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Abstract

Let Y be a compact metric space that is not an(n− 1)-sphere. If the cone overY is ann-cell,
thenY × [0,1] is ann-cell; if n6 4, thenY is an(n− 1)-cell. Examples are given to show that the
converse of the first part is false (forn> 5) and that the second part does not extend beyondn= 4.
An application concerning when hyperspaces of simplen-ods are cones over unique compacta is
given, which answers a question of Charatonik. 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

There are many interesting results and examples concerning cartesian factors of
Euclidean spaces and cartesian factors ofn-cells (see [17, p. 84] for a brief summary about
cartesian factors ofn-cells, and see [8] for a more complete discussion). However, the
question of when a cone is ann-cell does not seem to have been treated explicitly in the
literature. We obtain results about this in Sections 3 and 4. These results are adequately
summarized in the abstract above. Thus, we prefer at this time to discuss our initial
motivation for obtaining the results.
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Our inquiry into when cones aren-cells was actually motivated by a recent question
about hyperspaces of simplen-ods. We discuss the result that led to the question, and then
we state the question (which we answer in Section 6).

First, let us note some relevant notation and terminology. Acontinuumis a nonempty,
compact, connected metric space. For a continuumX, C(X) denotes the hyperspace of all
subcontinua ofX with the Hausdorff metric [15]. Asimplen-od (n > 3) is a continuum
that is the union ofn arcs emanating from a single point and otherwise disjoint.

Recently, Sergio Macías [12] has proved the following result which corrects an error
in [15, p. 333]: LetX be a locally connected continuum; thenC(X) is homeomorphic to
the cone over a finite-dimensional continuum,Z, if and only ifX is an arc, a simple closed
curve, or a simplen-od.

We are interested in the part of Macías’ result whenX is a simplen-od. LetTn denote a
simplen-od. Then the hyperspaceC(Tn) is then-dimensional polyhedron in Fig. 1 (ideas
for a proof are in 10.2 and 0.54 of [15]). Macías shows thatC(Tn) is a cone by showing that
C(Tn) is homeomorphic to the cone over the continuum that we denote byMn in Fig. 2.

When Macías presented his results in a seminar at the National University of Mexico,
Charatonik asked the following question: IfZ is a continuum such thatC(Tn) is
homeomorphic to the cone overZ, then mustZ be the continuum in Macías’ proof (i.e.,
Mn)?

We answer Charatonik’s question by using results in Sections 3–5. Specifically, we show
in Theorem 6.2 thatZ must beMn if and only if n= 3 or 4.

Fig. 1. Fig. 2.

2. Notation, terminology, and preliminaries

We will use thegeometric coning operator, Cone, which we define as follows. Let
Y be a compactum (= a nonempty, compact metric space). LetI∞ denote the Hilbert
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cube
∏∞
i=1 Ii , whereIi = [0,1] for eachi. ConsiderY as embedded in the Hilbert cube

I∞ × {0}, and fix a pointv = (p,1) ∈ I∞ × [0,1]. Then, for anyS ⊂ Y , Cone(S) is the
union of all the straight line segments inI∞×[0,1] from points ofS to v. We call Cone(S)
thegeometric cone overS. We callv thevertex ofCone(S) assuming thatS 6= ∅ (note that
Cone(∅)= ∅). We callS thebase ofCone(S).

The letterv always denotes the vertex of a cone. Although it may be inferred from
the construction above, we emphasize thatall cones over nonempty subsets of a given
compactumY have the same vertex.

We state the following two easy-to-prove propositions for convenient reference later.

Proposition 2.1. For any compactumY , the geometric coning operator commutes with
the closure operator: Cone(S)=Cone(S) for all S ⊂ Y .

Proposition 2.2. For any compactumY , the geometric coning operator distributes over
nonempty intersections: Cone(

⋂
i∈I Si) =

⋂
i∈I Cone(Si) whenever

⋂
i∈I Si 6= ∅ and

Si ⊂ Y for all i ∈ I.

We point out that whenY is a compactum, Cone(Y ) is homeomorphic to the usual
topological cone overY [14, pp. 47–48]. Therefore, since our results are about cones over
compacta, our results are about topological cones (even though they are stated using the
symbol for the geometric cone). On the other hand, some of our proofs use geometric cones
that are not topological cones.

We use the following special symbols:≈ means “is homeomorphic to”;× is used in
denoting cartesian products;A or cl(A) denotes the closure ofA; if M is a manifold,
∂M denotes the manifold boundary ofM andiM denotes the manifold interior ofM; Rn
denotes Euclideann-space and‖ · ‖ denotes the Euclidean norm;

Bn = {x ∈Rn: ‖x‖6 1
}

and Sn−1= {x ∈Rn: ‖x‖ = 1
}
.

A space that is homeomorphic toBn is called ann-cell; a 1-cell is called anarc. A space
that is homeomorphic toSn is called ann-sphere; a 1-sphere is called asimple closed
curve.

LetX be a compactum with metricd . A closed subset,A, of X is said to be aZ-set in
X provided that for eachε > 0, there is a continuous functionfε :X→ X − A such that
d(fε(x), x) < ε for all x ∈ X [6, p. 2]. We will use the following proposition (which is
an easy consequence of the classical result about unstable values in VI2 of [11, p. 77] and
parts (3) and (4) of 3.1 of [6, p. 2]):

Proposition 2.3. A compactum,A, in ann-manifold,Mn, is aZ-set inMn if and only if
A⊂ ∂Mn.

Other notation and terminology are standard (and may be found in texts in the
references) or will be explained at appropriate places.
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3. Cones that aren-cells

Assuming that Cone(Y ) is ann-cell, we obtain two results:
(1) eitherY is an (n− 1)-sphere orY × [0,1] is ann-cell; and
(2) if n6 4,Y is an (n− 1)-sphere or an (n− 1)-cell.

