called 
the square root function and is denoted x   

€ 

 

€ 

x  : [0,∞) → [0,∞).  Observe that the fact 
that the squaring function and the square root function are inverses of each other has 
the following consequence: for every x ∈ [0,∞), 

€ 

x2  = x and (

€ 

x )2 = x. 
 
 Definition.  For every x ∈ ℝ, since x2 ∈ [0,∞) and [0,∞) is the domain (and range) 
of the square root function, then 

€ 

x2  is well defined.  Hence, we can define the absolute 
value function x   

€ 

 | x | : ℝ → [0,∞) by the formula | x | = 

€ 

x2 .  (Observe that the 
absolute value function x   

€ 

 | x | : ℝ → [0,∞) is the composition of the squaring function 
x   

€ 

 x2 : ℝ → [0,∞) and the square root function x   

€ 

 

€ 

x  : [0,∞) → [0,∞).) 
 

Next we list some basic properties of the absolute value function. 
 
 Theorem 1.1.  The absolute value function has the following properties. 
a)  For all  x ∈ ℝ,  | x | = x if x ≥ 0, and | x | = –x if x < 0. 
b)  For all  x ∈ ℝ,  –| x | ≤ x ≤ | x |. 
c)  For all  x ∈ ℝ, | x |2 = x2. 
d)  For all  x ∈ ℝ, | x | ≥ 0, and | x | = 0 if and only if x = 0. 
e)  For all x, y ∈ ℝ, | xy | = | x | | y |. 
f)  For all x, y ∈ ℝ, | x + y | ≤ | x | + | y |. 
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 Homework Problem 1.1.  Prove Theorem 1.1 using the definition of the absolute 
value function given above together with properties of the squaring function and the 
square root function.   
 
 We now use the absolute value function to define the standard metric on ℝ. 
  
 Definition.  The standard distance function d on ℝ is defined by the formula 

d(x,y) = | x – y |. 
 

We will prove that the standard distance function is a metric on ℝ, after which we 
will call this function the standard metric on ℝ.  To prove that the standard distance 
function is a metric, we must verify that it satisfies the three defining conditions for a 
metric: positivity, symmetry and the triangle inequality.   
 
 Theorem 1.2.  The standard distance function is a metric on ℝ. 
 
 Proof.  We must prove: 
a)  Positivity.  For all x, y ∈ ℝ, d(x,y) ≥ 0, and d(x,y) = 0 if and only if x = y. 
b)  Symmetry. For all x, y ∈ ℝ, d(x,y) = d(y,x). 
c)  The Triangle Inequality.  For all x, y and z ∈ ℝ, d(x,z) ≤ d(x,y) + d(y,z). 
 
 Homework Problem 1.2.  Prove a) and b). 
 
 Proof of c) The Triangle Inequality.  Let x, y and z ∈ ℝ.  Then Theorem 1.1 f) 
implies:  d(x,z)  =  | x – z |  =  | (x – y) + (y – z) |  ≤  | x – y | + | y – z |  =  d(x,y) + d(y,z). 
! 
 
 Homework Problem 1.3.  In this problem, we define a non-standard metric on ℝ 
called the square root metric and observe that it has a curious property.  Define the  
square root distance function σ on ℝ by the formula 

σ(x,y)  =      x – y     . 

a)  Prove that the square root distance function is a metric on ℝ. 

Now we call σ the square root metric on ℝ. 
b)  Show that σ has the following strange property.  Let n ≥ 1 and for 0 ≤ i ≤ n, let xin = 
i n.  Let Ln = σ(x0n,x1n) + σ(x1n,x2n) + … + σ(xn–1

n ,xnn).  Then Ln represents the length of a 
walk from 0 to 1 in ℝ with the square root metric σ in which you step from 0 to 1 n to 2 n 

to … to n–1
n to 1.  Prove lim n  →  ∞ Ln = ∞.  Thus, in ℝ with the square root metric, if you 

walk from 0 to 1 taking small steps, the length of your walk converges to ∞ as the length 
of your steps approaches 0.  Said another way, as you walk from 0 to 1 in ℝ with the 
square root metric, as your legs grow shorter, the length of your walk converges to ∞. 
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 From now on, whenever we consider the real line ℝ as a metric space, we 
assume that the metric on ℝ is the standard metric. 
 
