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Suppose an open n-manifold Mn may be compacti"ed to an ANR MY n so that MY n!Mn is a Z-set in MY n. It is shown
that (when n*5) the double of MY n along its &&Z-boundary'' is an n-manifold. More generally, if Mn and Nn each
admit compacti"cations with homeomorphic Z-boundaries, then their union along this common boundary is an
n -manifold. This result is used to show that in many cases Z-compacti"able manifolds are determined by their
Z-boundaries. For example, contractible open n-manifolds with homeomorphic Z-boundaries are homeomor-
phic. As an application, some special cases of a weak Borel conjecture are veri"ed. Speci"cally, it is shown that
closed aspherical n-manifolds (nO4) having isomorphic fundamental groups which are either word hyperbolic or
CA¹(0) have homeomorphic universal covers. ( 1999 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

In [29], Siebenmann studied those open n-manifolds (n*6 ) which may be compacti"ed in
the nicest of ways. In particular, he gave necessary and su$cient conditions for an open
manifold to be compacti"able to a manifold with boundary by adding a boundary (n!1)-
manifold. Similar results for n"3 and 5 may be found in [20] and Section 11.9 of [16].
While these results have found numerous applications, the strict conditions necessary for
a manifold to admit this sort of compacti"cation rule out a variety of important (and
reasonably nice) open manifolds. For many of these manifolds a more general type of
compacti"cation, which we call Z-compacti"cation, seems most appropriate. Roughly
speaking, Z-compacti"cation allows one to add a non-manifold boundary, but requires
that many of the homotopy properties enjoyed by manifolds with boundary be maintained.
Examples of manifolds which do not satisfy Siebenmann's conditions, but which are
Z-compacti"able arise in geometric topology, geometric group theory and synthetic
di!erential geometry. They include: Davis' exotic contractible covering spaces [13], univer-
sal covers of aspherical manifolds with word hyperbolic or CA¹(0) fundamental groups,
and all CA¹(0) manifolds. In many of these examples, the Z-boundary cannot be a mani-
fold*in fact, it is often non-locally simply connected and fractal in nature. Despite the
possible pathology present in a Z-boundary, a great deal of geometric structure is preser-
ved by Z-compacti"cation. In this paper we exhibit and exploit some of that structure.

Our main results are the following. We prove that if two open n-manifolds ( n*5) admit
Z-compacti"cations with homeomorphic Z-boundaries, then their union along these
boundaries is a manifold. For example, the double of a Z-compacti"ed n-manifold along
its Z-boundary is a manifold. These results and some corollaries are found in Section 4.
In Sections 6 and 7 we use this result to prove some uniqueness theorems. In particular,
we exhibit conditions under which a Z-compacti"able manifold is determined up to
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homeomorphism by its Z-boundary. As a corollary we prove some special cases of a &&weak
Borel conjecture''. The original (and still unsolved) Borel conjecture states that homotopy
equivalent aspherical manifolds are homeomorphic. The weak version is that homotopy
equivalent aspherical manifolds have homeomorphic universal covers. We give an a$rm-
ative answer to this latter conjecture in dimensions greater than four whenever the
fundamental group is word hyperbolic or CA¹ (0).

With the possible exception of terminology, the notion of a Z-compacti"cation is not
new. The concept was developed in the 1970s by Chapman and Siebenmann [10] in their
work on Hilbert cube manifolds. As noted there, the de"nitions (although not all of the
theorems) are easily modi"ed to apply to locally compact ANRs. In particular, the
de"nitions apply nicely to "nite-dimensional manifolds. Recent work by Bestvina and Mess
(see [4, 5]) utilizes a more rigid type of Z-compacti"cation to study boundaries of groups.
Their work was later applied by Carlsson and Pedersen (see [9]) to prove Novikov
conjectures for the corresponding class of groups.

2. DEFINITIONS

A locally compact separable metric space X is an absolute neighborhood retract or ANR
if it may be embedded as a closed subset of R= so that there exists a retraction r :;PX,
where ; is a neighborhood of X in R=. If a retraction r :R=PX exists, then X is an
absolute retract or AR. It is well known (see Theorem 5.2.15 of [22]) that an ANR is an AR if
and only if it is contractible. When X is "nite dimensional, we may replace R=in the above
de"nition with "nite-dimensional Euclidean space, Rn (for n su$ciently large). Hence,
a "nite-dimensional ANR is sometimes called an ENR or Euclidean neighborhood retract,
and similarly for "nite-dimensional ARs. An important characterization (Theorem 5.5.7 of
[22]) states that a "nite-dimensional locally compact separable metric space is an ANR if
and only if it is locally contractible.

A closed subset A of a compact ANR, X, is a Z-set if any of the following equivalent
conditions is satis"ed:

f There is a homotopy H : X]IPX with H
0
"id

X
and H

t
(X)WA"0 for all t'0.

f For every e'0 there is an e-homotopy K : X]IPX with K
0
"id

X
and

K
1
(X)LXCA.

f For every e'0 there is a map f : XPX which is e-close to the identity with
f (X)LXCA.

f For every open set ; of X, ;CA6; is a homotopy equivalence.

Let> be a non-compact ANR. A Z-compacti,cation of> is a compact ANR>) contain-
ing > as an open subset and having the property that >) C> is a Z-set in >) . In this case we
call >) C> a Z-boundary for > and denote it L

Z
>. Note that > may admit many di!erent

Z-boundaries, hence L
Z
> is not well de"ned unless the Z-compacti"cation is speci"ed.

3. EXAMPLES OF Z-COMPACTIFICATIONS

In this section we review some known examples of Z-compacti"cations. Although we are
primarily interested in compactifying "nite-dimensional manifolds, we include some dis-
cussion of in"nite-dimensional and non-manifold examples which are relevant to this paper.

Example 1 (Manifolds with boundary). Let Mn be a compact n-manifold with boundary.
Then the standard boundary, LMn, is a Z-set in Mn, so Mn is a Z-compacti"cation of
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int(Mn) with L
Z
(int(Mn) )"LMn. Hence, Z-compacti"cation may be viewed as a generaliz-

ation of the manifold compacti"cations studied by Siebenmann and others.