We will see in Section 4 that the converse of the first result is false (forn> 5) and that the
natural analogue forn> 5 of the second result is also false. We will use the second result
in the proof of the theorem about hyperspaces in Section 6.

We begin with the two Lemmas 3.1 and 3.2. Lemma 3.1 is of some general interest;
we will use Lemma 3.1 later as well as in this section. On the other hand, Lemma 3.2
is merely a technical lemma that is designed for only one purpose: to separate the proof
of Theorem 3.3 into its two natural components.

Lemma 3.1. Let Y be a compactum such thatCone(Y ) is ann-manifold for somen> 2.
Let

β(Y )= {y ∈ Y : 1
2 · y + 1

2 · v ∈ ∂ Cone(Y )
}
.

Then,∂Cone(Y )= Y ∪Cone(β(Y )).

Proof. We first note the following fact, which is easy to prove and which we will use:
(1) For anyy ∈ Y and anyt ∈ (0,1), there is a homeomorphism of Cone(Y ) onto

Cone(Y ) taking(1− t) · y + t · v to 1
2 · y + 1

2 · v.
Now, assume for the moment thatβ(Y ) = ∅. It then follows from (1) that∂Cone(Y ) ⊂
Y ∪ {v}. Thus, sincen> 2 and∂ Cone(Y ) is an(n− 1)-manifold (1.3.4 of [17, p. 3]), we
must have that∂Cone(Y ) ⊂ Y . Hence,v /∈ ∂Cone(Y ). We state what we have proved as
follows:

(2) If v ∈ ∂ Cone(Y ), thenβ(Y ) 6= ∅.
We see easily from (1) that∂Cone(Y )− (Y ∪ {v})⊂ Cone(β(Y )). Furthermore, by (2), if
v ∈ ∂Cone(Y ) thenv ∈Cone(β(Y )). Therefore, we have that

(3) ∂Cone(Y )⊂ Y ∪Cone(β(Y )).
Next, we see from (1) that Cone(β(Y )) − [β(Y ) ∪ {v}] ⊂ ∂ Cone(Y ); thus (since the
manifold boundary of any manifold is closed in the manifold), we have that

(4) Cone(β(Y ))⊂ ∂Cone(Y ).
By (3) and (4), it only remains to prove thatY ⊂ ∂Cone(Y ).

Forε > 0 (ε near 0), consider the maps

fε : Cone(Y )→Cone(Y )

given by

fε(x)= (1− ε) · x + ε · v for all x ∈Cone(Y ).

These maps show thatY is a Z-set in Cone(Y ). Therefore, by Proposition 2.3,Y ⊂
∂Cone(Y ). 2
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There is only one counterexample to the analogue of Lemma 3.1 forn = 1: whenY
is a one-point set. (The only other compactumY for which Cone(Y ) is a 1-manifold is a
two-point set, in which case Lemma 3.1 forn= 1 is true.)

Lemma 3.2. LetY be a compactum that is not an(n− 1)-sphere for somen> 1. LetM =
Y × [0,1], and letq denote the quotient map ofM ontoCone(Y ), whereq(Y × {1})= v.
If Cone(Y ) is ann-cell, then(1)–(3)below hold:

(1) M is ann-manifold;
(2) ∂M = (Y × {0,1})∪ (β(Y )× [0,1]), whereβ(Y ) is as in Lemma3.1;
(3) if U is a neighborhood ofv in Cone(Y ), then there is an(n− 1)-cell,EU , such that

EU ⊂ (∂M)∩ q−1(U) andY × {1} ⊂ iEU .

Proof. The lemma is obviously true forn= 1 (since ifn= 1,Y = {pt.} by our assumption
thatY is not a 0-sphere). Therefore, we assume from now on thatn> 2 (for the purpose of
using Lemma 3.1).

The quotient mapq mapsY × [0,1) homeomorphically onto Cone(Y ) − {v}. Hence,
Y × [0,1) is ann-manifold. Furthermore, since (forβ(Y ) as in Lemma 3.1)

q
[(
Y × {0})∪ (β(Y )× [0,1))]= Y ∪ [Cone

(
β(Y )

)− {v}],
we have by Lemma 3.1 that

∂
(
Y × [0,1))= (Y × {0})∪ (β(Y )× [0,1)).

Now, using what we have proved aboutY × [0,1) and using the natural homeomorphism
of Y × [0,1) ontoY × (0,1], we see thatY × (0,1] is also ann-manifold and that

∂
(
Y × (0,1])= (Y × {1})∪ (β(Y )× (0,1]).

It now follows easily that (1) and (2) of Lemma 3.2 hold.
We prove (3) of Lemma 3.2.
Define the “flipping” homeomorphismϕ of M = Y × [0,1] by ϕ(y, t)= (y,1− t) for

(y, t) ∈M. Then,q ◦ ϕ maps the pair(∂M − (Y × {0}), Y × {1}) homeomorphically onto
the pair(∂ Cone(Y )− {v}, Y ). LetU be a neighborhood ofv in Cone(Y ), and let

V = q ◦ ϕ((∂M)∩ q−1(U)
)
.

Then,V is a neighborhood ofY in ∂Cone(Y ). Hence, to prove (3) it suffices to find an
(n− 1)-cell,D, such thatY ⊂ iD andD ⊂ V − {v}; for then (q ◦ ϕ|∂M − (Y × {0}))−1

mapsD homeomorphically onto an(n − 1)-cell E such thatY × {1} ⊂ iE andE ⊂
(∂M)∩ q−1(U).

