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A collection 9 of proper maps into a locally compact Hausdorff space Xfixes the ropo[ogy of 

X if the only locally compact Hausdorff topology on X which makes each element of 9 continuous 

and proper is the given topology. In I* = [-1, 11 x [-1, 11, neither the collection of analytic paths 

nor the collection of regular twice differentiable paths fixes the topology. However, in 1’, both 

the collection of C” arcs and the collection of regular C’ arcs fix the topology. In W2, the 

collection of polynomial rays together with any collection of paths does not fix the topology. 

However, in II’, the collection of regular injective entire rays together with either the collection 

of C” arcs or the collection of regular C’ arcs fixes the topology. 

AMS(MOS) Subj. Class. (1980): Primary 54AlO; Secondary 26899,30D99. 

fixes the topology passes through a sequence analytic path 

regular arc Cm arc polynomial ray entire ray 

1. Introduction 

The results stated in the Abstract extend work of Rubin [l]. In responding to 
questions raised by Diestel, Sorenson and Stone, Rubin showed that in I* the 
collection of horizontal and vertical straight line segments does not fix the topology, 
and in I$ the collection of straight lines does not fix the topology. In his proofs, 
Rubin endowed 1* and R* with nonstandard topologies which make them locally 
compact, connected but not locally connected metric spaces. We shall see that these 
topologies can be ‘improved’. In achieving our generalizations of Rubin’s results, 
we equip 1* and R* with ‘nicer’ nonstandard topologies which make them homeo- 
morphic to specific 2-dimensional polyhedra. 1* becomes homeomorphic to the 
space obtained from 1* by identifying the points (t, 0) and (-t, 0) for 0 G t G i; and 
R* becomes homeomorphic to Q x R where Q is the space obtained from (-co, co] 
by identifying the points 0 and CO. 

The terms used in the abstract are defined in Section 2. The results stated in the 
Abstract are contained in Corollaries 4, 7, 13, 14, 18, 22, and 23. The proofs of 
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100 F.D. Ancell Paths and rays in the plane 

these results yield the following additional information. A map f : J +X passes 

through a sequence {x”} in X if x, Ed for each n 3 1. No analytic path in R* 
passes through a subsequence of {(l/n, l/e”): n 3 1); and no regular twice differenti- 
able path in R* passes through a subsequence of {(l/n3, l/n4): n 3 1). If {z,} 
is a bounded sequence in lR*, then a C” arc and a regular C’ arc pass through 
a subsequence of {z,}. No polynomial ray passes through a subsequence of 

{(n, ll(n + 1)): n 3 1). If {z,} is an unbounded sequence in R*, then a regular injective 
entire ray passes through a subsequence of {z,}. The results just stated are found 
in Corollaries 5, 8 and 19 and Theorems 11, 12 and 21. 

2. Definitions 

The following definitions bring precise meaning to the terms used in the Abstract, 
such as ‘analytic path’ and ‘regular injective entire ray’. 

The term ‘map’ is reserved for continuous functions. A map is proper if under 
the map the inverse image of each compactum is compact. A path is a map whose 
domain is [0, 11. An arc is an injective path. A ray is a proper map whose domain 
is [0, 00). 

LetJc[Wandletf:J~IWbeamap.IffextendstoamapF:L~IWwhereLis 
an open subset of R containing J, and if F is n-times differentiable/C”/C”, then 
we say that f is n-times differentiuble/C”/C”. Also if the extension F off has an 
nth derivative, denoted F’“‘, then the nth derivative of f, denoted f(“), is defined 
by f(“) = F’“‘IJ. 

Let JclR and let f,g:J+R be maps. Define the map h:J+R* by h(t)= 
(f(r), g(t)). h is n-times differentiable/Cm/C” if both its components f and g are 
n-times differentiable/C”/C”. If f and g are n-times differentiable, the nth derivu - 
tive of h, denoted h (“), is defined by h’“‘(t) = (f’“‘(r), g’“‘(t)). A differentiable map 
h : J + lR* is regular if h’(f) # (0,O) for every t E J. 

Throughout this paper R* has two identities: the Cartesian product of two real 
lines, and the field of complex numbers. Hence we identify lR with the subset R x (0) 
of R*. We reserve the symbol ‘i’ for one of the complex square roots of -1. For 
~=(~,y)~R*,1et]z]=(x*+y*)“*. 