 Next we introduce three geometrically useful concepts: the sphere of a given 
positive radius centered at a given point, a point being equidistant from two points, and 
a midpoint between two points. 
 
 Definition.  Let X be a metric space with metric d.  Let x be a point of X and let r  
> 0.  The sphere of radius r centered at x is the set 

S(x,r)  =  { y ∈ X : d(x,y) = r }. 
 
 Definition.  Let X be a metric space with metric d.  Let x, y and z be points of X. 
z is equidistant from x and y if d(x,z) = d(y,z).  z is a midpoint between x and y if  
d(x,z) = d(y,z) = (1/2)d(x,y). 
 
 In-Class Exercise 1.B.  Let X be a set with the discrete metric. 
a)  If x ∈ X and r > 0, describe the set S(x,r).  (The answer depends on the value of r.) 
b)  If x and y ∈ X, describe the set of all points of X that are equidistant from x and y. 
c)  If x and y ∈ X, describe the set of all midpoints between x and y. 
 
 The following theorem characterizes midpoints between x and y in terms of 
spheres centered at x and y. 
 
 Theorem 1.3.  Let X be a metric space X with metric d.  Let x and y be points of 
X and let r = (1/2)d(x,y).  Then a point z is a midpoint between x and y if and only if z is 
an element of the set S(x,r) ∩ S(y,r). 
 
 Homework Problem 1.4.  Prove Theorem 1.3. 
 
 Remark.  The definition of midpoint leaves open the possibility that there might 
be more than one midpoint (or no midpoints) between two given points.  Theorem 1.3 
tells us that the set of all midpoints between the points x and y equals the set  
S(x,r) ∩ S(y,r).  This theorem does not rule out the possibility that this set has more than 
one element or that the set is empty. 
 
 We now examine the concepts of spheres and midpoints in the real line ℝ (with 
the standard metric). 
 
 In-Class Exercise 1.C.  Let x ∈ ℝ and let r > 0.  What are the elements of the set 
S(x,r)?  Prove your answer. 
 
 In-Class Exercise 1.D.  Let x and y be distinct points of ℝ.  Use Theorem 1.3 
and Class Exercise 1.C to prove that there is one and only one midpoint between x and 
y, and that midpoint is (1/2)( x + y ).  Hint:  We may assume x < y.  Why? 
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 We can actually prove a theorem that is a little stronger than the result stated in 
Class Exercise 1.D. 
 
 Theorem 1.4.  Let x and y be distinct points of ℝ.  Then a point z ∈ ℝ is 
equidistant from x and y if and only if z = (1/2)( x + y ), the midpoint between x and y.   
 
 Remark.  Theorem 1.4 says that (1/2)( x + y ) is the only point in ℝ that is 
equidistant from x and y.  Theorem 1.4 also tells us that to find a midpoint z between x 
and y in ℝ, it is sufficient to find a point that is equidistant from x and y.  It is not 
necessary to impose the additional restriction that d(x,z) and d(y,z) are equal to 
(1/2)d(x,y).  In other words, if we can establish the equation d(x,z) = d(y,z), then the 
addition restriction that these numbers equal (1/2)d(x,y) will follow automatically. 
 
 The property of ℝ revealed by Theorem 1.4 – any point which is equidistant from 
x and y is a midpoint between x and y – fails to hold in most geometrically interesting 
spaces including circles and all the higher dimensional metric spaces that we will study 
subsequently. 
 
 Proof of Theorem 1.4.  Let x and y be distinct points of ℝ.  First we assume z is 
a midpoint between x and y, and we prove z is equidistant from x and y.  Since z is a 
midpoint between x and y, then by definition d(x,z) = d(y,z) = (1/2)d(y,x).  Therefore, 
d(x,z) = d(y,z).  Hence, z is equidistant from x and y.  That’s all there is to it. 
 