To find the (n − 1)-cell D, recall that∂Cone(Y ) ≈ Sn−1. Hence,Rn−1 ≈ Sn−1 −
{point} ≈ ∂Cone(Y )− {v} = Y ∪ [Cone(β(Y ))− {v}]. Thus, there is an(n− 1)-cell,D′,
such thatY ⊂ iD′ andD′ ⊂ ∂Cone(Y )−{v}. By compressingD′ down the coning arcs of
Cone(β(Y )) towardβ(Y ), we can isotopeD′ to an(n− 1)-cellD such thatY ⊂ iD and
D ⊂ V − {v}. This completes the proof of (3).2
Theorem 3.3. Let Y be a compactum that is not an(n − 1)-sphere for somen > 1. If
Cone(Y ) is ann-cell, thenY × [0,1] is ann-cell.
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Proof. Let M = Y × [0,1], and letq be the quotient map ofM onto Cone(Y ), where
q(Y × {1}) = v. We show thatq satisfies the Bing Shrinking Criterion, which we state
in the context of the present situation as follows (σ denotes the supremum metric for the
space of maps fromM onto Cone(Y )):

for anyε > 0, there is a homeomorphism,hε, ofM ontoM
such thatσ(q, q ◦ hε) < ε and diam[hε(Y × {1})]< ε. (#)

Once we prove (#), we will know thatM ≈ Cone(Y ) by Bing’s Shrinking Theorem ([6,
p. 45] or [13, p. 255]); therefore, we will know thatM is ann-cell.

Proof of (#). Fix ε > 0. LetU be a neighborhood ofv in Cone(Y ) such that diam(U) < ε.
Then, by (3) of Lemma 3.2, there is an(n− 1)-cellEU such that

EU ⊂ (∂M)∩ q−1(U) and Y × {1} ⊂ iEU .
By (1) of Lemma 3.2,M is an n-manifold; therefore, by Theorem 2 of Brown [4,

p. 339],∂M is collared inM, which means the following: There is a homeomorphism,
k, of (∂M)× [0,1) onto an open neighborhood of∂M in M such thatk(y,0)= y for all
y ∈ ∂M. Thus, since

EU ⊂ (∂M)∩ q−1(U),

there is at ∈ (0,1) such thatk|EU × [0, t] is an embedding ofEU × [0, t] in q−1(U) and
k(EU × {0})=EU . From now on, we considerEU × [0, t] as actually being contained in
q−1(U) with EU × {0} =EU .

Now, we proceed to define the homeomorphismhε that has the properties in (#). We
do this using a homeomorphism,g, onEU × [0, t] that we obtain as follows. Recall that
Y × {1} ⊂ iEU = iEU × {0}. Let p ∈ iEU . SinceEU ≈ Bn, there is a homeomorphism
hε of M such thathε = id on cl(M − (EU × [0, t])) and such thathε squeezes points of
iEU × [0, t) radially toward(p,0) so that diam[hε(Y × {1})] < ε. Sinceq ◦ hε = q on
M − q−1(U), and sinceq ◦ hε(q−1(U))=U = q(q−1(U)) and diam(U) < ε, we see that
σ(q, q ◦ hε) < ε. This establishes (#).2
Theorem 3.4. LetY be a compactum such thatCone(Y ) is ann-cell for somen6 4. Then,
Y is an(n− 1)-sphere or an(n− 1)-cell.

Proof. Assume thatY is not an(n − 1)-sphere. Then, by Theorem 3.3,Y × [0,1] is an
n-cell. Therefore, sincen6 4, Y is an(n− 1)-cell [2, p. 18]. 2

4. Examples related to previous theorems

We give examples to show that, for eachn > 5, the converse of Theorem 3.3 and
the natural extension of Theorem 3.4 are false. The example concerning Theorem 3.4 is
particularly important since it is used in proving the hyperspace theorem in Section 6. Our
examples are Examples 4.3 and 4.4; we use Propositions 4.1 and 4.2 to verify properties of
the examples.
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We writeπ1(X)= 0 to mean that the spaceX is simply connected [10].

Proposition 4.1. Let Mn be a compactn-manifold for somen > 3. If Cone(Mn) is a
manifold, thenπ1(∂M

n)= 0.

Proof. Clearly, we may assume for the proof that∂Mn 6= ∅. Therefore, by Lemma 3.1,v ∈
∂Cone(Mn). Also, since Cone(Mn) is an(n+ 1)-manifold,∂Cone(Mn) is ann-manifold
without boundary [17, p. 3]. Hence,v has an open neighborhood,U , in ∂Cone(Mn)−Mn

such thatU ≈ Rn. Note thatU − {v} ≈ Rn − {0} and thatπ1(Rn − {0}) = 0 (because
n> 3). Thus,π1(U − {v})= 0.

Now, letq denote the quotient map ofMn× [0,1] onto Cone(Mn), whereq(Mn×{1})
= v, and let

f = q|(∂Mn)× (0,1].
Clearly,f maps (∂Mn)× (0,1] onto Cone(∂Mn)−Mn; thus, by Lemma 3.1,

f
[
(∂Mn)× (0,1]]= ∂Cone(Mn)−Mn.

Therefore,f−1(U) is an open neighborhood of(∂Mn)×{1} in (∂Mn)×(0,1]. Thus, since
∂Mn is compact, there existst ∈ (0,1) such that(∂Mn)× {t} ⊂ f−1(U). Let

W = f−1(U)− (∂Mn)× {1}.
Clearly,f |W is a homeomorphism ofW ontoU − {v}. Thus, sinceπ1(U − {v})= 0, we
have thatπ1(W)= 0. Now, note that

(∂Mn)× {t} ⊂W ⊂ (∂Mn)× (0,1).
Hence, since(∂Mn)×{t} is obviously a retract of(∂Mn)× (0,1), we see that(∂Mn)×{t}
is a retract ofW . Thus, sinceπ1(W)= 0, we have thatπ1((∂M

n)× {t})= 0 [10, p. 150].
Therefore,π1(∂M

n)= 0. 2
In the next proposition,Σ(Z) denotes the suspension overZ (i.e.,Σ(Z) is the quotient

space obtained fromZ×[−1,1] by shrinkingZ×{−1} andZ×{1} to (different) points).