If U is an open subset of R*, a map f : I/ -, R* is analytic if for every z. E U 
there is an E > 0 and a sequence {a,} of complex numbers such that Cz=o ]a, ]E ” < co 
and f(z) = CFFf=, u,(z -zo)” whenever z E U and Iz -zo] <E. In this case, a, = 
f’“‘(zo)/n! for each n 20. An analytic map whose domain is all of R* is called an 
entire map. Apolynomial is an entire map of the form ~~=, &zk where a~, ai, . . . , a, 

are complex numbers. 
Let J c I38 and let f : J -P R or R* be a map. Keeping in mind that R is identified 

with [w x {0}, we define f to be analytic if f extends to an analytic map F : U + R* 

where U is an open subset of R* containing J. f is entire/a polynomial if f is the 
restriction to J of an entire map/a polynomial. 
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3. Collections of paths in I* which fail to fix its topology 

The next proposition reveals the technique by which we endow I* with a 
nonstandard topology that preserves the continuity of every element in an appropri- 
ate collection of maps into 1’. 

Proposition 1. Let (Y, /3 : [0, l] + R be maps such that (Y (0) = p (0) = 0 and OL (x) < p(x) 

for each x > 0. Let 

Then there is a space Yand a bijective function CD : I2 + Y with the followingproperties. 
Y is homeomorphic to the space obtained from I2 by identifying the points (t, 0) and 
(--I, 0) for 0 < t G 3. For every open neighborhood N of (0,O) in I’, @ [I2 - (N n W) 
is continuous. 

Proof. Define the map 4 : (0, 11 X [-1, l]+ [0, i] by 

1 

0 if-lGy<a(x)orp(x)Gyal, 

y-a(x) 

4(x, Y)’ /3(x)-a(x) 
if a(x)Gy Gl(a(x)+p(x)), 

P(x)-Y 

p(x)-CU(X) if %(x)+P(x))sp(x). 

Define the function @ : I2 + [0, 11 XL-l, 11 X [0, l] by 

(0, Y9 -x) if-l=zxGO, 

@(“‘)‘I (x,Y,~(x,Y)) if O<x<l. 

Let Y = @(I’). See Fig. 1. We leave the verification of the properties of Y and 0 
to the reader. Cl 

Observe that 1’ is not homeomorphic to the space 2 obtained from 1’ by 
identifying the points (t, 0) and (-r, 0) for 0 < t c $, for the Jordan Curve Theorem 
implies that the only simple closed curve in 1’ which fails to separate 1’ is its 
boundary. However 2 clearly contains many distinct non-separating simple closed 
curves. 

Corollary 2. Let cy, /3 and W be as in Proposition 1. Suppose 9 is a collection of 
proper maps into I2 with the property that for every element f : J + 1’ of 9, there is 
an open neighborhood N of (0,O) in I2 such that f(J) n (N n W) = 0. Then 9 does 
not fix the topology of I*. 

Proof. Let f: J + I2 be an element of 95 Then @ 0 f : J + Y is continuous. Since f 
is proper and I2 is compact, J must be compact. So @ 0 f is proper as well. 
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Fig. 1 

We equip I2 with a nonstandard topology by using 0 to pull back the topology 

on Y. It follows that the nonstandard topology on 1* makes each element of 9 

continuous and proper. 0 

We now show that for appropriate choices of (Y and /3, the collection of analytic 

paths in I2 and the collection of regular twice differentiable paths in 1* satisfy the 

hypothesis of Corollary 2. 

Theorem 3. Let W = {(x, y) E R*: x > 0 and e-l’” c y c 2 e-l”}. Iff: [0, l]+ R* is 

an analytic path in R*, then there is an open neighborhood N of (0,O) in R2 such 
thatf[O, l]n(Nn W)=0. 

Proof. It is well known that a C” map 5 : R + [0, ~0) is defined by 

r(t)={; 
-I” for t > 0, 

fortGO. 

Hence l’“‘(O) = 0 for each n a 0. 