Example 2 (Hilbert cube manifolds). Chapman and Siebenmann have given necessary
and su$cient conditions for a Hilbert cube manifold to be Z-compacti"able. Since their
characterization plays a signi"cant role this paper, we give a brief description their results.
For details, the reader should consult [10].

A Hilbert cube manifold is a separable metric space with the property that each of its
points has a closed neighborhood homeomorphic to the Hilbert cube Q"[0, 1]=. A non-
compact Hilbert cube manifold X is inward tame at in,nity if for any compact set ALX,
there exists a homotopy H : (XCA)]IPXCA so that H

0
"id and cl

X
(H

1
(XCA)) is com-

pact. Equivalently, one may require that X contain arbitrarily large compact subsets A such
that XCA is "nitely dominated. If this condition holds, one may de"ne an algebraic
invariant p

=
(X)3 lim

Q
MKI

0
n
1
(XCA) DALX compactN. Here KI

0
n
1

is the projective class
group functor and all bonding maps are induced by inclusion. The individual &&coordinates''
of p

=
(X) are the Wall "niteness obstructions for the (XCA)'s (see [33, 34]). Then p

=
(X)

vanishes i! X contains arbitrarily small neighborhoods of in"nity having "nite homotopy
type (A subset of X is a neighborhood of in,nity if the closure of its complement is compact.).
When p

=
(X) vanishes, we may de"ne a second algebraic invariant q

=
(X)3 lim1

Q

M=hn
1
(XCA) DALX compactN. Here lim1

Q
denotes the "rst derived limit (see Section 5 for

a de"nition) and=hn
1

is the Whitehead group functor. Again, bonding maps are induced
by inclusion.

We may now state the theorem.

THEOREM 3 (Chapman and Siebenmann [10]). A Hilbert cube manifold X admits a Z-
compacti,cation i+ each of the following is satis,ed.

(a) X is inward tame at in,nity.
(b) p

=
(X)3lim

Q
MKI

0
n
1
(XCA) DALX compactN is zero.

(c) q
=

(X)3lim1
Q

M=hn
1
(XCA) DALX compactN is zero.

Remark 1. The notion of inward tameness and the de"nitions of p
=

and q
=

can also be
applied to arbitrary locally compact ANRs, although it is apparently unknown whether
a locally compact ANR satisfying (a)}(c) is Z-compacti"able. On the other hand, a Z-
compacti"able ANR, X, must satisfy (a)}(c). One way to see this is to apply Theorem 3
to X]Q which is a Hilbert cube manifold by a theorem of R. D. Edwards (see Theorem
7.8.1 of [22]).

Example 4 (Davis1 exotic universal covers). In [13] Davis constructed the "rst known
examples of closed n -manifolds (n*4) which have contractible universal covering spaces
that are not Euclidean space. A construction by Ancel and Siebenmann [3] embeds these
universal covers in the n-sphere so that their closures are Z-compati"cations and their
frontiers the corresponding Z-boundaries.

The Z-boundaries obtained via the above construction are easily seen to be non-
manifolds. In fact, the construction may be done so that the Z-boundary is homogeneous
and non-locally simply connected at each point. By analyzing the fundamental group at
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in"nity, one can show that the Z-boundaries of these examples can never be a manifolds or
even ANRs.

Example 5 (Rips complexes of word hyperbolic groups). Let ! be a word hyperbolic
group, and let P (!) be a contractible Rips complex for G. Then P (!) may beZ-compacti"ed

to P(!)Y "P (!)XL!, where L! is the Gromov boundary of !.

For de"nitions and details of this example, see [5].

Example 6 (CA¹(0) spaces). Let > be a locally compact CA¹(0) ANR and let S
=
(0)

denote the visual sphere of > from some point 03>. Then > admits a Z-compacti"cation
>) ">XS

=
(0). Here S

=
(0) may be viewed as the set of rays emanating from 0. Roughly

speaking, the compacti"cation of> is obtained by adding an end point to each of these rays.

See [14] for further discussion of this topic. For examples of CA¹(0) spaces which are
manifolds see [1, 2, 14].

An important special case of Example 6 occurs when one begins with a compact
non-positively curved (, locally CA¹(0)) space. Then the metric on X may be lifted to
a (globally) CA¹(0) metric on the universal cover XI where the fundamental group of X acts
via isometries. This has lead to the following:

De,nition 7. A group G which acts isometrically, properly discontinuously and co-
compactly on a CA¹(0) space X is called a CA¹(0) group. In this case the visual sphere of
X is called a CA¹(0) boundary of G.

Remark 2. (a) It has recently been shown (see [11]) that the boundary of a CA¹(0)
group is not always unique.

(b) Notice that if, in addition, G acts without "xed points (e.g., if G is torsion free), then
the projection XPX/G is a covering map and, since CA¹(0) spaces are contractible the
quotient is a K(n, 1).

The following result allows a potentially signi"cant expansion of Examples 5 and 6. It
also prevents the non-uniqueness of CA¹ (0) boundaries from becoming a signi"cant
problem. The result follows from Lemma 1.4 of [4], and could, in fact, be stated for all
groups admitting &&Z-structures'' as de"ned there.

LEMMA 8. Suppose K is a ,nite K (G, 1) where G is either a CA¹(0) or word hyperbolic
group. If G is word hyperbolic, let LG be the (unique) Gromov boundary of G, otherwise, let LG
be an arbitrary CA¹(0) boundary for G. ¹hen, the universal cover KI admits a Z-compacti,ca-
tion with Z-boundary equal to LG.

Proof. First, recall that since G admits a "nite K(G, 1), then G is torsion free (see p. 76 of
[18]).

Case 1. If G is word hyperbolic we may apply Example 1.2(i) and Lemma 1.4 of [4]
directly.

Case 2. If G is CA¹ (0) , then by de"nition G acts isometrically, properly discontinuous-
ly and cocompactly on a CA¹(0) space X. Since G is also torsion free, G also acts without
"xed points. Hence, we may apply Example 1.2(ii) and Lemma 1.4 of [4]. j
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4. GLUING MANIFOLDS ALONG Z-SET BOUNDARIES

Let MY n and NY n be Z-compacti"cations of open n-manifolds (open manifold means
&&noncompact manifold without boundary'') and h : LZMY nPL

Z
NY n be a homeomorphism.