Proposition 4.2. For any compactumZ, Cone(Cone(Z))≈Cone(Σ(Z)).

Proof. SetQ= I∞ × [−1,1] × [0,1]. For any two subsetsA andB of Q, let thejoin of
A andB be the union of all the straight line segments joining points ofA to points ofB,
and denote it byA ∗B. We can assume thatZ ⊂ I∞×{0}× {0} ⊂Q. Letp ∈ I∞, and set
v = (p,1,0), v′ = (p,−1,0), andw = (p,0,1). Hence,v, v′, w ∈Q. (See Fig. 3.) Then,
Cone(Z)=Z ∗ v and Cone(Cone(Z))= (Z ∗ v) ∗w =Z ∗ (v ∗w) (the join of three sets is
associative because the join of sets is the union of the joins of points and the join of three
points is clearly associative). Hence, Cone(Cone(Z)) is the join ofZ to the straight line
segmentv ∗w. Also,

Σ(Z)= (Z ∗ v) ∪ (Z ∗ v′)=Z ∗ {v, v′}, and

Cone
(
Σ(Z)

)= (Z ∗ {v, v′}) ∗w =Z ∗ ({v, v′} ∗w)=Z ∗ ((v ∗w) ∪ (v′ ∗w)).
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Fig. 3.

In other words, Cone(Σ(Z)) is the join ofZ to the broken line segment(v ∗w)∪ (v′ ∗w).
Clearly, a homeomorphism from the straight line segmentv ∗w to the broken line segment
(v ∗ w) ∪ (v′ ∗ w) induces a homeomorphism from the joinZ ∗ (v ∗ w) to the join
Z ∗ ((v ∗w) ∪ (v′ ∗w)). We conclude that Cone(Cone(Z))≈Cone(Σ(Z)). 2

We are now ready to present our examples.
Our first example concerns the converse of Theorem 3.3. Let us first note that the

converse of Theorem 3.3 is true whenn 6 4: If Y × [0,1] is ann-cell andn 6 4, then
Y is an (n − 1)-cell [2, p. 18] and, therefore, Cone(Y ) is an n-cell. However, as the
following example shows, the converse of Theorem 3.3 is false for eachn> 5 even when
Y is assumed to be a manifold.

Example 4.3. For eachk > 4, there is a compact, piecewise lineark-manifold,Mk, such
thatMk×[0,1] is a(k+1)-cell and, yet,π1(∂M

k) 6= 0 (see [16] whenk = 4 and [7] when
k > 5). By Proposition 4.1, Cone(Mk) is not a manifold, much less a(k+1)-cell (as would
be required for the converse of Theorem 3.3 whenn= k + 1> 5).

The following example shows that Theorem 3.4 does not extend to anyn> 5:

Example 4.4. Fix k > 3, and letA be an arc inSk such thatπ1(S
k − A) 6= 0 (see [9]

whenk = 3 and [3] whenk > 3). Let Sk/A denote the quotient space ofSk obtained by
shrinkingA to a pointp. First, we show that Cone(Sk/A) is not a manifold. Suppose, to
the contrary, that Cone(Sk/A) is a manifold. Then, since(Sk/A)×R1≈ Sk ×R1 [1], we
see from Lemma 3.1 that

∂Cone(Sk/A)= Sk/A.
Thus, sinceSk/A is not a manifold [1, p. 1] and manifold boundariesare manifolds [17,
p. 3], we have a contradiction. Therefore, we have shown that Cone(Sk/A) is not a
manifold. Next, we letY = Cone(Sk/A) and we show that Cone(Y ) is a (k + 2)-cell.
By Proposition 4.2,

Cone(Y )=Cone
(
Cone(Sk/A)

)≈Cone
(
Σ(Sk/A)

);
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therefore, sinceΣ(Sk/A)≈ Sk+1 [17, p. 84], we have that

Cone(Y )≈Cone(Sk+1)≈ Bk+2.

We have shown that Cone(Y ) is a(k+2)-cell but thatY is not even a manifold. Therefore,
for anyn= k + 2> 5, the analogue of Theorem 3.4 is false.

5. Two useful results

We prove the results in Propositions 5.2 and 5.3 for use in the next section.

Lemma 5.1. Let Y be a compactum such thatCone(Y ) embeds inRn. If Y contains an
(n− 1)-sphereZ, thenY =Z.

Proof. Assume throughout the proof that Cone(Y )⊂Rn. Let

U =Cone(Z)−Z.
Note that the vertexv of Cone(Y ) is a point ofU (sinceZ ⊂ Y andv is also the vertex of
Cone(Z)).

We show thatU is open inRn as follows. SinceZ ≈ Sn−1, Cone(Z) ≈ Bn and
∂Cone(Z) = Z. Hence,U ≈ Bn − Sn−1. Therefore, by Invariance of Domain [17, p. 3],
U is open inRn.

Now, sincev ∈ U ⊂ Cone(Z) and sinceU is open inRn, clearly v is not arcwise
accessible fromRn−Cone(Z). On the other hand, there is certainly an arc in[Cone(Y )−
Cone(Z)] ∪ {v} from any point of Cone(Y )−Cone(Z) to v. Therefore, there is only one
conclusion to draw:Y =Z. 2
Proposition 5.2. Let X be a continuum such thatC(X) embeds inRn, wheren > 3. If
C(X)≈Cone(Y ) for some compactumY , thenSn−1 does not embed inY .