Assume there is an analytic path f: [0, 1]+R2 for which Theorem 3 fails. Then 

f(t) = (g(t), h(t)) where g, h : [0, l] + R are analytic. (The power series coefficients 



F.D. AncelJ Paths and rays in the plane 103 

for g and h are the real and imaginary parts of the power series coefficients of f) 

Sincef violates Theorem 3, there is a sequence {fk} in [0, l] such that 0 < g(fk) < l/k 

and <(g(fk)) G h (fk) c 25(g(tk)) for each k 3 1. We can assume {tk} converges to 

to E [0, 11. Consequently g(to) = h (fo) = 0. 
We shall now argue inductively that h(“)(to) = 0 for each n 5 1. Since h is analytic, 

it will then follow that h(t) = 0 for all t E [0, 11, contradicting the fact that 0 < 

l(g(tk))ch(rk) for all kz=l. Let nsl and assume hCm)(to)=O for O~rn~n-1. 

Then n applications of L’Hospital’s Rule yields 

limb(t)= h (n’(t,,) 

r”o(f-tfo)” n! . 

Since ~‘“‘(g(to)) = 0 for all m 2 0, then n applications of L’Hospital’s Rule yields 

l im 5% (f>) - = (g’(to))” lim i’“‘z(r)) = 0. 

f-b (t-to)” f-to 

Now if we divide through the inequality S(g(fk)) G h (fk) =Z 2l(g(tk)) by (fk -to)” and 

take the limit as k + 00, we obtain 0s h’“)(to)/n ! s 0. Thus h(“)(to) = 0. Cl 

From Corollary 2 and Theorem 3, we conclude: 

Corollary 4. The collection of analytic paths in I2 does not fix the topology. 

Corollary 5. No analytic path in R2 passes through the sequence {(l/n, l/e”): n 2 1). 

We now consider regular twice differentiable paths in I’. 

Theorem 6. Let W = {(x, y) E R2: x > 0 and x4’3 c y c 2~~‘~). If f : [0, l]+ R2 is a 
regular twice differentiable path in R2, then there is an open neighborhood N of (0,O) 
in R2 such that f[O, l] n (N n W) = 8. 

Proof. Assume there is a regular twice differentiable path f : [0, l]+ R2 for which 

Theorem 6 fails. Let f(r) = (g(t), h(t)). Then there is a sequence {t,,} in [0, l] such 

that O<g(t,)< l/n and (g(t,))4’3ch(tn)c2(g(rn))4’3foreachn 3 1. We can assume 

{r”} converges to r. E [0, 11. Hence g(to) = h (to) = 0. Therefore 

lim kw4’3 lim --=~_~o[(~)4’3(r-io)1~3] 
r-b t-to 

= (g’(to))4’3 * 0 = 0 

and lim,,, h(t)/(t -to) = h’(t,). Now if we divide through the inequality (g(fn))4’3 G 

h(r,) =z 2(g(t,))4’3 by rn -to and take the limit as n + 00, we conclude that 

h’(to) = 0. Since f is regular and fl(to) = (g'(to), h’(to)), then necessarily g’(to) # 0. 

Consequently g’(t) # 0 for t sufficiently close to to. (g’ is continuous because g is 
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twice differentiable.) Now an application of L’Hospital’s Rule yields 

lim h(t) 3 -- ( ) lim h’(r) 
f-f0 (g(t))4’3 - 4g’(to) r-*ro (g(t))“3 

= (A) )iII [ (~)(f$y30 -toY] 

=~~h”(to)*(--&)1’3*o=o. 
Wto) 

We have reached a contradiction, because the inequality 0 < (g(t,))4’3 C h(t,) implies 

h (r”)l(g(r”)) 4’3a1forallnZ=1. 0 

From Corollary 2 and Theorem 6, we conclude: 

Corollary 7. The collection of regular twice differentiable paths in I2 does not fix 
the topology. 

Corollary 8. No regular twice differentiable path in R2 passes through a subsequence 
of {(l/n3, l/n4): n 2 1). 

4. Collections of paths in I2 which fix its topology 

We begin this section with a criterion which guarantees that a collection of proper 

maps into a space fixes the topology. 

Proposition 9. Let 9 be a collection of proper maps from metric spaces into a locally 
compact metric space X. If for each sequence {x,,} in X, some element of 9 passes 
through a subsequence of {x,}, then 9fixes the topology. 