Denote by MY nX
h
NY n the quotient space (MY npNY n)/x&h (x). We call this a gluing of MY n and

NY n along their Z-boundaries. If NY n is a second copy of MY n and h is the identity, we call this
space the double of MY n along its Z-boundary and denote it Double(MY n). Our main goal in
this section is to prove that a gluing of two Z-compacti"ed open n-manifolds along
a commonZ-boundary is an n-manifold. Although the proof is quite technical, at its core is
a fairly standard application of the Edwards}Quinn manifold recognition theorem. The
outline of our argument is probably familiar to a number of geometric topologists.

THEOREM 9. ¸et MY n and NY n be Z-compacti,cations of open n-manifolds (n'4) and h:
L
Z
MY nPL

Z
NY n be a homeomorphism. ¹hen MY nX

h
NY n is an n-manifold.

Before we begin the proof, we state some immediate consequences.

COROLLARY 10. ¹he double of any Z-compacti,ed open n-manifold (n'4) along its
Z-boundary is an n-manifold.

COROLLARY 11. ¹he gluing of any two Z-compacti,ed contractible open n-manifolds
(n'4) along a common Z-boundary is homeomorphic to Sn.

Proof. First, use techniques like those found below in the proof of Lemma 15 to show
that the union is simply connected. Then use standard algebraic topology arguments to
show that this gluing has the the homology of an n-sphere. Finally, apply the generalized
PoincareH conjecture. j

COROLLARY 12. Suppose & may be realized as the Z-boundary of a contractible open
n-manifold (n'4). ¹hen there is an involution on Sn with ,xed point set &.

Proof. Apply Corollary 11 to the double of the compacti"ed manifold. The involution
interchanges the two halves. j

COROLLARY 13. Every Z-compacti,able contractible n-manifold (n'4) may be embedded
in Sn as the complement of a contractible compactum.

Proof. Mn is the complement of a copy of MY n in Double(MY n). j

COROLLARY 14. Suppose a group G acts e+ectively via isometries on a CA¹ (0) n-manifold
Mn (n*5). ¹hen G acts e+ectively via homeomorphisms on Sn.

Proof. A CA¹ (0) space is necessarily contractible. The action extends naturally to the
Z-compacti"cation MY n obtained by adding the visual sphere at in"nity. This action may be
re#ected across the boundary to obtain an action on Double(MY n) which, by Corollary 11, is
homeomorphic to Sn. j

The proof of Theorem 9 utilizes several results from the theory of homology and
cohomology manifolds. All of our spaces are "nite-dimensional locally compact metric
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spaces. For a compact pair (X, A), H1
*
(X, A) will denote Steenrod (or equivalently

Borel}Moore) homology with integer coe$cients (see [6, 23]). Cohomology will be
Alexander}C[ ech cohomology with integer coe$cients. A space X is homologically locally
n-connected, denoted hlcn, if for each x3X, and each compact neighborhood; of x, there is
a compact neighborhood < of x such that H13

k
(<)PH13

k
(;) is the trivial map for all k)n.

A space which is hlcn for all n is called homologically locally connected (denoted hlc=).
Cohomological local (n-) connectedness (clcn and clc=) are de"ned similarly. For each x3X,
let Hx

k
denote lim

P
H1

k
(X, XT;), where the limit is taken over all open neighborhoods of

x with maps being induced by inclusion. We call X a homology n-manifold with boundary
provided for each x3X, Hx

k
"0 for all kOn and Hx

n
"0 or Z. In this case we let

LX"Mx DHx
n
"0N. If LX"0, we simply call X a homology n-manifold. Cohomology n-

manifolds (with or without boundary) may be de"ned similarly (see [6, 7]).
We say that X is homotopically locally n-connected (¸Cn) if for each x3X, and each

neighborhood ; of x, there is a neighborhood <L; of x with the property that for all
k)n, each map f : SkP< extends to fM : Dk`1P;. A space which is ¸Cn for all n is called
homotopically locally connected (¸C=).

For later use, we state and provide references for several key facts from the theory of
homology/cohomology manifolds:

1. A space X is clc=i+ it is hlc=. See Theorem 6.6 of [6].
2. Every homology or cohomology manifold with boundary is clc= (hence hlc=). For

cohomology manifolds this is classical (See, for example, Theorem V.15.7 of [7]). For
homology manifolds see Theorem 1 of [24].

3. Every homology or cohomology n-manifold is locally arc connected. Local connected-
ness follows from the clc0 or hlc0 properties. From there one may employ results from
Sections III.2 and III.3 of [35] to obtain local path connectedness and then the
stronger condition of local arc connectedness.

4. ¹he boundary of a homology n -manifold with boundary is a homology (n!1)-manifold
(without boundary). See [25].

5. A space X is a homology n-manifold with boundary i+ it is a cohomology n-manifold
with boundary. This observation combines Theorem 7.12 of [6] with Facts 1 and 2.
The orientability assumption in [6] is made obsolete by [8].

6. ¹he union of two homology n-manifolds with boundary along a common boundary is
a homology n-manifold. This combines Theorem 1 of [27] with Fact 5. Again the
orientability assumption is obsolete by [8].

7. A space which is both ¸C1 and hlc= is ¸C=. This is Lemma 3 of [15].

The following lemma will also be used in the proof of Theorem 9.

LEMMA 15. ¸et X be a locally compact metric space, and suppose X"AXB where A and
B are each closed and ¸C1 and C"AWB is ¸C0. ¹hen X is ¸C1.

Proof. It is easy to see that X is locally path connected, so we need only show that for
each x3X and neighborhood ; of x in X, there is a neighborhood < of x so that loops in
< contract in ;. If x lies in int A or int B this follows from the hypotheses, so we assume
x3C. Let ;@L; be a neighborhood of x with compact closure and having the property
that loops lying in;@WA contract in;WA and loops in;@WB contract in;@WB. Then let
< be a neighborhood of x lying in ;@ with the property that points in <WC may be
connected with a path lying in ;@WC. We will show that each loop in < contracts in ;.
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By the compactness of ;@ and the ¸C1 property for B we may choose for each positive
integer k, a d

k
'0 so that loops in;@WB having diameter less than d

k
bound singular disks in

; having diameter less than 1/k. Similarly, for each d
k
just chosen, choose e

k
'0 so that points

in <WC which are e
k
-close may be connected in ;@WC by paths having diameter(d

k
.