Proof. By our assumptions, Cone(Y ) embeds inRn. Suppose thatSn−1 embeds inY .
Then, by Lemma 5.1,Y ≈ Sn−1. Thus, sinceC(X) ≈ Cone(Y ) by assumption, we now
have thatC(X)≈ Bn; however,C(X) 6≈ Bn sincen> 3 (1.208.4 of [15, p. 199]). 2

We make three comments about the proposition that we just proved.
(1) The conclusion to Proposition 5.2 can not be strengthened to say thatSn−2 does not

embed inY . This follows by lettingX be a simplen-od and lettingY be Macías’
continuumMn in Fig. 2 (recall from the Introduction thatC(X)≈Cone(Mn) [12]).

(2) If we assume as in Proposition 5.2 thatC(X) embeds inRn (n > 3), but we only
assume that Cone(Y ) embeds inC(X), then it can happen thatSn−1 embeds inY
(e.g., letX be a simplen-od and letY = Sn−1). However, under the assumptions just
mentioned,Sn does not embed inY : For if Sn embeds inY and Cone(Y ) embeds in
C(X), thenBn+1 embeds inC(X) and, hence,C(X) does not embed inRn.
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(3) Regarding the assumption in Proposition 5.2 thatn> 3, we note that the only three
continuaX for which C(X) embeds inR2 are an arc, a simple closed curve, and
a single point [15, p. 238]. Furthermore, Proposition 5.2 forn = 2 is false since
C(X)≈Cone(S1) whenX is an arc or a simple closed curve [15, pp. 30–31].

Our next proposition is a general result about cones. It involves the notion of a
dimensional component, which we define as follows.

LetZ be a space. Forz ∈Z, let dimz(Z) denote the dimension ofZ atz. For any integer
n> 0, or forn=∞, let

dn(Z)=
{
z ∈Z: dimz(Z)= n

}
.

Then, by adimensional component ofZ we mean a maximal connected subset ofdn(Z)

for somen such thatdn(Z) 6= ∅.
We letπ denote the natural projection of Cone(Y )− {v} ontoY given by

π
(
(1− t) · y + t · v)= y for all (1− t) · y + t · v ∈Cone(Y )− {v}.

Proposition 5.3. Let Y be a compactum, and letD be a dimensional component of
Cone(Y ). Let M = π(D − {v}). Then,D = Cone(M). In more descriptive terms, the
closure of a dimensional component ofCone(Y ) is the cone over a subcompactum ofY .

Proof. First, we prove the following fact:

For eachy ∈ Y , Cone({y})− {v} is contained in a single dimensional component of

Cone(Y ). (1)

Proof of (1). Fix y ∈ Y . Letpt = (1− t) · y + t · v for 06 t < 1. If 0< s < t < 1, then

dimps

(
Cone(Y )

)= dimpt

(
Cone(Y )

)
since there is a homeomorphism of Cone(Y ) onto Cone(Y ) that takesps topt . If 0< t < 1,
then dimp0(Cone(Y )) = dimpt (Cone(Y )) by the following reasoning: Arbitrarily small
neighborhoods ofpt can be “truncated” to obtain homeomorphic copies of arbitrarily
small neighborhoods ofp0 so that boundaries truncate to boundaries; arbitrarily small
neighborhoods ofp0 can be “doubled” to obtain homeomorphic copies of arbitrarily small
neighborhoods ofpt so that boundaries double to boundaries; truncation and doubling do
not raise boundary dimension by the subspace theorem [11, p. 26] and the sum theorem [11,
p. 30]. Therefore, we have shown that Cone(Y ) has the same dimension at every point of
Cone({y})− {v}. Thus, since Cone({y})− {v} is connected, we have proved (1).

Now, we use (1) to prove that Cone(M)⊂D. By (1), we see that

Cone
({y})− {v} ⊂D for eachy ∈M.

Hence, Cone(M)− {v} ⊂D andv ∈D. Thus, Cone(M)⊂D. Therefore, it follows using
Lemma 2.1 that Cone(M)⊂D.
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It remains to prove thatD ⊂ Cone(M). To prove this, we first need to prove a fact about
the dimensional component,Dv , of Cone(Y ) containingv; namely, we prove that

Dv 6= {v}. (2)

Proof of (2). We take two cases.
Case1. dim(Y )= n <∞. Then, dim(Cone(Y )) = n+ 1 (see, e.g., 8.0 of [15, p. 301]).

Hence, Cone(Y ) contains an(n+1)-dimensional Cantor manifoldK (Theorem VI8 of [11,
p. 94]). We prove that

dimv

(
Cone(Y )

)= n+ 1. (∗)
If v ∈K, then dimv(K)= n+ 1 by (A) of [11, p. 93]; thus since dim(Cone(Y )) = n+ 1,
(∗) holds. Therefore, to prove (∗), we assume thatv /∈ K. Now, suppose that (∗) is false,
i.e., dimv(Cone(Y )) 6 n. Then, sincev /∈K, there is an open neighborhood,V , of v such
thatK ∩ V = ∅ and dim(V − V ) 6 n− 1. Hence, we can pushK up towardsv with an
isotopy,{ht }06t61, such thath0(K)=K andh1(K)∩ V 6= ∅. LetU = Cone(Y )−V . We
argue that there existsto such thathto(K)∩U 6= ∅ andhto (K)∩ V 6= ∅: Let

s = sup
{
t ∈ [0,1]: ht (K)⊂Cone(Y )− V }.