Proof. Let Y denote X equipped with a locally compact Hausdorff topology that 

makes each element of 9 continuous and proper. Let e :X + Y denote the identity 

function. Then for each element f : J +X of 9, e 0 f : J + Y is continuous and proper. 

We must prove that e is a homeomorphism. 

We first argue that e is continuous. For suppose not. Then there is a sequence 

{w,} in X which converges to a point x in X such that no subsequence of e(w,) 

converges to e(x). By passing to a subsequence, we can assume there is an element 

f :J +X of 9 which passes through {w,}. Hence, for each n 2 1 we can select a 

point s, in f-‘(w,). Since the set {w,: n 2 1) u(x) is compact and f is proper, then 

f-l({wn: n 3 l}u {x}) is compact. It follows that by passing to a subsequence, we 

can assume that {s,} converges to a point t of J. Then necessarily f(t) = x. Since 

e 0 f : J + Y is continuous, then {e 0 f (s,)} converges to e 0 f(t). Thus, {e (w,)} con- 

verges to e(x). We have reached a contradiction. 
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Next we argue that e is proper. For suppose not. Then there is a compacturn C 
in Y such that e-‘(C) is not compact. Consequently, e-‘(C) must contain a sequence 
{x,,} that has no converging subsequence. By passing to a subsequence, we can 
assume there is an element f :.I +X of 9 which passes through {x,}. Hence, for 
each n > 1 we can select a point t, in J such that f(f,,) = x,. Therefore, no subsequence 
of {t,,} can converge. Since e of is proper, then (e of)-‘(C) is a compacturn. As {t”} 
lies in (e of)-‘(C), we see that some subsequence of {t,} must converge. We have 
reached a contradiction. 

Finally we argue that e -’ is continuous. Let C be a closed subset of X. We shall 
prove that e(C) is a closed subset of Y. Let y E Y-e(C). There is an open 
neighborhood N of y whose closure, cl N, is compact. The propriety of e 
implies that e-‘(cl N) is compact. Thus, C ne-‘(cl N) is compact. Therefore, 
e(C ne-‘(cl N)) = e(C) ncl N is a compact and, hence, closed subset of Y. It 
follows that N - (e(C) n cl N) = N -e(C) is an open neighborhood of y which 

misses e(C). Cl 

We shall now demonstrate that each bounded sequence in the plane has a 
subsequence through which a C” arc passes and a subsequence through which a 
regular C’ arc passes. We deduce both of these results from the following lemma. 

Lemma 10. Given strictly decreasing sequences {t”} and {x”} converging to 0 such 

that tn+l s it,,, there is a non-decreasing onto map (Y :R + R with the following 

properties. 
(1) (Y (t,) = x, for each n 2 1. 
(2) (Y IlR -{0} is C”. 
(3) {tER: a’(t)=O)~{Ob-JkJ;~P_1 [~“+I,~f”Ib-J{tI~. 
(4) (Y is a Ck map (at 0) for every integer k 2 1 for which {xn/(tn)k} converges 

to 0. 

Proof. Using the map 5 defined in the proof of Theorem 3, we specify a C” map 
n :R+[O, I] by 

770) = l(t)l(l- t) C(t)fU - t> dt. 

Thenn(-~,0]=0,n[1,co)=1andn’(t)>0forO<t<1. 
For each n 2 1, define the C” map LY, :R + [x,+r, x,] by 

CYn(t)=x,+l+(x,-X,+1) * vWlL~-1). 

Then (~“(-00, $t,] =x,+1, an[tn, ~0) = xn, ai, is positive on (b,,, t,), and for k z 1 

al)(t) = (xn(;;;fl) 2k?7’k’((2t/t”)- 1). 
” 
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Define the C” maps ao: R + [xl, co) and a_:R+(-co,01 by (~~(f)=x~+[(f-fi) 

and~_(t)=-~(-f).Thenao(-0o,f~]=x~,a!~(t)>Ofor~>x~andcro[t~,~)=[x~,~); 

and o_[O, co) = 0, (Y I_(t) > 0 for r < 0 and (~-(-co, 0] = (---a), 01. 