 Next we will assume z is a point of ℝ that is equidistant from x and y, and we will 
prove that z is the midpoint between x and y.  (This part of the proof is a little harder 
than the first part.)    So, assume z ∈ ℝ and d(x,z) = d(y,z).  We will prove z =  
(1/2)( x + y ).   Since d(x,z) = d(y,z), then  

| x – z |  =  | y – z |.   

Hence,  

( | x – z | )2  =  ( | y – z | )2.   

Therefore,  

( x – z )2  =  ( y – z )2.   

So  

x2 – 2xz + z2  =  y2 – 2yz + z2.   

Hence,  

x2 – y2  =  2xz – 2yz.   

Thus,  

( x – y )( x + y )  =  2( x – y )z.   
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Since x ≠ y, then x – y ≠ 0.  Therefore,   

x + y = 2z.   

So  

z = (1/2)( x + y ). 

Thus, z is the midpoint between x and y by In-Class Exercise 1.D. ! 
 
Theorem 1.4 has a useful corollary which we now state and prove.   

 
 Theorem 1.5.  Let x and y be distinct points of ℝ.  Then every point z of ℝ is 
uniquely determined by the two numbers d(x,z) and d(y,z).  In other words, every point 
of ℝ is uniquely determined by its distances from x and y. 

 
Remark.  Like Theorem 1.4, Theorem 1.5 is states a property that holds in ℝ but 

not in other geometrically interesting spaces we will study.  This property holds with 
some important exceptions in circles and it fails to hold in higher dimensional spaces.  
With the help of Theorem 1.4, we can give a surprisingly simple proof of Theorem 1.5.  
The proof is by contradiction. 
 
 Proof of Theorem 1.5.  Let x and y be distinct points of ℝ.  Assume that z and z´ 
are two points of ℝ such that d(x,z) = d(x,z´) and d(y,z) = d(y,z´).  We must prove that z 
= z´. 
 
 Assume z ≠ z´.  Since d(x,z) = d(x,z´), then Theorem 1.4 implies that x =  
(1/2)( z + z´ ).  Also since d(y,z) = d(y,z´), then Theorem 1.4 implies that y =  
(1/2)( z + z´ ).  Hence, x = y.  This contradicts our hypothesis that x and y are distinct.  
We must conclude that the assumption z ≠ z´ is false.  Thus, z = z´.  We have proved 
that the point z is uniquely determined by the two numbers d(x,z) and d(y,z). ! 
 

Homework Problem 1.5.  This problem explores an interesting example in which 
midpoints between two given points may not exist.  Recall the square root metric σ on ℝ  
from Homework Problem 1.3.   

a)  Prove that if x and y are distinct points in ℝ with the metric σ, then there is no  
midpoint between x and y.   

b)  Also prove that if x and y are distinct points of ℝ, then there is a point of ℝ that is  
equidistant from x and y with respect to the square root metric.   

Since this point can’t be a midpoint, then we observe that the analogue of Theorem 1.4 
fails to hold for ℝ with the square root metric: a point which is equidistant from x and y 
can’t be a midpoint. 
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 We introduce another geometrically useful concept: the diameter of a space. 
 
 Definition.  Let X be a metric space with metric d.  Let A be a subset of X.  
Define the diameter of A with respect to d to be the element diam(A) ∈ [0,∞] determined  
by the formula 

diam(A)  =  sup { d(x,y) : x ∈ A and y ∈ A }. 

If diam(A) < ∞, then we call A a bounded subset or X; whereas if diam(A) = ∞, then we 
call A an unbounded subset of X.  If diam(X) < ∞, we call X a bounded space; while if 
diam(X) = ∞, we call X an unbounded space. 
 
 In-Class Exercise 1.E.  a)  If X is a set with the discrete metric, what is diam(X)? 

b)  Let x, y ∈ ℝ such that x < y.  What is the diameter of the subset { x, y }?  What are  
the diameters of the intervals [x,y], (x,y), [x,y) and (x,y]? 

c)  Let ℕ = { 0, 1, 2, … } be the subset of ℝ consisting of all non-negative integers, and 
let ℤ = { … –2, –1, 0, 1, 2, … } be the subset of ℝ consisting the set of all integers.  
What are the diameters of the sets ℕ, ℤ, [0,∞) and ℝ? 
 