Sinceht (K)≈K for eacht ∈ [0,1] and since dim(V − V )6 n− 1, we see thatht (K) 6⊂
V −V for anyt ∈ [0,1]. Hence, sincehs(K)⊂ Cone(Y )−V , we see thaths(K)∩U 6= ∅.
Thus, sinceU is open in Cone(Y ), there existsto > s such thathto (K) ∩ U 6= ∅;
furthermore, sinceto > s andhto (K) 6⊂ V − V , hto(K) ∩ V 6= ∅. It follows easily that
hto(K) − (V − V ) is not connected. However, this is a contradiction sincehto (K) is
an (n + 1)-dimensional Cantor manifold and dim(V − V ) 6 n − 1. Therefore, we have
proved (∗).

Now, we complete the proof of (2) for Case 1. Letz ∈ K − {v} (z exists since
dim(K) = n + 1). Let y = π(z). Since dim(Cone(Y )) = n + 1 and dimz(K) = n + 1,
clearly dimz(Cone(Y )) = n + 1. Hence, by (1), Cone(Y ) is (n + 1)-dimensional at each
point of Cone({y})− {v}. Therefore, we see from (∗) that Cone({y})⊂ Dv . This proves
(2) under the assumption in Case 1.

Case2. dim(Y )=∞. Then, by combining a result of Tumarkin [18] with Theorem VI8
of [11, p. 94], we have that one (or both) of the following holds:

(a) Y contains an infinite-dimensional Cantor manifold,Y∞;
(b) Y contains anni -dimensional Cantor manifold,Yni , for eachi, wheren1 < n2 <

· · ·< ni < · · · .
Assume first that (a) holds. Then the proof of (∗) in Case 1 can be easily adapted to prove
that dimv(Cone(Y )) = ∞. Hence, Cone(Y∞) ⊂ Dv ; therefore, (2) holds assuming (a).
Next, assume that (b) holds. Letpi ∈ Yni for eachi, and assume without loss of generality
that {pi}∞i=1 converges to, say,p. Now, fix q ∈ Cone({p}) − {p}. Suppose thatq has an
open neighborhood,V , in Cone(Y ) such thatV ∩ Y = ∅ and dim(V − V )= k <∞. Fix
nj > k + 2 such thatpnj ∈ π(V ). Let {ht }06t61 be an isotopy ofYnj in Cone(Y ) such
that h0(Ynj ) = Ynj andh1(Ynj ) ∩ V 6= ∅. Then, as in the proof of (∗) in Case 1, there
existsto such thathto (Ynj )− (V −V ) is not connected, a contradiction (sincek 6 nj −2).
Hence, we have shown that dimq (Cone(Y )) =∞ for eachq ∈ Cone({p}) − {p}. Thus,
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Cone({p})− {p} ⊂Dv ; therefore, (2) holds assuming (b). This completes the proof of (2)
under the assumption in Case 2.

Therefore, we have proved (2).

Now, we prove thatD ⊂ Cone(M). It is easy to see thatD ⊂ Cone(M) (use (2) if
D =Dv). Therefore,D ⊂ Cone(M) by Proposition 2.1. 2

6. Application to hyperspaces

Using previous results, we answer Charatonik’s question that we discussed in the
Introduction.

We use the following notation throughout the section. For anyn> 3,Tn denotes a simple
n-od andMn denotes Macías’ continuum (Fig. 2, Section 1). IfKn is a compactum such
that Cone(Kn) ≈ C(Tn), then Fig. 1 in Section 1 depicts Cone(Kn); with this in mind,
Qn denotes the maximaln-cell in Cone(Kn), andF1, . . . ,Fn denote the maximal 2-cells
(“fins”) that comprise the closure of Cone(Kn)−Qn.

In the following lemma, we give some technical information for convenient reference in
the proof of Theorem 6.2. Most of the proof of the lemma is based on Fig. 1 in Section 1.

Lemma 6.1. If Kn is a compactum such thatC(Tn) ≈ Cone(Kn) for somen > 3, then
(6.1.1)–(6.1.5)are true:

(6.1.1) Kn is a continuum;
(6.1.2) Cone(Kn)=Qn ∪ (⋃n

i=1Fi);
(6.1.3) the dimensional components ofCone(Kn) areQn andFi −Qn for eachi 6 n,

Qn =Qn andFi −Qn = Fi for eachi 6 n;
(6.1.4) Qn ∩ Fi = ∂Qn ∩ ∂Fi is an arc for eachi 6 n;
(6.1.5) the vertexv of Cone(Kn) is the unique point in

⋂n
i=1 ∂Fi = Fj ∩ Fk for any

j 6= k.

Proof. To prove (6.1.1), note the following easy-to-prove fact: The vertex of the cone
over any nonconnected space separates the cone. Also, note from Fig. 1 that no point of
Cone(Kn) separates Cone(Kn). Thus,Kn must be connected. This proves (6.1.1).

The statements in (6.1.2)–(6.1.4) follow easily by inspecting Fig. 1.
Finally, we prove (6.1.5). Note that the vertex of any cone has arbitrarily small,open

neighborhoods in the cone whose closures are homeomorphic to the cone. Also, note
from Fig. 1 that the point in

⋂n
i=1 ∂Fi is the only point of Cone(Kn) with such open

neighborhoods. Therefore, the point in
⋂n
i=1 ∂Fi must be the vertex of Cone(Kn). That

the equality in (6.1.5) holds for anyj 6= k is, of course, evident from Fig. 1.2
We answer Charatonik’s question with the following theorem.

Theorem 6.2. If n = 3 or 4 and C(Tn) ≈ Cone(Kn) for some compactumKn, then
Kn ≈Mn. However, for eachn> 5 there is a continuum,Ln, such thatC(Tn)≈ Cone(Ln)
butLn 6≈Mn.
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Proof. To prove the first part of the theorem, assume thatn = 3 or 4 and thatC(Tn) ≈
Cone(Kn) for some compactumKn. By (6.1.3) and Proposition 5.3, there are compactaE

andA1, . . . ,An in Kn such that (forQn andFi as above Lemma 6.1)
(1) Qn =Cone(E), and
(2) Fi =Cone(Ai) for eachi 6 n.