The desired map (Y : R + R is defined by 

((am for t 2 tl, 

CY (t) = 

i 

a,(t) for it” G r G t,, 

x”+~ fortn+iGtG3fn, 

a_(t) for r G 0. 

The only property of (Y which requires proof is (4). We proceed by induction on 

k. Assume (4) is valid for the positive integer k, and suppose {~,/(t,)~“} converges 

to 0. Then {~J(c,)~} also converges to 0, and the inductive hypothesis implies CX’~‘(O) 

exists. Hence CZ’~‘(O) = a!!“(O) = 0. Let Mj = max{q”‘(r): 0 < t G 1) for each 

j 20. To prove that c~(~+i)(O) exists and equals zero it suffices to establish that 

lim,io c~‘~‘(t)/t = 0. The latter follows from the observation that if it, G r s rn, then 

To prove the continuity of (Y (k+1)(f) at r = 0, it suffices to establish that 

lim,io (Y (k+1)(f) = 0. The latter follows from the observation that if ft, G t s r,,, then 

Now we show how to use Lemma 10 to pass a C” arc through a subsequence 

of a given bounded sequence in the plane. 

Theorem 11. If {z,} is a bounded sequence in 02’ (I*), then there is Q C” arc in R* 

(I*) which gasses through a subsequence of (2,). 

Proof. Since {z,} = {(x,, y,)} is bounded, then by passing to subsequences, we can 

assume that {z,} converges to z. = (x0, yo) and that {x,} and {y,} are strictly monotone. 

(If a subsequence of either {x,} or {y,} is constant, then a subsequence of {z,} lies 

on a straight line, and we are done. So we can assume this doesn’t happen.) 

Furthermore, we can assume that Ix, -x0] < l/2(“‘) and Iy,, - yo] < l/2’““. These 

inequalities allow us to use Lemma 10 to obtain non-decreasing onto C” maps 

LY :lR+R andp :R+R such that a(1/2”-‘)= Ix, -xol,p(1/2”-‘)= ]yn-yo] andsuch 

that CX’ and p’ are zero only at points of the countable set (0, l,& a, i, * * - }. It 

follows that (Y and p are actually homeomorphisms of IX. Let u = (xi -xo)/lxi -xc\ 

and T = (yi - yo)/]yl - yo]. Define the isometry T of R* by T(x, y) = (ax +xo, 7y + ~0). 

Define themapf:R+R* byf(t) = T(cll(t),p(t)).Thenf(1/2”-‘)=z, for each n > 1. 

So f([O, 11) is a C” arc which passes through (2,). 
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Now suppose {z,} lies in 1’. T-‘(I*) is a square in the plane which contains 

(a(O), P(0)) and (a(l), P(l)), and whose sides are parallel to the x and y axes. 
Since 01 and /3 are increasing functions, it follows that (cu (t), P(t)) E T-‘(1’) for each 
t E [0, 11. Thus f([O, 11) c 1*. Cl 

We use Lemma 10 a second time to pass a regular C’ arc through a subsequence 
of a given bounded sequence in the plane. 

Theorem 12. If (2,) is a bounded sequence in R* (Z*), then there is a regular C’ 
arc in R* (I*) which passes. through a subsequence of (2,). 

Proof. Since {z,} is bounded and the unit circle is compact, we can assume {z,} 

converges to a point zo and ((2, - ro)/l z, -tot> converges to a point u with ]u/= 1. 
For each n 3 1, let w, = (x”, y,) = (z, - ZO)/U. (Here we are performing division in 
the field of complex numbers.) Then {w,} converges to (0, 0) and {w,/]w,]} converges 

to (LO). So kll%I1 converges to 1 and {y,/]w,(} converges to 0. Therefore, {x,}, 
{y,,} and {y,/x,} all converge to 0. Furthermore, by passing to subsequences, we 
can assume 0 < x ,,+i G ix, and {y,} converges strictly monotonically to 0. (If all but 
finitely many yn’s are 0, then a subsequence of (z”} lies on a straight line, and we 
are done. So we can assume this doesn’t happen.) 