Now let a : S1P< be a loop. If a (S1) is contained in <WA or <WB then a contracts in
;WA or ;WB, so we are "nished. Otherwise, we build a homotopy in ; from a to a@ with
a@(S1)L;@WA. Then by our choice of;@, a@ contracts in;WA. Hence, a contracts in;. To
build the homotopy, note that a~1(<TA) is a (possibly in"nite) collection A"MA

1
, A

2
,2N

of pairwise disjoint open subarcs of S1. If a
i
denotes a(AM

i
), then each a

i
is a path in <WB

with end points in <WC.
By choice of<, we may connect the end points of a

1
by a path a@

1
in;@WC. Then a

1
Xa@

1
is

a loop in;@WB. Since this loop must contract in;WB, there is a homotopy (rel end points) of
a
1

to a@
1

in;WB. If A is "nite, repeat this for each a
i
to homotope a into;@WA as desired.

If A is in"nite we must take more care. Necessarily, diam(A
i
)P0 as iPR. Then, by

uniform continuity, diam(a
i
)P0 as iPR. Again we homotope each a

i
in ;WB (in order)

to an arc a@
i
in ;@W (X), but now we use controls made possible by the existence of the d

k
's

and e
k
's chosen earlier to ensure that these homotopies converge to a homotopy which

moves a to the desired a@. j

Proof of ¹heorem 9. We show that X"MY nX
h
NY n is an n-manifold by verifying all

criteria of the Edwards}Quinn manifold recognition theorem. (Theorem VII.40.4 of [12]).
In particular, we will show that X is a "nite-dimensional ANR homology n-manifold which
satis"es the disjoint disks property (DDP) and has trivial Quinn resolvability obstruction.

Finite dimensionality of X follows from the closed sum theorem (Theorem 4.3.7 of [22])
once we show that MY n and NY n are "nite dimensional. By Theorem 4.5.13 of [22], MY n is
n-dimensional i! there exist g-maps from MY n to an n-dimensional polyhedron for arbitrarily
small g'0. To obtain such a map, "rst push MY n into Mn with an (g/4)-move (using the
Z-set hypothesis), then compose with an (g/2)-map from Mn to an n-dimensional polyhed-
ron. The same argument shows that NY n and thus X are n-dimensional.

Next, we show that X is a homology n-manifold. In light of Fact 6, it su$ces to show
that MY n and NY n are homology n-manifolds with boundaries LZMY n and LZNY n, respectively.
Let x3MY n. If x3Mn, then

Hx
k
:G

0

Z

if kOn

if k"n

since Mn is an n-manifold. If x3LZMY n , we must show that Hx
k
"0 for all k. As noted on

p. 510 of [25], it su$ces to show that lim
P

H
*
(MY n , MY nC;)"0, where H

*
denotes ordinary

singular homology. To this end, "x a neighborhood ;@ of x in MY n. Since LZMY n is a Z-set,
there is a homotopy K

t
:MY nPMY n with K

0
"idMY n and K

1
(MY n)LMn. Let j :MY nP[0, 1] be

a map sending x to 1 and MY nC;@ to 0, and de"ne J
t
:MY nPMY n by J

t
(x)"K

t>j(x) (x). Then
J
t
pulls MY n away from x while keeping MY nC;@ "xed. Let;@@ be a neighborhood of x disjoint

from J
1
(MY n). Then H

*
(MY n, MY nC;@)PH

*
(MY n, MY nC;@@) is the trivial map. It follows that

lim
P

H
*
(MY n, MY nC;)"0.

Next, we observe that X is an ANR. Since X is "nite dimensional, it su$ces to show that
X is LC= (Theorem 7.1 of [19]). Since X is a homology n-manifold we need only show that
X is LC1 (see Facts 2 and 7). Since MY n and NY n are ANRs (hence, locally contractible) and
LZMY n is locally path connected by Fact 3, the LC1 property follows from Lemma 15.

The Quinn resolvability obstruction for a connected ENR homology manifold > is an
integral invariant I (>) which vanishes if and only if there exists a cell-like map from
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a manifold onto > (see [26]). A key property of I is that for any open subset ;L>,
I(;)"I (>). Since our space X contains open subsets which are manifolds, it follows that
I(X) is trivial.

The "nal step in our proof is to show that X satis"es the DDP; i.e. we must show that
given e'0 and maps f, g : D2PX, there exist maps f @, g@ : D2PX so that d (f, f @)(e,
d(g, g@)(e, and f @ (D2)Wg@(D2)"0.

Before beginning, we remind the reader that for any closed subset A of D2, any small
perturbation of f D

A
can be extended to a small perturbation of f. This follows from

a controlled version of the Borsuk homotopy extension principle and the fact that X is an
ANR.

Next, observe that for any simplex p, every map / : LpPMK with small image extends to
a map ' :pPMK with small image such that ' (int(p))LM. This follows from local
contractibility of MK along with the fact that Z"MK CM is a Z-set in MK . Of course, NK enjoys
a similar property.

Assuming that e, f and g have been chosen, we build the desired approximations in three
steps.

Step 1. Perturbing f to it make it &&transverse'' to Z.
In this step we arbitrarily closely approximate f by a map (of the same name) so that

f~1(Z) is a one-dimensional submanifold of D2 such that Lf~1(Z)"f~1(Z)WLD2. Further-
more, we arrange that f (D2)WZ be a one-dimensional subset of Z. This construction is
similar to the &&classical'' construction that would work if X were a manifold and Z were
a bicollared codimension-one submanifold. It exploits the fact that MK and NK are ANRs and
Z is a Z-set in each.