 Next we consider three different metrics on the 2-dimensional Cartesian plane  
ℝ2, and we explore the differences in the geometries that are determined by these three  
metrics.  The Cartesian plane is the set   

ℝ2  = ℝ × ℝ =  { (x1,x2) : x1 ∈ ℝ and x2 ∈ ℝ }. 

Thus, ℝ2 is the set of all ordered pairs of real numbers.  We will follow the practice of  
denoting a point of ℝ2 by x = (x1,x2).  Thus, a point of ℝ2 is denoted by a boldface letter 
while the coordinates of the point are denoted by the same letter – not in boldface – with 
subscripts 1 and 2.  Also we let 0 = (0,0) and call this point the origin of ℝ2.  
 
 The Euclidean distance function dE on ℝ2 is defined by the formula 

dE(x,y)  =  

€ 

x1 – y1( )2 + x2 – y2( )2  

for x = (x1,x2) and y = (y1,y2) ∈ ℝ2. 
 
 The taxicab distance function dT on ℝ2 is defined by the formula 

dT(x,y)  =  | x1 – y1 | + | x2 – y2 | 

for x = (x1,x2) and y = (y1,y2) ∈ ℝ2. 
 
 The maximum distance function dM on ℝ2 is defined by the formula 

dM(x,y)  =  max { | x1 – y1 |, | x2 – y2 | } 

for x = (x1,x2) and y = (y1,y2) ∈ ℝ2. 
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 We will prove that the Euclidean, taxicab and maximum distance functions are 
metrics on ℝ2, after which we will call these function the Euclidean, taxicab and 
maximum metrics on ℝ2. 
 
 Theorem 1.6.  The Euclidean, taxicab and maximum distance functions, dE, dT 
and dM, are metrics on ℝ2. 
 

Remark.  The proof of Theorem 1.6 involves showing that dE, dT and dM satisfy 
the three conditions that comprise the definition of a metric: positivity and symmetry and 
the triangle inequality. 
 
 Homework Problem 1.6. Prove Theorem 1.6 with the exception of the fact that 
dE satisfies the triangle inequality.  We postpone the proof that dE satisfies the triangle 
inequality because we will introduce an auxiliary concept a little later that will make this 
proof easy. 
 
 Notation.  For x ∈ ℝ2 and r > 0, let SE(x,r), ST(x,r) and SM(x,r) denote the 
spheres of radius r centered at x with respect to the Euclidean, taxicab and maximum  
metrics, respectively.  Thus,  

SE(x,r)  =  { y ∈ ℝ2 : dE(x,y) = r }, 

ST(x,r)  =  { y ∈ ℝ2 : dT(x,y) = r } and  

SM(x,r)  =  { y ∈ ℝ2 : dM(x,y) = r }. 
 

 Next we analyze and draw pictures of the spheres SE(x,r), ST(x,r) and SM(x,r) 
with respect to the Euclidean, taxicab and maximum metrics on ℝ2.  Let x = (x1,x2) ∈ ℝ2 
and r > 0.   
 
 First we study SE(x,r).  Observe that the following three statements are  
Equivalent.  

i)   y = (y1,y2) ∈ SE(x,r). 

ii)   dE(x,y) = r.    

iii)   ( x1 – y1 )2 + ( x2 – y2 )2 = r2. 

The last statement is the equation of a circle of radius r centered at x = (x1,x2).  Hence,  
SE(x,r) is this circle.  Here is the picture:  
 
 

 r 
 

                  x 
SE(x,r) 
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Next we study ST(x,r).  Observe that the following four statements are  
equivalent. 

i)   y = (y1,y2) ∈ ST(x,r). 

ii)   dT(x,y) = r. 

iii)   | x1 – y1 | + | x2 – y2 | = r. 

iv)   ( x1 ≤ y1 ≤ x1 + r and y2 = –y1 + ( x1 + x2 + r ) )  or 
 ( x1 – r ≤ y1 ≤ x1 and y2 = y1 + ( – x1 + x2 + r ) )  or 
 ( x1 – r ≤ y1 ≤ x1 and y2 = –y1 + ( x1 + x2 – r ) )  or 
 ( x1 ≤ y1 ≤ x1 + r and y2 = y1 + ( –x1 + x2 – r ) ). 