Lemma 10 provides a non-decreasing C’ map (Y : R + R! such that (Y (x,) = ]y,) for 
each n 2 1. Hence a(O) = a’(O) = 0. Let u = yi/(yi(. Define the isometry T of R* 
by T(x + iy) = (u - (x + icy)) + ZO. (Here we are performing multiplication in the field 
of complex numbers, and 7 denotes a square root of - 1.) Define the map f : R --, R* 

by f(t) = T(t, a(t)). Then f(x,) = z, for each n 2 1. So f 1 [O, l] passes through a 
subsequence of {z,}. f is C1 because f’(t) = u * (1 +icrcu’(f)). f is regular because 
If(t)1 = 11 + k’(t)1 > 1. f is injective because both T and the map t + (t, a(t)) are 
injective. 

Now suppose {z,} lies in 1*. T-‘(Z*) is a square which contains the straight-line 
segment between (0,O) = T-‘(~0) and (x,, ]y”]) = T-‘(z,) for each n 2 1. Since 
{]y,,]/x,} converges to 0, it follows that T-‘(I*) contains the segment [0, E] X(O) 
for some E > 0. Choose n z= 1 so large that x, s E. Then T-‘(Z*> contains the triangle 
A with vertices (0, 0), (xn, 0) and (x,, 1~~1). There is a S > 0 such that 6 GX, and 
O~a(t)/f G ]y,]/x,, for O< t ~6. Hence (t, a(t))~A for Ott GS. It follows that 
f(t) E Z* for 0 G t s 6. We define g : R + R2 by g(t) = f (at). Then g I [0, 1) is a regular 
C’ arc in 1’ which passes through a subsequence of {z,}. 0 

Combining Proposition 9 with Theorems 11 and 12, we have: 

Corollary 13. The collection of C” arcs in I* fixes the topology. 

Corollary 14. The collection of regular C’ arcs in Z* fixes the topology. 
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5. Collections of paths and rays in the plane 

We now show how to vary the topology of lR2 while preserving the continuity 

and propriety of an appropriate collection of proper maps into IR’. 

Proposition 15. Let a, l3 : [0, 00) + Iw be maps such that (Y(X) <p(x) for each x > 0. 
For each t 2 0, let 

Let Q denote the space obtained from (--CO, CO] by identifying the points 0 and a). 
Then there is a bijective map @ : R2 -+ Q x R such that CD 1 R2 - W, is proper for each 

t 20. 

Proof. @ = G OH where G : R2+ Q x [w is a bijective map such that G 1(-m, t] x Iw 

is proper for each r 2 0, and H is a homeomorphism of R* such that H(R2 - W,) c 
(--00, t] x R! for each t 2 0. The construction of G is obvious. H = h2 0 h1 where 

hl and h2 are homeomorphisms of R2. hl only moves points vertically, h1 maps 

the graph of LY onto A = {(x, -x +o(O)): x SO}, and h1 maps the graph of p onto 

B = {(x, x +p(O)): x 20). h2 only moves points horizontally and to the left, h2(A) = 

{0)x(-~, (Y(O)I,~~~~~(B)={O}X[P(O),(~!). 0 

Observe that R2 is not homeomorphic to Q x R. The Jordan Curve Theorem 

tells us that every simple closed curve in R2 separates R2. However, Q x R clearly 

contains many non-separating simple closed curves. 

Corollary 16. Let (Y, p, W and W,, t 2 0, be as in Proposition 15. Suppose 9 is a 
collection of proper maps into R2 with the property that for every element f: J + R2 
of 9, there is a t 2 0 such that f (J) n W, = 0. Then 9 does not fix the topology of R2. 

Proof. Clearly if f : J + R2 is any element of 9, then @ 0 f : J --, Q x R2 is a proper 

map. So if R2 is equipped with a nonstandard topology by using @ to pull back 

the topology on Q xR, then this nonstandard topology makes each element of 9 

continuous and proper. Cl 

We now show that for an appropriate choice of (Y and p, the collection of 

polynomial rays together with the collection of all paths in lR2 satisfies the hypothesis 

of Corollary 16. 