To begin, we take a triangulation ¹ of D2 which is so "ne that the f-images of the
simplices of ¹ are very small. We then use the property that Z is a Z-set to perturb f slightly
so that f (¹0)WZ"0, where ¹0 denotes the 0-skeleton of ¹. De"ne the function
/0 :¹0PM0, 1N by /0(v)"0 if f (v)3M and /0(v)"1 if f (v)3N, and extend /0 to a sim-
plicial map / :¹P[0, 1]. Observe that since / is transverse to 1

2
, then /~1(1

2
) is a one-

dimensional submanifold of D2 such that L/~1(1
2
)"/~1(1

2
)WLD2. Now if p is a 1-simplex of

¹ such that f (Lp)LM, then the observation preceding Step 1 allows us to perturb f slightly
keeping f D

/p "xed so that f (p)LM. This procedure can be carried out for every 1-simplex
and every 2-simplex p of ¹. Thus, we can assume that for any 1-simplex or 2-simplex p of ¹,
f (p)LM whenever / (p)"0 and f (p)LN whenever / (p)"1. Now, suppose that p is
a 1-simplex of ¹ such that 1

2
3/ (p). Then / maps p homeomorphically onto [0, 1]. Hence,

pW/~1(1/2) is a single point p in int(p), and f maps the endpoints of p to opposite sides of Z.
Thus f (int(p))WZO0. Therefore, we can perturb f keeping f D

/p "xed so that f (p)3Z. Then
the observation preceding Step 1 allows us to perturb f so that f (pW/~1([0, 1

2
)))LM and

f (pW/~1((1
2
, 1]))LN. By carrying out this procedure for every 1-simplex in ¹, we establish

these inclusion relations for every 1-simplex p of ¹. Next, suppose p is a 2-simplex of ¹ such
that 1

2
3/ (p). Then pW/~1 (1

2
) is an arc a such that La"aWLp. Since Z is locally arc

connected (Fact 3) and since f (La)LZ, we can perturb f keeping f D
/a "xed so that f (a) is an

embedded arc in Z joining the two points of f (La). Set A"pW/~1([0, 1
2
]) and

B"pW/~1([1
2
, 1]). Then A and B are two-dimensional disks such that AWB"

(LA)W (LB)"a, f (LA)LMK , f (LB)LNK , and f ~1(Z)W(LAXLB)"a. Then the observation
preceding Step 1 allows us to perturb f keeping f D

/A
and f D

/B
"xed so that f (A)LMK ,

f (B)LNK , f (ATa)LM, and f (BTa)LN. By carrying out this procedure for every 2-simplex
of ¹, we obtain f ~1(Z)"/~1(1

2
). Thus f~1(Z) is a one-dimensional submanifold of D2 such

that Lf~1(Z)"f ~1(Z)WLD2, and f (D2)WZ"f ( f ~1(Z) )"f (/~1(1
2
)) is a "nite union of

arcs. Thus, f (D2)WZ is a one-dimensional subset of Z. Set ¸"f (D2)WZ.

1272 F. D. Ancel and C. R. Guilbault



Step 2. Perturbing g so it is transverse to Z and f (D2)Wg(D2)WZ"0.
Before constructing the desired approximation to g, we must observe that if; is a small

non-empty connected open subset of Z, then ;C¸ is also non-empty and path connected.
The key to this observation will be a version of Alexander duality for homology manifolds.
Begin with the homology exact sequence

H1 #
1
(;,;C¸)PH1 #

0
(;C¸)PH1 #

0
(;)PH1 #

0
(;,;C¸)

where H1 #
*

denotes Borel}Moore homology with compact supports and coe$cients in Z. By
Theorem 9.3 of [7] H1 #

1
(;,;C¸):H1 n~1

#
(¸W;, O), and H1 #

0
(;,;C¸):H1 n

#
(¸W;, O), where

H1 *
#

denotes sheaf cohomology and O denotes the orientation sheaf of ;. By [8], we may
choose ; so small that O is constant. Then these cohomology groups are also with
Z-coe$cients, and further reference to Omay be omitted. To see that Theorem 9.3 of [7] can
be applied as desired, "rst observe that since ;C¸ is open in ;, then it is also &&locally
closed'' in ;, and then note that since ¸W; is a closed subset of ; and compact supports
are &&paracompactifying'', then ¸W; is &&c-taut'' in ;. See pp. 8, 15, and 52 of [7] for
discussions of these terms.

Next, we use the fact that n!1'1"dim ¸ to conclude that H1 n~1
#

(¸W;) and
H1 n~1

#
(¸W;) are both trivial (see p. 144 of [7], or p. 236 of [17]). Hence, by our homology

exact sequence, H1 #
0
(;C¸):H1 #

0
(;). Since ; is connected, Theorem 5.11 of [7] implies that

H1 #
0
(;):Z. Thus, H1 #

0
(;C¸):Z, and Theorem 5.11 of [7] implies that ;C¸ is non-empty

and connected. Since;C¸ is also locally path connected (Fact 3) we may conclude that;C¸
is path connected.

Now, we will apply the argument of Step 1 to g to make g &&transverse'' to Z. Thus, we
will arbitrarily closely approximate g by a map (of the same name) so that g~1(Z) is
a one-dimensional submanifold of D2 such that Lg~1(Z)"g~1(Z)WLD2. In addition, we
will arrange that g (D2)W¸"0. To achieve this additional condition, we must take extra
care at two points. Assume that t :¹P[0, 1] is a simplicial map which plays the same role
with respect to the map g : D2PX that the simplicial map /: ¹P[0, 1] played in Step 1
with respect to the map f :D2PX. The "rst point requiring extra care is when p is
a 1-simplex of ¹ such that pWt~1(1

2
)O0. Then pWt~1(1

2
) is a single point p, and we must

choose g(p) to lie in ZC¸. If an initial choice of g (p) lies in ¸, we can move g(p) o! ¸ by
a small move, because ;C¸O0 for any neighborhood ; of g (p) in Z. The second point
requiring extra care is when p is a 2-simplex of ¹ such that 1

2
3t (p). Then pWt~1(1

2
) is an

arc a such that La"aWLp, and g (La)LZC¸. Since Z is locally arc connected, we can
perturb g so that g embeds a in Z. If our initial choice of g (a) intersects ¸, we can move g(a)
o! ¸ by a small move, because ;C¸ is path connected for any small path connected
neighborhood ; of g(a) in Z. We complete Step 2 as we completed Step 1, with the result
that both f :D2PX and g :D2PX are transverse to Z and f (D2)Wg (D2)WZ"0.

