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Lesson 22:  Volumes of Cylinders, Cones and Balls 
 
 In this lesson we will investigate the volumes of three types of 3-dimensional 
figures: cylinders, cones and balls.  We begin by defining these figures. 
 
 We use the term cylinder in a very general context.  Every cylinder C is a figure in 
3-dimensional space that has two special subsets called bases.  The bases of C, which 
we denote by E and F, are subsets of disjoint planes, which we denote by PE and PF.  
(Thus, PE and PF are parallel planes.)  Furthermore, there is a translation T of        3-
dimensional space such that T(E) = F (and T(PE) = PF).  Therefore, E and F are 
congruent planar sets in 3-dimensional space.  The cylinder C is then the union of all 
the line segments 

! 

PT(P) that join a point P in E to its translate T(P) in F.  In other words, 
a point belongs to the cylinder C if and only if it lies on a line segment joining a point P 
in one base E to its translate T(P) in the other base F.  The perpendicular distance 
between the two planes PE and PF is called the height of the cylinder C. 
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 There are some special types of cylinders.  If the bases of a cylinder are circular 
disks, then we call the cylinder a circular cylinder.  (The cylinder pictured above could 
be a circular cylinder.)  If the bases of a cylinder are polygonal disks, then we call the 
cylinder a prism.  (A prism is pictured on the next page.)  If the bases of the cylinder are 
rectangular disks and if the direction of motion of the translation moving one base to the 
other is perpendicular to the planes containing the bases, then the cylinder is called a 
box.  The surface of the box is the union of six rectangles, two of which are the bases.  
The length, width and height of the box are called its dimensions. 
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 We also use the term cone in a very general context.  Every cone K is a figure in 
3-dimensional space that has a special subset called its base and a special point called 
its vertex.  The base of K, which we denote by E, is a subset of a plane, which we 
denote by PE.  The vertex of K, which we denote by V, does not lie in the plane PE.  The 
cone K is then the union of all the line segments 

! 

VP that join the vertex V a point P in E.  
In other words, a point belongs to the cone K if and only if it lies on a line segment 
joining the vertex V to a point P in the base E.  The perpendicular distance between the 
vertex V and the plane PE is called the height of the cone K. 
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 There are some special types of cones.  If the base of a cone is a circular disk, 
then we call the cone a circular cone.  (The cone pictured above could be a circular 
cone.)  If the base of a cone is a quadrilateral disk, then we call the cone a pyramid.  If 
the base of the cone is a triangular disk, then the cone is called a tetrahedron.  (A 
pyramid and a tetrahedron are pictured on the next page.) 
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 Recall that a sphere with center C and radius r is the 2-dimensional surface in 3-
dimensional space consisting of all the points P such that CP = r.  The ball with center C 
and radius r is the 3-dimensional figure consisting of all points P in space such that CP 
≤ r.  Thus the sphere is the surface of the ball. 
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 Cylinders, cones, balls and many other 3-dimensional figures have well defined 
volumes.  We now discuss this concept. 
 
 Volume is a function which assigns to a large class of 3-dimensional figures 
(including cylinders, cones and balls) a non-negative number called the volume of the 
figure.  If S is a 3-dimensional figure, then we denote its volume by Vol(S).  Thus, Vol(S) 
≥ 0.  Furthermore, the volume function satisfies the following four basic principles. 
 
 The Congruence Invariance Principle.  If S and T are congruent 3-dimensional 
figures (i.e., there is a rigid motion of 3-dimensional space that moves S to T), then 
Vol(S) = Vol(T).  In other words, if S 

! 

" T, then Vol(S) = Vol(T). 
 
 The Additivity Principle.  If S is a 3-dimensional figure that is the union of  
finitely many non-overlapping 3-dimensional figures T1, T2, … , Tn, then  

Vol(S)  =  Vol(T1) + Vol(T2) + … + Vol(Tn). 
(Two 3-dimensional figures are non-overlapping if their interiors are disjoint.  Their 
surfaces may or may not touch each other, as long as their interiors are disjoint.) 
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 The Standardization Principle.  If S is a box with dimensions a, b and c, then 
Vol(S) = abc. 
 
 Cavalieri’s Principle.  Suppose that two 3-dimensional figures S and T lie 
between two parallel planes P1 and P2.  If for every plane Q that lies between and is 
parallel to P1 and P2, the two cross-sections Q ∩ S and Q ∩ T have the same area, then 
Vol(S) = Vol(T). 
 