The last statement consists of four constrained equations which determine a square 
with vertices (x1 – r,x2), (x1,x2 – r), (x1 + r,x2) and (x1,x2 + r).  Hence, ST(x,r) is this 
square.  Here is the picture: 
 
 
                                                                                          (x1,x2 + r)                                               
    
                                              (x1 – r,x2)                                       (x1 + r,x2) 
                                        x                                         
 
                                                                         

                                                                                                                                                                         
(x1,x2 – r)                              ST(x,r) 

 
 

 Finally we study SM(x,r).  Observe that the following four statements are  
equivalent: 

i) y = (y1,y2) ∈ SM(x,r), 

ii) dM(x,y) = r, 

iii) max { | x1 – y1 |, | x2 – y2 | } = r, 

iv) ( y1 = x1 + r and x2 – r ≤ y2 ≤ x2 + r ) or 
 ( y2 = x2 + r and x1 – r ≤ y1 ≤ x1 + r ) or 
 ( y1 = x1 – r and x2 – r ≤ y2 ≤ x2 + r ) or 
 ( y2 = x2 – r and x1 – r ≤ y1 ≤ x1 + r ). 

The last statement consists of four constrained equations which determine a square 
with vertices (x1 – r,x2 + r), (x1 + r,x2 + r), (x1 + r,x2 – r) and (x1 – r,x2 – r).  Hence, SM(x,r) 
is this square.  Here is the picture: 
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                      (x1 – r, x2 + r)                                               (x1 + r, x2 + r) 
 
 
                                                              x                                 
                                                          SM(x,r) 
 
                     (x1 – r, x2 – r)                                                 (x1 + r, x2 – r) 
 

 
Homework Problem 1.7.  Let x = (x1,x2) ∈ ℝ2 and r > 0.  This problem asks you 

to give algebraic proofs of some of the assertions of equivalence made in the preceding  
paragraphs. 
 
a)  Algebraically verify the equivalence of the following two statements.  

i) | x1 – y1 | + | x2 – y2 | = r. 

ii) ( x1 ≤ y1 ≤ x1 + r and y2 = –y1 + ( x1 + x2 + r ) )  or 
 ( x1 – r ≤ y1 ≤ x1 and y2 = y1 + ( – x1 + x2 + r ) )  or 
 ( x1 – r ≤ y1 ≤ x1 and y2 = –y1 + ( x1 + x2 – r ) )  or 
 ( x1 ≤ y1 ≤ x1 + r and y2 = y1 + ( –x1 + x2 – r ) ). 
 
b)  Algebraically verify the equivalence of the following two statements. 

i) max { | x1 – y1 |, | x2 – y2 | } = r  

ii) ( y1 = x1 + r and x2 – r ≤ y2 ≤ x2 + r ) or 
 ( y2 = x2 + r and x1 – r ≤ y1 ≤ x1 + r ) or 
 ( y1 = x1 – r and x2 – r ≤ y2 ≤ x2 + r ) or 
 ( y2 = x2 – r and x1 – r ≤ y1 ≤ x1 + r ). 
 
 Homework Problem 1.8.  Let x and y be distinct points of ℝ2.  For each of the 
metrics dE, dT and dM, decide whether a midpoint between x and y exists and whether 
such a midpoint (if it exists) is unique.  Does your answer depend on the relative 
positions of x and y in ℝ2? 
 
 Hint.  Let r equal 1/2 the distance from x to y.  Use the characterization of 
midpoints stated in Theorem 1.3 together with the shapes of the spheres of radius r 
centered at x and y to create pictures that answer the questions raised in Homework 
Problem 1.8. 
 