Step 3. Final adjustments of f and g.
Since XCZ"MXN is a manifold of dimension*5, then f and g can be perturbed

without moving f D f~1(Z) and g D g~1(Z) so that f D f~1 (MXN) : f ~1(MXN)PMXN and g D g~1(MXN) :
g~1(MXN)PMXN are in general position. This makes f (D2)Wg (D2)W (MXN)"0.
We conclude that f (D2)Wg (D2)"0. j

5. PROPER h-COBORDISMS AND A CONNECTION TO Z-COMPACTIFICATIONS

Our next goal is to exhibit cases in which Z-compacti"able manifolds with homeomor-
phic Z-boundaries are necessarily homeomorphic. A key ingredient in our proofs will be
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the proper s-cobordism theorem [30], together with a &&naturality'' result from [10] which
provides a link between Z-compacti"cation and proper h-cobordism theory. In this section
we give a brief description of these results. For details the reader should refer to the original
papers.

Recall that a map is proper if the preimage of each compactum is compact. A homotopy
equivalence is proper provided the corresponding homotopies may be chosen to be proper
maps. A cobordism (=n`1, Mn, Nn) is a proper h-cobordism if Mn6=n`1 and Nn6=n`1

are each proper homotopy equivalences.

THEOREM 16 (Proper s-cobordism theorem). A proper h-cobordism (=n`1, Mn, Nn)
where n'4 is homeomorphic to Mn][0, 1] i+ Mn6=n`1 is an in,nite simple homotopy
equivalence.

Remark 3. (a) This result remains true when n"4 provided certain fundamental group
conditions are satis"ed. For more information, see Chap. 7 of [16].

(b) As usual, when n*5, &&homeomorphic''may be replaced with &&PL homeomorphic''
or &&di!eomorphic'' provided one begins in the corresponding category.

The di$culty in applying this result is in identifying which maps are in"nite simple
homotopy equivalences. In"nite simple homotopy types are much more complicated than
"nite simple homotopy types. For example, even when the spaces involved are simply
connected, a proper homotopy equivalence may fail to be simple. Siebenmann has de"ned
a pair of algebraic invariants which (when computable) allow one to determine whether
a proper homotopy equivalence is simple. Fortunately for us, there is a connection between
these invariants and those appearing in Theorem 3.

Let f : XP> be a proper homotopy equivalence between locally "nite CW-complexes.
By replacing > with the mapping cylinder of f we may assume that X is a subcomplex of
> and f is inclusion. Write >"Z=

i/1
C

i
where C

i
is compact and C

i
Lint(C

i`1
) and let

D
i
"C

i
WX for each i. The "rst obstruction to f being a simple homotopy equivalence is

denoted p
=

( f ). It lies in lim
Q

MKI
0
n
1
(>CC

i
)N, where the coordinates of p

=
( f ) are the relative

"niteness obstructions for the pairs (>CC
i
, XCD

i
). Roughly speaking, if p

=
( f ) vanishes we

may dissect the inclusion X6> into an in"nite collection of relatively "nite inclusions. This
allows us to de"ne the second invariant q@ ( f ) which lies in the group

AG]
=
<
i/1

G
iBNM (!px

1
, x

1
!px

2
, x

2
!px

3
, x

3
!px

4
,2) Dx

i
3G

i
N.

Here G"=h(n
1
(>)) and G

i
"=h(n

1
(>CC

i
)) where the C

i
have been appropriately chosen.

By abuse of notation, p denotes each of the inclusion-induced maps. A less "ne, but
important &&sub-invariant'', q

=
( f ), is obtained by neglecting the G-coordinate. More precise-

ly q
=
( f ) lies in the derived limit

lim1
Q

MG
i
N,A

=
<
i/1

G
iBNM(x

1
!px

2
, x

2
!px

3
, x

3
!px

4
,2) Dx

i
3G

i
N.

Siebenmann shows that f is an in"nite simple homotopy equivalence i! both p
=

( f ) and
q@( f ) vanish. Hence, by Theorem 16, a proper h-cobordism (=n`1, Mn, Nn) is a product i!
p
=

(i) and q@(i) vanish, where i : MnP=n`1 is inclusion. If p
=

(i) and q
=

(i) (but not necessar-
ily q@(i) ) vanish, one may conclude that=n`1 is a product on some neighborhood of in"nity.

The following result which combines Theorems 5.2 and 6.2 of [10] provides a crucial
link between Z-compacti"cations and in"nite simple homotopy types.
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THEOREM 17 (Naturality for p
=

and q
=
). ¸et f :XP> be a proper homotopy equivalence

between locally compact ANRs. ¹hen

(a) If X and > are inward tame at in,nity, then p
=

(>)"p
=

( f )#f
*

(p
=
(X) ).

(b) If X and > are inward tame at in,nity and p
=

(>)"0"p
=

(X), then q
=
(>)"

q
=

( f )#f
*
(q

=
(X)).

Remark 4. In [10], these results are stated for X and > Hilbert cube manifolds. To see
that they hold more generally one may again apply the theorem of Edwards mentioned
in Remark 1.

6. CONTRACTIBLE n-MANIFOLDS AND A WEAK BOREL CONJECTURE

In this section we present the simplest of our uniqueness theorems. A more general result
will be given in the next section. We focus on the special case because it is more elegant and
because it leads quickly to our primary application.

THEOREM 18. Suppose Mn and Nn are contractible open n-manifolds (n'4) which admit
Z-compacti,cations having homeomorphic Z-boundaries. ¹hen Mn and Nn are homeomor-
phic.

Remark 5. The above theorem might be compared to a well-known result by Kervaire
(see [21]) which states that a compact contractible n-manifold (n*5) is determined, up to
homeomorphism, by its boundary. A four-dimensional version of that result may be found
in [16].

Our primary application of Theorem 18 is related to the following famous open
problem.