 Cavalieri’s Principle implies that the three figures shown here (two cylinders and 
a “staggered cylinder”) have the same volume.  (All cross-sections are hexagons of the 
same area.) 
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 Suppose that C and D are cylinders and P1 and P2 are parallel planes such that 
P1 contains one base of C and one base of D while P2 contains the other base of C and 
the other base of D.  If the bases of C have the same area as the bases of D, then 
Cavalieri’s Principle implies that Vol(C) = Vol(D), even if C has a circular base and D 
has a square base.  This is because: if the bases of C and D have the same area, then 
so do all the cross-sections of C and D determined by planes that are parallel to P1 and 
P2.  
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 Cavalieri’s Principle also implies that the two cones shown here have the same 
volume.  These two cones have the same height and their bases have the same area.  
It then follows that at each height, the cross-sections of the two cones have the same 
area.  Hence, Cavalieri’s Principle applies to these two cones.  
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 We expand on the information stated in the previous paragraph.  Suppose a cone 
has height h and base area A.  Consider a cross-section of the cone which lies on a 
plane, let y denote the perpendicular distance from the vertex of the cone to the plane, 
and let Ay denote the area of the cross-section.  Then Ay is determined by the following 
following equation. 

Ay  =  

! 

y
h

" 
# 
$ % 

& 
' 
2

A. 

 
                                                  
                                                                       
           area Ay                  y 
                                                    h 
                                                                 area A 
 
 
            
                          
 
 
  
Hence, if two cones both have height h and base area A, then their cross-sections at a 
(perpendicular) distance y from their vertices both have areas determined by this 
equation.  Thus, these cross-sectional areas are equal.  Therefore, in the situation of 
two cones with equal heights and equal base areas, Cavalieri’s principle tells us that the  
two cones have equal volumes. 
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 Activity 1.  Each group should test the truth of Cavalieri’s Principle by 
considering geometric models of two cylinders with the same base area and height, one 
of which is “straight” while the other is “slanted”.  Check whether the same amount of 
sand is needed to fill each model.  Also test Cavalieri’s Principle using geometric 
models of two cones with the same base area and height, one straight and one slanted. 
 
 Activity 2.  The class as a whole should answer these questions. Let C be a 
cylinder with bases of area A and height h. 
a)  What are the areas of the cross-sections of C?   
b)  Let a = 

! 

A .  Is there a box with length a, width a and height h?.  If so, what are the 
areas of the cross-sections of this box? 
c)  What does Cavalieri’s Principle tell you about the relation between the volume of the 
cylinder C and the box? 
d)  Can you use your answers to the previous parts of this activity to write a formula for 
the volume of the cylinder in terms of A and h? 
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 Activity 3.  The class as a whole should answer this question.  Suppose C is a 
cylinder and K is a cone with the same base areas and heights.  Fill K with sand and 
pour this sand into C.  How many times must you repeat this process before C is filled 
with sand? 
 
 Activity 4.  Each group should test the class’s answer to Activity 3 with 
geometric models of a cylinder C and a cone K with the same base areas and heights.  
Fill K with sand and pour this sand into C as many times as it takes to fill C.  Report this 
number to the class. 
 
 Activity 5.  The class should write a formula for the volume of a cone in terms of 
the area A of its base and its height h. 
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 Activity 6.  The class as a whole should answer this question.  Suppose H is a 
half-sphere of radius r and K is a circular cone with base radius r and height 2r.  Fill H 
with sand and pour this sand into K.  How many times must you repeat this process 
before K is filled with sand? 
 
 Activity 7.  Each group should test the class’s answer to Activity 6 with 
geometric models of a half-sphere H of radius r and a circular cone K with base radius r 
and height 2r.  Fill H with sand and pour this sand into K as many times as it takes to fill 
C.  Report this number to the class. 
 
 Activity 8.  The class should write a formula for the volume of a ball of radius r in 
terms of r. 
 

We have just discovered a formula for the volume of a ball of radius r by 
experiment based on already knowing formulas for the volumes of a cylinder and a 
cone.  We can also derive this formula theoretically by using Cavalieri’s Principle.  (We 
will still need to know the formulas for the volumes of a cylinder and a cone.)  We end 
this lesson by presenting this simple and elegant derivation. 
 
  Let B be a ball of radius r.  Let H  be the upper half-ball of B.  Thus H is a half-ball 
of radius r.  Let K be a cone of height r whose base is a circular disk of radius r.  Let C 
be a cylinder of height r whose base is a circular disk of radius r. 
 

Let H, K and C lie between two planes.  The upper plane contains the north pole 
of H, the base of K and the upper base of C.  The lower plane contains the “equatorial 
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base” of H (a circular disk of radius r), the vertex of K and the lower base of C. 
 