Note that by (1), (2), and (6.1.2), we have that
(3) Kn =E ∪ (⋃n

i=1Ai).
Therefore, once we prove (4)–(7) below, we will know thatKn ≈ Mn (see Fig. 2 in
Section 1).

SinceQn is ann-cell andn= 3 or 4, we see from (1) and Theorem 3.4 thatE is either
an(n− 1)-cell or an(n− 1)-sphere; since the vertexv of Qn = Cone(E) lies in ∂Qn (by
(6.1.4) and (6.1.5)), clearlyE can not be an(n− 1)-sphere. Therefore,

(4) E is an(n− 1)-cell.
Next, recall that eachFi is a 2-cell; hence, by (2) and Theorem 3.4, eachAi is either

a 1-sphere or an arc. However, noAi can be a 1-sphere sincev ∈ ∂Cone(Ai) for eachi
by (2) and (6.1.5). Thus, we have that

(5) Ai is an arc for eachi 6 n.
By (2) and (6.1.5), Cone(Aj ) ∩ Cone(Ak) = Fj ∩ Fk = {v} for j 6= k; hence, we have

that
(6) Aj ∩Ak = ∅ wheneverj 6= k.
By Proposition 2.2 and by (1) and (2), Cone(E∩Ai)=Cone(E)∩Cone(Ai)=Qn∩Fi ;

hence, by (6.1.4), Cone(E ∩Ai) is an arc. Thus,E ∩Ai must be a one-point set or a two-
point set. Suppose thatE ∩Ai is a two-point set. Then, clearly,

v /∈ ∂ Cone(E ∩Ai)= ∂(Qn ∩Fi);
however, we know from (6.1.5) and Fig. 1 thatv ∈ ∂(Qn ∩ Fi). Having thus established a
contradiction, we now know thatE ∩Ai consists of only one point, sayxi . Therefore,

Cone
({xi})=Qn ∩Fi.

Hence, by (6.1.4), Cone({xi})= ∂Qn ∩ ∂Fi . Thus, by (1),

Cone
({xi})⊂ ∂Cone(E).

Therefore, by Lemma 3.1 and Invariance of Domain [17, p. 3], it follows thatxi ∈ ∂E
(recall (4)). Similarly (using (2) and (5)), we see thatxi ∈ ∂Ai for eachi. Therefore, we
have proved that

(7) E ∩Ai = {xi} andxi ∈ ∂E ∩ ∂Ai for eachi 6 n.
On considering (3)–(7) and keeping Fig. 2 in mind, we see thatKn ≈Mn. This proves

the first part of Theorem 6.2.
To prove the second part of Theorem 6.2, fixn > 5. Write Macías’s continuumMn as

follows:Mn =D ∪ (⋃n
j=1Ej), whereD is an(n− 1)-cell and, for 16 j 6 n, Ej is an

arc such thatD ∩ Ej = ∂D ∩ ∂Ej = {pj }, a single point. Letk = n − 2, and letY =
Cone(Sk/A) be as in Example 4.4. Then, by Example 4.4,Y is not an(n − 1)-cell but
Cone(Y ) is ann-cell. Choose distinct pointsq1, q2, . . . , qn in (Sk/A)− {A}, whereA is
regarded both as an arc inSk and as a point inSk/A. Form the spaceLn by attachingn
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pairwise disjoint arcsI1, I2, . . . , In to Y so thatIj ∩ Y = ∂Ij ∩ ∂Y = {qj } for 16 j 6 n.
Thus,qj is an end point ofIj for 16 j 6 n. We will show thatLn is not homeomorphic
to Macías’ continuumMn but thatC(Tn)≈ Cone(Ln).

Clearly,Ln 6≈Mn because the dimensional component ofMn of dimensionn− 1 is the
(n−1)-cellD, but the dimensional component ofLn of dimensionn−1 isY which is not
an(n− 1)-cell.

We show thatC(Tn)≈ Cone(Ln) by showing that Cone(Mn)≈ Cone(Ln).
Set

J =Cone
({p1,p2, . . . , pn}

)⊂Cone(D),

and set

K =Cone
({q1, q2, . . . , qn}

)⊂Cone(Y ).

Then,J andK aren-ods embedded in the(n − 1)- spheres∂Cone(D) and∂Cone(Y ),
respectively. We will show that there is a homeomorphism,h, of ∂Cone(D) onto
∂Cone(Y ) such thath(J )=K. Because a homeomorphism between the boundaries of two
n-cells extends to a homeomorphism between then-cells (by coning),h will extend to a
homeomorphism from Cone(D) onto Cone(Y ); also, because a homeomorphism between
arcs in the boundaries of two 2-cells extends to a homeomorphism between the 2-cells [17,
p. 47],h|J will extend to a homeomorphism from Cone(

⋃n
j=1Ej) onto Cone(

⋃n
j=1 Ij ).

Hence,h will extend to a homeomorphism from Cone(Mn) onto Cone(Ln). Therefore,
to prove that Cone(Mn) ≈ Cone(Ln), it suffices to produce a homeomorphismh of
∂Cone(D) onto∂Cone(Y ) such thath(J )=K.

Recall that ifX is a subset of a spaceW , thenW −X is locally simply connected ata
point x ∈X if for every neighborhood,U , of x in W , there is a neighborhood,V , of x in
W such that every loop inV − X is null homotopic inU − X. Also, note the following
fact, which follows from [5]:

(8) If e0, e1 :Z → N are two homotopic embeddings of a 1-dimensional compact
polyhedron,Z, into a topological manifold,N , of dimension> 4 such thatN −
ei(Z) is locally simply connected at each point ofei(Z) for i = 0 and 1, then there
is a homeomorphism,g, ofN ontoN such thatg ◦ e0= e1.