CONJECTURE 19 (The Borel conjecture). If P and Q are closed aspherical manifolds with
isomorphic fundamental groups, then they are homeomorphic.

Since a solution has been so illusive, we suggest the following.

CONJECTURE 20 (A weak Borel conjecture). If P and Q are closed aspherical manifolds
with isomorphic fundamental groups, then their universal covers are homeomorphic.

The following gives an a$rmative answer to the latter conjecture for some important
classes of fundamental groups.

COROLLARY 21. ¸et Pn and Qn be closed aspherical n-manifolds (n'4) with isomorphic
fundamental groups. If this group is word hyperbolic or CA¹(0) then Pn and Qn have
homeomorphic universal covers.

Proof. Since Pn and Qn are aspherical, their universal covers are contractible. Hence, the
result follows from Lemma 8 and Theorem 18. j

Remark 6. (a) As with Lemma 8, this result can be stated more generally for all groups
supporting a Z-structure as de"ned in [4].
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(b) All known closed aspherical manifolds having exotic; i.e., non-Euclidean, universal
covers have been produced in [13] or [14] and have CA¹(0) fundamental groups (some of
which are also word hyperbolic). The classical Borel conjecture remains open for these
manifolds.

(c) By Theorem 4.1 of [5] and Remark 2.9 of [4], Corollary 21 is also true for n"3
since the universal covers will necessarily be E3. In some sense, Corollary 21 is the
high-dimensional analog of these three-dimensional results.

Proof of ¹heorem 18. Let MY n and NY n be the Z-compacti"cations and h : LZMPLZN
a homeomorphism. Let Bn`1 be the (n#1)-ball of radius 1 in Rn`1 with Euclidean metric
d and let Sn be its boundary. By Corollary 11, we may identify MY nX

h
NY n with Sn. Let

Z denote the common copy of LZM and LZN lying in Sn and let=n`1"Bn`1CZ. Then the
boundary of=n`1 is the disjoint union of Mn and Nn.

CLAIM 1. (=n`1, Mn, Nn) is a proper h-cobordism.

It su$ces to construct a strong deformation retraction R : Bn`1]IPBn`1 of Bn`1 onto
MY n with the additional property that R~1 (Z)"Z]I. Then the restriction of R to=n`1]I
will be a proper deformation retraction of =n`1 onto Mn. By symmetry there will be
a proper deformation retraction of=n`1 onto Nn.

First, note that by de"nition of Z-compacti"cation MY n is an ANR and Mn6MY n is
a homotopy equivalence. Thus, MY n is a contractible ANR, hence, an AR. Since Bn`1 is
contractible, we may apply Theorems VII.1.1 and VII.2.1 of [19] to obtain a strong
deformation retraction S : Bn`1]IPBn`1 of Bn`1 onto MY n. By one of our Z-set character-
izations, there is a homotopy H :MY n]IPMY n with H

0
"id MY n and Ht (MY nWZ)"0 for

all t'0. De"ne K : Bn`1]IPBn`1 by K (x, t)"H (S(x, 1), t)d(x, MY n)). Notice that
(K

1
)~1(Z)"Z. Then ¹ : Bn`1]IPBn`1 , de"ned by

¹(x, t)"G
S (x, 2t)

K(x, 2t!1)

if 0)t)1
2

if 1
2
)t)1

is a strong deformation retraction of Bn`1 onto MY n with the property that (¹
1
)~1(Z)"Z.

Hence, under ¹, the only points of Bn`1 having tracks ending in Z are points of Z.
Now, using scalar multiplication in Rn`1 , de"ne R : Bn`1]IPBn`1 by

R(x, t)"[1!(d (x, MY n) ) t ) (1!t))] )¹(x, t).

Since 0)t ) (1!t))1
4

and d (x, MY n))2 for all x, the scalars range from 1
2

to 1 with value
equal to 1 whenever x3MY n. Hence, for x3MY n, R(MxN]I)"¹ (MxN]I)"MxN. For x N MY n,
R(x, 0)"¹(x, 0)"x and R(x, 1)"¹(x, 1) N Z; moreover, if 0(t(1, then
1!(d(x, MY n) ) t ) (1!t) ) is strictly less than 1, so R(MxN](0, 1))Lint(Bn`1). Thus, for x N MY n,
R(MxN]I)WZ"0.

By the above we see that R "xes Z; and points outside of Z have tracks missing Z.
Hence, R~1(Z)"Z]I, as desired.

CLAIM 2. i :Mn6=n`1 is an in,nite simple homotopy equivalence.

Since Mn is Z-compacti"able it satis"es conditions (a)}(c) of Theorem 3 (see Remark 1).
Next, note that Bn`1"=n`1XZ is a Z-compacti"cation of =n`1. Hence, =n`1 also
satis"es (a)}(c) of Theorem 3. Now, apply Theorem 17 to conclude that p

=
(i) and q

=
(i) are
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both zero. Since Mn is simply connected=h (n
1
(Mm) ) is trivial, therefore, the triviality of

q
=
(i) implies the triviality of q@(i). Hence, by the discussion following Theorem 16, i is an

in"nite simple homotopy equivalence.
The theorem now follows from the proper s-cobordism theorem. j

Remark 7. Steve Ferry has suggested an alternative proof for this result which relies on
continuously controlled surgery theory.

7. A MORE GENERAL UNIQUENESS THEOREM

A tamely embedded compact codimension 0 submanifold (with boundary) C of an open
n-manifold Mn is called a compact core provided C6Mn is a homotopy equivalence. If
LC6MnTint(C) is also a homotopy equivalence, we call C a geometric compact core. In
general, we call a manifold with boundary, Fn, a homotopy collar provided LFn is compact
and the inclusion LFn6Fn is a homotopy equivalence. Hence, an open manifold contains
a geometric core if and only if it contains a neighborhood of in"nity which is a homotopy
collar.