 Homework Problem 1.9. Let x = (x1,x2) and y = (y1,y2) be distinct points of ℝ2.  
Define the point m ∈ ℝ2 by m = ( (1/2)( x1 + y1 ), (1/2)( x2 + y2 ) ).  

a)  For each of the metrics dE, dT and dM, prove algebraically that m is a midpoint  
between x and y.   
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b)  Prove algebraically that for the Euclidean metric dE, m is the only midpoint between 
x and y.  In other words, assume that z = (z1,z2) is a midpoint between x and y with 
respect to the Euclidean metric dE and prove algebraically that z = m. 
 
 Homework Problem 1.10.  Define a metric on the unit circle SE(0,1) called the 
straight line metric by the formula s(x,y) = dE(x,y).  In other words, the straight line 
metric s is the restriction to SE(0,1) of the Euclidean metric dE on ℝ2.  Because dE is a 
metric on ℝ2 and s is a restriction of dE to a subset of ℝ2, the s is automatically a metric.  
(Verify this statement.)  Prove that if x and y are distinct points of SE(0,1), then there is 
are no midpoints between x and y in SE(0,1) with the straight line metric s. 
 
 Hint.  First, for x ∈ SE(0,1) and r > 0, define Ss(x,r) = { y ∈ SE(0,1) : s(x,y) = r }.  
Thus, Ss(x,r) is the sphere of radius r centered at x in SE(0,1) with the straight line 
metric.  Then observe that for x ∈ SE(0,1) and r > 0, Ss(x,r) = SE(x,r) ∩ SE(0,1).  Use this 
fact together with Theorem 1.3 to create a picture of the set of midpoints between two 
distinct points in SE(0,1) with the straight line metric. 
 
 Recall that if X is a metric space with metric d and A is a subset of X, then the  
diameter of A with respect to d is the element of [0,∞] defined by the formula 

diam(A)  =  sup { d(x,y) : x ∈ A and y ∈ A }. 

We call A a bounded subset of X if diam(A) < ∞, and we call A an unbounded subset of 
X if diam(A) = ∞.  Similarly, we call X a bounded space if diam(X) < ∞, and we call X an 
unbounded space if diam(X) = ∞. 
 

If A is a subset of ℝ2, let diamE(A), diamT(A) and diamM(A) denote the diameters 
of A with respect to the Euclidean, taxicab and maximum metrics, respectively.  
Observe that  

diamE(ℝ2)  =  diamT(ℝ2)  =  diamM(ℝ2)  =  ∞. 
 
 Recall that for r > 0, SE(0,r) is the circle of radius r centered at 0 in ℝ2.   
 
 In-Class Exercise 1.F.  Let r > 0.  Evaluate diamE(SE(0,r)). 
 
 Homework Problem 1.11.  Let r > 0.  Evaluate diamT(SE(0,r)) and 
diamM(SE(0,r)). 
 
 Hint.  To evaluate diamT(SE(0,r)) it may be helpful to find the smallest s > 0 such 
that SE(0,r) is inscribed in ST(0,s).  A similar remark applies to diamM(SE(0,r)). 
 
 Homework Problem 1.12.  For distinct points x and y in ℝ2, let ET(x,y) denote 
the set of all points in ℝ2 that are equidistant from x and y with respect to the taxicab 
metric; in other words, ET(x,y) = { z ∈ ℝ2 : dT(x,z) = dT(y,z) }.  Describe and sketch a 
picture of the set ET((0,0),(1,1)). 



 20 

 Homework Problem 1.13.  Suppose X is a metric space with metric d.  Suppose 
that ℒ is a collection of subsets of X called lines.  Three points x, y and z of X are said to 
be collinear if there is a line L ∈ ℒ such that x, y and z ∈ L.  Three points of X which are 
not collinear are said to be non-collinear.  For distinct points x and y of X, let E(x,y) 
denote the set of all points in X that are equidistant from x and y with respect to the 
metric d; in other words, E(x,y) = { z ∈ X : d(x,z) = d(y,z) }.  Assume that if x and y are 
distinct points of X, then E(x,y) ∈ ℒ.  Let x, y and z be three distinct non-collinear points 
of X.  Prove that every point of X is uniquely determined by its distances from x, y and z.  
In other words, prove that if w and w´ ∈ X and d(x,w) = d(x,w´), d(y,w) = d(y,w´) and 
d(z,w) = d(z,w´), then w = w´.  


