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0.  Background Material: Properties of Functions 
 
 Definition.  f is a function from a set X to a set Y if f assigns to each element x ∈ 
X an element f(x) ∈ Y.  We write “f : X → Y” as an abbreviation for the statement “f is a 
function from the set X to the set Y”.  For each x ∈ X, f(x) is called the value of f at x.  
The set X is called the domain of f, and the set Y is called the range of Y.  Two functions 
f and g are equal, denoted f = g, if f and g have the same domain and if f(x) = g(x) for 
each element x of this common domain. 
 
 Notation.  Suppose f : X → Y.  We may also express this by writing  
“x   

€ 

 f(x) : X → Y”.  For example, we may denote the squaring function with domain and 
range the real numbers ℝ by “x   

€ 

 x2 : ℝ → ℝ”. 
 
 Definition.  Suppose f : X → Y.  If A ⊂ X, the image of A under f is defined to be  
the set 

f(A)  =  { f(x) : x ∈ A }. 

Thus, the statement “y ∈ f(A)” is equivalent to the statement “there is an x ∈ A such that 
f(x) = y”.  This equivalence is useful for proving results about the set f(A).  The set f(X) is  
also denoted Im(f) and is called the image of f.  Thus, 

Im(f)  =   { f(x) : x ∈ X }. 

If B ⊂ Y, the preimage of B under f is defined to be the set 

f–1(B)  =  { x : f(x) ∈ B }. 
 
 Definition.  If X is a set, then the identity function of X is the function idX : X → X  
defined by the formula  

idX(x) = x 

for every x ∈ X. 
 
 Definition.  If f : X → Y and g : Y → Z are functions, then a function gºf : X → Z,  
called the composition of f and g, is defined by the formula  

gºf(x) = g(f(x)) 

for every x ∈ X. 
 
 Definition.  Suppose f : X → Y and suppose A ⊂ X.  The restriction of  f to A is 
the function with domain A and range Y which is denoted f | A : A → Y and is defined by 
f | A(x) = f(x) for x ∈ A. 
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 Theorem 0.1. a)  If f : X → Y is a function, then fºidX  =  f  =  idYºf.  

b)  If f : W → X, g : X → Y and h : Y → Z are functions, then hº(gºf)  =  (hºg)ºf. 
 
 Homework Problem 0.1.  Prove Theorem 0.1.  
 
 Definition.  Suppose f : X → Y is a function.  A function g : Y → X is an inverse 
of f : X → Y if the following two equations hold:  gºf  =  idX  and   fºg  =  idY.  
 
 Observation.  The definition of inverse is symmetric.  In other words, if g : Y → X 
is an inverse of f : X → Y, then f : X → Y is also an inverse of g : Y → X. 
 
 Theorem 0.2.  If a function f : X → Y has an inverse, then that inverse is unique.  
In other words, if g : Y → X and h : Y → X are both inverses of f : X → Y, then g = h. 
 
 Proof.  Assume f : X → Y is a function, and assume that the functions g : Y → X  
and h : Y → X are both inverses of f : X → Y.  Then by Theorem 0.1, 

g  =  idXºg  =  (hºf)ºg  =  hº(fºg)  =  hºidY  =  h. ! 
 
 Definition.  Suppose f : X → Y is a function.  If f : X → Y has an inverse, then 
that inverse is unique by Theorem 0.2 and we denote it by f–1 : Y → X.  Thus,   
f–1

ºf  =  idX  and   fºf
–1   =  idY. 

 
 Observation.  Suppose f–1 : Y → X is the inverse of the function f : X → Y.  Then, 
as we observed above, f : X → Y is also the inverse of f–1 : Y → X.  Observe that this 
assertion is also expressed by the equation (f–1)–1 = f. 
 
 Remark.  Suppose f : X → Y is a function and suppose B ⊂ Y.  Observe that the 
set f–1(B) is well defined and exists regardless of whether the function f : X → Y has a 
inverse. 
 
 Definition.  Suppose f : X → Y is a function. f  is injective (or one-to-one) if for all 
x, x´ ∈ X, x ≠ x´ implies f(x) ≠ f(x´).  f is surjective (or onto) if for every y ∈ Y, there is an 
x ∈ X such that f(x) = y.  f : X → Y is a bijection (or a one-to-one correspondence) if it is 
both injective and surjective. 
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 Theorem 0.3.  Suppose f : X → Y is a function. 

a)  The following three statements are equivalent: 
• f : X → Y is injective. 
• For all x, x´ ∈ X, if f(x) = f(x´), then x = x´. 
• For every y ∈ Y, the set f–1( { y } ) contains at most one element. 

b)  The following three statements are equivalent: 
• f : X → Y is surjective. 
• Im(f) = Y. 
• For every y ∈ Y, the set f–1( { y } ) contains at least one element. 
 
 Homework Problem 0.2.  Prove Theorem 0.3. 
 
 Theorem 0.4.  Suppose f : X → Y and g : Y → Z are functions. 
a)  If f : X → Y and g : Y → Z are injective, then gºf : X → Z is injective. 
b)  If f : X → Y and g : Y → Z are surjective, then gºf : X → Z is surjective. 
c)  If gºf : X → Z is injective, then f : X → Y is injective. 
d)  If gºf : X → Z is surjective, then g : Y → Z is surjective. 
 