Let 0 ≤ y ≤ r, and consider the cross-sections of H, K and C at height y.  The 
cross-section of H at height y is a circular disk Dx of radius x where x2 + y2 = r2.  The 



 338 

cross-section of K at height y is a circular disk Dy of radius y.  The cross-section of C  
at height y is a circular disk Dr of radius r.  Now:  

Area(Dx) = πx2,     Area(Dy) = πy2,     and      Area(Dr) = πr2. 
Remembering that x2 + y2 = r2, we have: 

Area(Dx) + Area(Dy)  = πx2 + πy2  =  π(x2 + y2)  =  πr2  =  Area(Dr). 
Thus, the areas of the cross-sections of H and K at height y add up to the area of the 
cross-section of C at height y.  In other words, the area of the cross-section of H ∪ K at 
height y equals the area of the cross-section of C at height y.  Therefore, Cavalieri’s  
Principle tells us that  

Vol(H ∪ K) = Vol(C). 

The Additivity Principle tells us that  
Vol(H ∪ K)  =  Vol(H) + Vol(K). 

Thus,  
Vol(H) + Vol(K)  =  Vol(C). 

Since H is one-half of the ball B of radius r, then  
Vol(H)  =  (1/2)Vol(B). 

Hence,  
(1/2)Vol(B) + Vol(K)  =  Vol(C). 

Since K is a cone with height r  and with base area πr2, then  
Vol(K) = (1/3)(πr2)r  =  (1/3)πr3. 

Since C is cylinder with height r and with base area πr2, then 
Vol(C) = (πr2)r = πr3. 

Therefore,  
(1/2)Vol(B) + (1/3)πr3  = πr3. 

Hence,   
(1/2)Vol(B)  = πr3 – (1/3)πr3  =  (2/3)πr3. 

Thus,  
Vol(B)  =  2(2/3)πr3  =  (4/3)πr3. 

This completes our proof of the formula for the volume of a ball B of radius r 
Vol(B)  =  (4/3)πr3 

based on Cavalieri’s Principle and previous knowledge of the formulas for the volumes 
of a cylinder and a cone. 
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Homework Problem 1.  One of the great pyramids in Egypt has a square base whose 
sides are 900 feet long and its height is 400 feet.  The pyramid is solid except for a huge 
excavated burial chamber in its interior which is a box that is 300 feet long, 200 feet 
wide and 50 feet high.  (All measurements are to the nearest foot.)  What is the volume 
of the solid part of the pyramid?  
 
 
Homework Problem 2.  A twisted column 10 feet high is constructed from a large 
number of thin square cement plates that are 3 feet long on each side.  As the column 
rises, the square plates twist in the counterclockwise direction.  The squares complete 
two complete 360º twists as they rise from the bottom of the column to the top.  What is 
the volume of the column? 
 
 
Homework Problem 3.  A large teepee has a circular base of radius 12 feet and its 
height is 18 feet.  Suppose that a circular ceiling has been installed in the teepee 10 feet 
above the floor.  What is the volume of the portion of the teepee that is below the 
ceiling? 
 
 
Homework Problem 4.  Consider a 3-dimensional figure that consists of a slanted 
cylinder C with a circular base, a slanted cone K with a circular base that is mounted on 
one base of C, and a half ball H mounted on the other base of C.  Suppose that the 
radius of the base of the cylinder C, the radius of the base of the cone K and the radius 
of the half ball H are all the same: 5 inches.  Also suppose that the cone K and the half 
ball H are mounted on the two bases of the cylinder C so that the two bases of C are 
exactly covered by K and H.  In other words, K and H are mounted on the bases of C so 
that no portion of either base of C is exposed.  Furthermore, the height of the cylinder C 
is 17 inches and the height of the cone K is 13 inches.   Here is a 2-dimensional 
schematic picture of this figure: 
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What is the volume of this 3-dimensional figure? 
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Homework Problem 5.  Suppose that aliens from galaxy far far away come to Earth 
with a giant straight knife and they slice a wedge out of the Earth in the same way that 
you would slice a wedge from an orange.  They make one straight cut along the 24º W 
meridian of longitude, and they make a second straight cut along the  57º E meridian of 
longitude.  (The cuts are planar – i.e. flat – and end at the Earth’s axis, just as the cuts 
that remove a wedge from an orange run straight from meridians of longitude on the 
orange’s surface to its axis.)  The aliens then remove this wedge and haul it back to 
their galaxy.  The radius of the Earth is 4000 miles (to the nearest 100 miles).  What is 
the volume of the wedge? 
 
 
Homework Problem 6.  Let C be a cylinder and K a cone of equal heights and both 
with congrent triangular bases, as shown here.  Prove that Vol(C) = 3Vol(K) by 
decomposing C into three cones of equal volume, one of which is a copy of K. 
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Make models of the three cones out of cardstock. Demonstrate that they can be 
assembled to make a copy of C.  Also demonstrate that in each pair of cones, bases 
can be chosen so that the bases are congruent and the heights (on these bases) are 
equal.  
 
 
 
 
 
                                         Hint: 
 
 
 
 
 
 