We will now argue that∂Cone(Y ) − K is locally simply connected at each point
of K. We will accomplish this by showing that each point ofK has arbitrarily small
neighborhoods,U , in ∂ Cone(Y ) such thatU −K is simply connected. Note thatK has
three types of points: its vertexv, the pointsq1, q2, . . . , qn of its base, and the points of
K − {v, q1, q2, . . . , qn}. Eachqi has arbitrarily small neighborhoods in (Sk/A)− {A} that
are homeomorphic toRn−2. It follows that eachqi has arbitrarily small neighborhoods,U ,
in ∂Cone(Y ) such thatU −K is homeomorphic to(Rn−2×R1)− ({0} × [0,∞)). It also
follows that each point ofK − {v, q1, q2, . . . , qn} has arbitrarily small neighborhoods,U ,
in ∂Cone(Y ) such thatU−K is homeomorphic to(Rn−2−{0})×R1. Both(Rn−2×R1)−
({0} × [0,∞)) and(Rn−2− {0})×R1 are simply connected becausen> 5. The vertexv
has arbitrarily small neighborhoods,U , in ∂ Cone(Y ) such thatU −K is homeomorphic to
((Sk/A)−{q1, q2, . . . , qn})×R1. Now,((Sk/A)−{q1, q2, . . . , qn})×R1 is homeomorphic



F.D. Ancel, S.B. Nadler Jr. / Topology and its Applications 98 (1999) 19–33 33

to (Sk − {n points})× R1 by [1], and the latter space is simply connected becauseSk−
{n points} is simply connected (sincek = n− 2> 3). This establishes that∂Cone(Y )−K
is locally simply connected at each point ofK.

An argument similar to the one just given shows that∂Cone(D)− J is locally simply
connected at each point ofJ .

Now, leth0 be any homeomorphism of the(n− 1)-sphere∂Cone(D) onto the(n− 1)-
sphere∂Cone(Y ) (recall Example 4.4). Then,h0(J ) is a simplen-od embedded in
∂Cone(Y ) such that∂Cone(Y ) − h0(J ) is locally simply connected at each point of
h0(J ). Also, the identity maps idh0(J ) and idK are homotopic in∂Cone(Y ) because
both of the simplen-ods,h0(J ) andK, are contractible. Hence, by (8) above, there is
a homeomorphism,h1, of ∂ Cone(Y ) onto ∂Cone(Y ) such thath1(h0(J )) =K. Let h =
h1◦h0 : ∂Cone(D)→ ∂Cone(Y ). Then, clearly,h is a homeomorphism of∂Cone(D) onto
∂Cone(Y ) such thath(J )=K. As we explained earlier,h extends to a homeomorphism
from Cone(Mn) onto Cone(Ln). Therefore,C(Tn)≈ Cone(Ln). 2
Remark. In relation to results in Section 3, the second author has obtained results about
when the cone overY is the Hilbert cube. His paper,Cones and suspensions that are Hilbert
cubes, is in the Bol. Soc. Mat. Mexicana (3) 4 (1998) 285–289.

References

[1] J.J. Andrews, M.L. Curtis,n-Space modulo an arc, Ann. of Math. 75 (1962) 1–7.
[2] R.H. Bing, A set is a 3 cell if its cartesian product with an arc is a 4 cell, Proc. Amer. Math. Soc.

12 (1961) 13–19.
[3] W.A. Blankinship, Generalization of a construction of Antoine, Ann. of Math. 53 (1951) 276–

297.
[4] M. Brown, Locally flat imbeddings of topological manifolds, Ann. of Math. 75 (1962) 331–341.
[5] J.L. Bryant, C.L. Seebeck III, An equivalence theorem for embeddings of compact absolute

neighborhood retracts, Proc. Amer. Math. Soc. 20 (1969) 256–258.
[6] T.A. Chapman, Lectures on Hilbert cube manifolds, in: Conf. Board of the Math. Sci. Regional

Conf. Series in Math., Vol. 28, Amer. Math. Soc., Providence, RI, 1976.
[7] M.L. Curtis, Cartesian products with intervals, Proc. Amer. Math. Soc. 12 (1961) 819–820.
[8] R.J. Daverman, Decompositions of Manifolds, Academic Press, Orlando, FL, 1986.
[9] R.H. Fox, E. Artin, Some wild cells and spheres in three-dimensional space, Ann. of Math. 49

(1948) 979–990.
[10] Sze-Tsen Hu, Homotopy Theory, Academic Press, New York, 1959.
[11] W. Hurewicz, H. Wallman, Dimension Theory, Princeton University Press, Princeton, NJ, 1948.
[12] S. Macías, Hyperspaces and cones, Proc. Amer. Math. Soc., to appear.
[13] J. van Mill, Infinite-Dimensional Topology, North-Holland, Amsterdam, 1989.
[14] S.B. Nadler Jr., Continuum Theory, An Introduction, Monographs and Textbooks in Pure and

Applied Math., Vol. 158, Marcel Dekker, New York, 1992.
[15] S.B. Nadler Jr., Hyperspaces of Sets, Monographs and Textbooks in Pure and Applied Math.,

Vol. 49, Marcel Dekker, New York, 1978.
[16] V. Poénaru, La décomposition de l’hypercube en produit topologique, Bull. Soc. Math. France

88 (1960) 113–129.
[17] T.B. Rushing, Topological Embeddings, Academic Press, New York, 1973.
[18] L. Tumarkin, On Cantorian manifolds of infinite number of dimension, (R), Dokl. Akad. Nauk

SSSR 115 (1957) 244–246.