 Homework Problem 0.3.  Prove Theorem 0.4. 
 
 Homework Problem 0.4.  Find an example of functions f : X → Y and g : Y → Z 
such that gºf : X → Z is a bijection, but f : X → Y is not surjective and g : Y → Z is not 
injective. 
 
 Theorem 0.5.  Suppose f : X → Y is a function.  Then f : X → Y has an inverse if 
and only if f : X → Y is a bijection. 
 
 Proof.  First assume f : X → Y has an inverse f–1 : Y → X.  Thus,  f–1

ºf  =  idX  and   
fºf

–1   =  idY.  Since identity functions are injective and surjective, then f–1
ºf is injective 

and fºf
–1 is surjective.  Therefore, parts c) and d) of Theorem 0.4 implies that f is both 

injective and surjective.  Hence, f is a bijection. 
 
 Now assume that f : X → Y is a bijection.  Then according to Theorem 0.3, for 
every y ∈ Y, the set f–1( { y } ) contains exactly one element.  For each y ∈ Y, let g(y) 
denote this unique element of f–1( {y} ). For each y ∈ Y, since f–1( { y } ) ⊂ X, then g(y) ∈ 
X.  Hence, we have defined a function g : Y → X with the property that for each y ∈ Y,  
f–1( { y } ) = { g(y) }.   
 
 Let y ∈ Y.  Since f–1( { y } ) = { g(y) }, then g(y) ∈ f–1( { y } ).  Hence, f(g(y)) ∈ { y }.  
Therefore, f(g(y)) = y.  Thus, fºg(y) = idY(y) for every y ∈ Y.  It follows that fºg   =  idY. 
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 Let x ∈ X.  Clearly f(x) ∈ { f(x) }.  Hence, x ∈ f–1( { f(x) } ).  On the other hand, the 
definition of the function g implies that f–1( { f(x) } ) = { g(f(x)) }.  Thus, x ∈ { g(f(x)) }.  
Hence, g(f(x)) = x.  Thus, gºf(x) = idX(x) for every x ∈ X.  It follows that gºf = idX. 
 
 Since gºf = idX and fºg   =  idY, then g : Y → X is an inverse of f : X → Y.  We 
conclude that f : X → Y has an inverse. ! 
 
 Homework Problem 0.5.  Suppose f : X → Y is a function. 
a)  Prove that if A ⊂ B ⊂ X, then f(A) ⊂ f(B). 
b)  Prove that if C ⊂ D ⊂ Y, then f–1(C) ⊂ f–1(D). 
 
 Homework Problem 0.6.  Suppose f : X → Y is a function, and suppose A and B 
are subsets of X, and C and D are subsets of Y.  In each part of this problem, decide 
whether either of the two given sets must be a subset of or equal to the other.  If a 
subset or equality relation must hold, prove it.  If no such relation must hold, exhibit an 
example of a function f : X → Y and sets A and B ⊂ X or C and D ⊂ Y that illustrates this 
failure. 
a)  f(A ∪ B) and f(A) ∪ f(B).   b)  f(A ∩ B) and f(A) ∩ f(B). 
c)  f(A – B) and f(A) – f(B).    d)  A and f–1(f(A)). 
e)  f–1(C ∪ D) and f–1(C) ∪ f–1(D).   f)  f–1(C ∩ D) and f–1(C) ∩ f–1(D). 
g)  f–1(C – D) and f–1(C) – f–1(D).   h)  C and f(f–1(C)). 
 

Homework Problem 0.7.  As in Exercise 0.6, suppose f : X → Y is a function, 
and suppose A and B are subsets of X, and C and D are subsets of Y.  Consider one of 
the parts a) through h) of Exercise 0.6 in which equality fails to hold between the two 
given sets.  Does the addition of either of the hypotheses “f : X → Y is injective” or  
“f : X → Y is surjective” change this situation and allow equality between the two given 
sets to be proved?  If so, state and prove this result.  In other words, in any part of 
Exercise 0.6 where equality between the two given sets doesn’t hold but addition of one 
of the hypotheses “f is injective” or “f is surjective” makes it possible to prove equality 
between the given sets, then state and prove this result. 
 
 Definition.  For n ≥ 1, an ordered n-tuple (x1, x2, … , xn) is an object with the  
following property: 

(x1, x2, … , xn) = (y1, y2, … , yn)  if and only if  x1 = y1, x2 = y2, … and xn = yn. 

If X1, X2, … , Xn are sets, then the Cartesian product of X1, X2, … , Xn is the set 

X1 × X2 × … × Xn  =  { (x1, x2, … , xn) : x1 ∈ X1, x2 ∈ X2, … and xn ∈ Xn }. 
 
 When n = 2 in the preceding definition, we have the special case of the ordered 
pair (x,y).  Thus, (x,y) = (x´,y´) if and only if x = x´ and y = y´.  Also, if X and Y are sets, 
then the Cartesian product of X and Y is the set X × Y = { (x,y) : x ∈ X and y ∈ Y }.  
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Observe that the statements “z ∈ X × Y” and “there is an x ∈ X and a y ∈ Y such that 
(x,y) = z” are equivalent.  This equivalence is useful for proving results about the set  
X × Y. 
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