Theorem 17. For each t Z= 0, let 

(x,y)ER2:xatand 
1 

-cr<- 
x+1 

If f: J +R2 is either a path or a polynomial ray, then there is a t 20 such that 

f(J) n W, = 0. 
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Proof. We need only consider the case in which f is a polynomial ray. Assume 
there is a sequence {tj} in [0, co) such that f(rj)E Wj for each i > 1. f(t) = 
I;=, (uk +ibk)fk where ak and bk are real numbers for 0 < k C n. (‘i’ denotes a square 
root of -1.) Then f(t)=g(t)+ih(t) where g(t)=x;=,aktk and h(t)=~;=,bktk. 
Since (g(tj), h (tj)) E Wj for each i z 1, then {g(rj)} converges to co and {h(t))} is a 
sequence of positive numbers converging to 0. As {g(tj)} converges to CO, so does 
{rj}. Since h is a non-constant polynomial, it follows that {(h(tj))} converges to co. 
We have reached a contradiction. Cl 

From Corollary 16 and Theorem 17, we conclude: 

Corollary 18. The collection of polynomial rays and all paths in R* does not fix the 

topology. 

Corollary 19. No polynomial ray in R2 passes through a subsequence of 
{(n, l/(n + 1)): n 3 1). 

Next we show how to pass a regular injective entire ray through a subsequence 
of any unbounded sequence in the plane. Our proof is based on the following lemma. 

Lemma 20. If {x,} and {y,} are sequence of real numbers such that x,+1 a 2x, > 0 
for each n 2 1 and xTCp=, Iynl/x, <m, then there is an entire map f :R +R such that 

f(x,)=y,foreachnzl. 

Proof. For each n 2 1, since &+n ]z/xk] GE 12 ]/2k-‘~1 G 2]rl/xr for z E R*, then 
Theorem 15.6 of [3] implies that an entire map f,, : W* + R* is defined by f,,(z) = 
nk#n (I-z/xk), and that f”(z)=0 if and only if z=xk for some kfn. Let a,= 
y,,/f” (x,) for each n > 1. We shall argue that an entire map f : R* + lR* is defined by 
f(z) = CzEI arfn(.z). This f has the desired properties: f(R) c R because f,,(R) c R 
foreachnbl,andf(x,)=y,foreachnzl. 

We now show that f is well-defined and entire. Theorem 15.5 of [3] tells us that 
S=n~=,(1-1/2k)>0.Forn>1, 

If”b”)l= ;< (Z- 1) * ,j+, (1 -z) 3 ($)a 

because (x,/x1)- 1 ~x,/2x1 and &/xk G l/2”-k for k > n. Hence 

Lemma 15.3 of [3] implies that ]fn(z)l G e(2’z”‘X1” for each z E lR*. Hence 
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Since CrZf=, ]y,]/x, <co, then Theorem 10.27 of [3] implies that f is well-defined 
and entire. 

Theorem 21. If (2,) is an unbounded sequence in R2, then there is a regular injective 
entire ray which passes through a subsequence of {z,}. 

Proof. We can assume {lz,]} converges to 00 and {z,/]z,]} converges to u where 
Ir.4 I = 1. Let (x,, y,) = z,/u for n 2 1. (Here we are performing division in the field 
of complex numbers.) Then (x,/]z, 1, y,,/lz, I) converges to (1,O). Hence {x,} con- 
verges to 00 and {y,/x,} converges to 0. By passing to subsequences we can assume 
x”+~ 22x,, > 0 for each n > 1 and Cz=p=, ]y,]/x, <co. We now apply Lemma 2 to 
obtain an entire map f : R2 + R2 such that f (x,) = y, for each n 2 1 and f(W) c R. 

We define the entire map g : R2+ R2 by g(z)=u * (z +if(z)). (Here we are 
performing multiplication in the field of complex numbers, and ‘i’ denotes a square 
root of -1.) Clearly g(x,) = z, for each n 3 1. Since g’(z) = u * (1 +if)(z)), then 
Ig’(t)l= 11 +if’(t)] 2 1 for t E R; so g [[O, 00) is regular. g I[O, 00) is injective because 
both the map t + (t, f(t)) and multiplication by u are injective. 0 

Combining Theorems 11, 12 and 21 with Proposition 9, we have: 

Corollary 22. The collection of C” arcs and regular injective entire rays in R2 fixes 
the topology. 

Corollary 23. The collection of regular C’ arcs and regular injective entire rays in 
R2 fixes the topology. 
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