Obviously, any open manifold which contains a compact core is homotopy equivalent
to a "nite complex. A partial converse is provided by Stallings' Embedding Theorem [31],
which guarantees that any open PL n-manifold Mn which is homotopy equivalent to a "nite
k-complex K with n!k*3 contains a k-dimensional subcomplex K@ for which K@6Mn is
a homotopy equivalence. A compact core may be obtained by taking a regular neighbor-
hood of K@. (Recent work by Venema [32] shows that when n!k"2 a compact core need
not exist.)

The following shows that compact cores obtained in the above manner are, in fact,
geometric.

LEMMA 22. Suppose K@ is a k-dimensional subcomplex of an open P¸ n-manifold Mn,
K@6Mn is a homotopy equivalence, and n!k*3. ¹hen any regular neighborhood C of K@ in
Mn is a geometric compact core.

Proof. We must show that LC6MnCint(C ) is a homotopy equivalence. It su$ces to
show that n

i
(MnCint(C ), LC)"0 for all i.

For i"1 the diagram

where the vertical isomorphisms are obtained by standard general position arguments,
shows that n

1
(LC)Pn

1
(MnCint(C )) is an isomorphism, hence, n

1
(MnCint(C), LC)"0.

For i'1, lift the inclusion C6Mn to an inclusion CI 6
'C
Mn of universal covers which is

also a homotopy equivalence. Hence, by excision, H
i
(
'C
MnCint(CI ), LCI )"H

i
(
'C
Mn , CI )"0.

Using the isomorphisms from the above diagram it is easy to see that
'C
MnCint(CI ) and LCI are

both connected and simply connected, so by the Hurewicz theorem, n
i
(
'C
MnCint(CI ), LCI )"0.

It follows that n
i
(MnCint(C), LC)"0 j
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We now show that simply connected Z-compacti"able homotopy collars are deter-
mined by their boundaries.

THEOREM 23. Suppose Fn and Gn are simply connected n-dimensional homotopy collars
(n'4) which admit Z-compacti,cations having homeomorphic Z-boundaries. ¹hen Fn and
Gn are homeomorphic.

COROLLARY 24. Suppose Mn and Nn are open n-manifolds (n'4) admitting Z-compacti,-
cations with homeomorphic Z-boundaries. If Mn and Nn contain geometric cores C

M
and

C
N

with simply connected boundaries, then MnTint (C
M
) and NnCint(C

N
) are homeomorphic.

Remark 8. Theorem 18 can be obtained from this corollary. First, note that an embed-
ded n-ball is a geometric compact core for any contractible n-manifold (apply Lemma 22).
Hence, two contractible open n-manifolds (nR '4) with homeomorphic Z-boundaries are
homeomorphic on the complements of open n-balls. The Alexander trick may be used to
extend this homeomorphism.

Proof of ¹heorem 23. Let FYn and GY n be the Z-compacti"cations, h : LZFnPLZGn be
a homeomorphism, and Z denote the common copy of LZM and LZN lying in X"FYnX

h
GY n.

Since LFn and LGn are compact and disjoint from Z, we may conclude from Theorem 9 that
X is an n-manifold with boundary equal to LFnXLGn.

CLAIM . ¹he cobordism (X, LFn, LGn) is homeomorphic to (LFn][0, 1], LFn]M0N, L]M1N).

We will show that (X, LFn, LGn) is a simply connected h-cobordism. The claim then
follows from the classical (compact) h -cobordism theorem.

Since Fn and Gn are simply connected and the inclusions LFn6Fn, Fn6FYn, LGn6Gn and
Gn6GY n are all homotopy equivalences, each of these spaces is simply connected. An
argument similar to that used for Lemma 15 then shows that X is simply connected. Hence,
by the Hurewicz and Whitehead theorems and duality, the claim follows once we show that
H

i
(X, LFn)"0 for all i.
Fix i*0 and let a be a singular relative i-cycle for (X, LFn). We already know that

H
i
(FYn, LFn)"0, so it su$ces to show that a is homologous to a cycle with support

contained in FYn. Since FYn is an ANR subset of X, there is an open neighborhood ¹ of FYn in
X and a homotopy H of X which homotopes ¹ onto FYn (see Proposition 3.4 of [19]). Since
H*(Gn, LGn),0, duality for non-compact manifolds implies that Hlf

i
(Gn)"0 (Hlf

*
denotes

homology based on locally "nite chains). By subdividing a@"aWGn "ner and "ner near Z,
we may view a@ as a locally "nite i-cycle in Gn. Choose a locally "nite (i#1)-chain b in
;

N
with Lb"a@. Since GnC¹ is compact, a "nite &&subchain'' of b provides a homology

between a and some cL¹. We may now use H to push c into FYn completing the proof of the
claim.

Next, consider the compact (n#1) -manifold with boundary, X][0, 1]. By the above

claim, we may identify FYn and GY n as subsets of X]M1N. Since FYn6X]M1N6X][0, 1] are
homotopy equivalences and each space is an ANR, X][0, 1] strong deformation retracts
onto FYn (Theorems VII.8.1 and VII.2.1 of [19]). Similarly, X][0, 1] strong deformation
retracts onto GY n.

The remainder of the proof now mimics that of Theorem 18 with X][0, 1] taking
the place of Bn`1. In particular, one shows that (X][0, 1]CZ, Fn, Gn) is a relative
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proper h-cobordism (where Fn, Gn and Z are regarded as subsets of X]M1N) and
(LF][0, 1])X (X]M0N)X (LG][0, 1]) is already equipped with a product structure. In
place of the radial structure on Bn`1, which was used in the proof of Theorem 18, one uses
a collar structure on L (X][0, 1]). To complete the proof, an easily obtainable &&relative''
version of the proper s-cobordism must be used since Fn and Gn have boundary. See p. 87 of
[28] for a discussion of the compact version of this theorem. j

Remark 9. A similar proof may be used to obtain variations on this theorem. For
example, the assumption that Fn and Gn be simply connected may be weakened to an
assumption that =h (n

1
(Fn ) )"0 if, in addition, we place conditions on the homeomor-

phism h to ensure that (X, LFn, LGn) is an h-cobordism. If (in this case) we only wish to
conclude that Fn and Gn contain homeomorphic neighborhoods of in"nity, the comments
immediately preceding Theorem 17 allow us to omit the assumption that=h (n

1
(Fn))"0

altogether.
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