
 219 
 

Lesson 14:  An Axiom System for Geometry 
 
 We are now ready to present an axiomatic development of geometry.  This 
means that we will list a set of axioms for geometry.  These axioms will be simple 
fundamental facts about geometry which we will assume to be true.  We will not require 
further justification for the axioms.   
 

The statements of the axioms will involve certain basic geometric words like 
“point” and “line”.  We will not define these words; we will assume that you have an 
intuitive idea of their meaning.  Your intuitive understanding of these words may help 
you to visualize the concepts they represent; however, all the hard information you will 
need about these words is expressed in the axioms.  You do not need to bring any extra 
information about these geometric words to the process of developing geometry from its 
axioms.  In fact, it would be wrong to bring any information to this task that is not 
contained in the axioms or their logical consequences.   

 
In addition to these basic words, we will find it convenient to introduce other 

geometric words which we will define in terms of the basic words.   
 
Finally, we will state and prove a number of theorems of geometry.  A theorem is 

a true geometric statement that is not an axiom.  The axioms are foundational 
statements that we assume to be true without proof.  However, the theorems require 
proof to establish their truth.  For each theorem that we state, we will either present its 
complete proof or present a partial proof or present no proof and leave some aspect of 
the proof or all of the proof as a class activity or homework problem. 
 
 Of course, many geometric statements are false.  There is no hope of proving 
such statements.  If we suspect that a statement is false, we need a technique for 
demonstrating its falsity.  The usual method for showing that a geometric statement is 
false is to present a counterexample to the statement.  A counterexample to a geometric 
statement is a description or picture of a situation in which all the axioms of geometry 
are true, but the statement in question is false.   
 

To summarize: in an axiomatic development of geometry, a true geometric 
statement or theorem is shown to be true by presenting a proof of it from the axioms or 
from previously proved theorems.  A false geometric statement is shown to be false by 
presenting a counterexample in which the statement is false but all the axioms are true. 

 
Historically, the earliest known axiomatic development of geometry is the book 

The Elements by the Greek mathematician Euclid.  Euclid lived in Alexandria, Egypt 
about 300 B.C.  Egypt was conquered by Alexander the Great in 331 B.C.  He created 
the city of Alexandria and made it the capital of Egypt.  When Alexander died at age 33 
in 323 B.C., his empire was divided among his generals.  The name of the general who 
took control of Egypt was Ptolemy.  Ptolemy and his descendants ruled Egypt until it  
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was conquered by the Romans in 80 B.C.  (The last member of the Ptolemaic dynasty 
to rule Egypt was Cleopatra.)  Alexander and his general Ptolemy who were of Greek 
heritage made Alexandria the primary center of Greek culture and learning, and the 
greatest Greek thinkers of that era found their way to Alexandria, including Euclid.   

 
In writing The Elements, Euclid codified the previous three centuries of work of 

Greek mathematicians including Thales, Pythagorus and Plato.  (Thales first learned of 
geometry in Egypt and brought it to ancient Greece around 600 B.C.)  The contribution 
of these mathematicians was to view geometry as a subject to be developed 
axiomatically.  They did not view geometry as it had been seen by earlier cultures as 
simply a large collection of related facts that are useful for measurement and design.  
They realized that all the facts of geometry can be proved logically from a few basic 
assumptions or axioms, and they regarded this observation as a powerful approach to 
the subject that allowed them to organize it and generate new geometric facts in a very 
efficient way.  Euclid brought together in one book his own geometric discoveries as 
well as those of his predecessors and organized them into an axiomatic system.  In 
subsequent centuries, The Elements became the primary model for the organization of 
knowledge in science, philosophy and many other areas of human thought, and has 
persisted in this role to the present day. 

 
In The Elements Euclid based geometry on only five axioms or postulates.  Our 

development of geometry is much less efficient than Euclid’s; we will base our axiomatic 
approach to geometry on 14 axioms.  The basic reason that we tolerate this glut of 
axioms is to save time.  We could pare our list of axioms down to a much smaller list 
and then use the axioms on the smaller list to prove all the others.  But this would be a 
complicated undertaking that would consume much thought and time and would be 
inappropriate for this course.  Also with a larger list of axioms, it becomes easier to 
prove theorems.  We have chosen for our axioms statements that are reasonably 
familiar and self-evident and which are numerous enough to lead to relatively 
straightforward, short and transparent proofs of the theorems we want to establish.  
 
 

We begin our axiomatic development of geometry by introducing the basic 
geometric terms point, line, plane and space (meaning 3-dimensional space).  We 
assume that you know the meaning of these terms.  We will not define them.1  We also 
assume that you understand that for any two points in space, there is a distance 
between the two points that is a specific number which is ≥ 0. 

 
 

                                            
1 In every mathematical theory, there must be some undefined terms.  This is because every defined term 
has a definition which explains the term by relating it to terms that are already understood.  So the very 
first terms of a subject can’t be defined because there are no previously understood terms to which they 
can be related.  Point, line, plane and space are some of the undefined terms in our development of  
geometry. 
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We recall two logical concepts that are useful in all areas of mathematics, not just  
geometry.   
• Two objects are distinct if they are not identical.  Thus, A and B are distinct if A ≠ B.   
• An object is the unique object with certain properties, if the object has the properties 

and it is the only object that has these properties. 
 
Now we state our first axiom for geometry. 
 
The Incidence Axiom.  Any two distinct points in space lie on a unique line.  In 

other words, if A and B are distinct points in space (A ≠ B), then there is one and only 
one line that passes through both A and B. 

 
Sometimes we paraphrase this principle by saying that any two distinct points in 

space determine a unique line.  Here, the line determined by the two distinct points is 
the unique line that passes through the two points.2 
 

We will use the same basic notation for lines, line segments, rays and distance 
that we introduced earlier. 
 

Notation.  Let A and B be points in space. 

• If A ≠ B, let 

! 

AB denote the unique line determined by A and B. 

• Let 

! 

AB denote the line segment with endpoints A and B. Thus, 

! 

AB consists of all the 
points of the line 

! 

AB that lie between A and B, together with the points A and B   
themselves. 

• If A ≠ B, let 

! 

AB denote the ray that emanates from A and passes through B.  Thus, 

! 

AB consists of all the points of the line 

! 

AB that lie either between A and B or on the 
opposite side of B from A, together with the points A and B themselves. 

• Let AB denote the distance between A and B. 

                                            
2 The Incidence Axiom which we have just stated is sufficient for a development of 2-dimensional or plane 
geometry.  We are going to concentrate on 2-dimensional geometry in this axiomatic development of 
geometry.  So this Incidence Axiom is all we need.  However, if we were going to pursue an axiomatic 
development of 3-dimensional geometry, we would require the following three additional Incidence 
Axioms. 

 
Incidence Axiom 2.  Any three points in space that do not lie on a single line lie in a unique plane. 

 
Incidence Axiom 3.  If two distinct points in space lie in the plane P in space, then the line determined by 
the two points also lies in the plane P. 

 
Incidence Axiom 4.  If two distinct planes in space intersect, then their intersection is a line. 
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We recall our earlier observations about this notation.  First note that if A and B 
are points in space, then AB is a number which is ≥ 0, while 

! 

AB, 

! 

AB and 

! 

AB are sets in 
space.  Indeed, AB is the length of 

! 

AB.  Warning:  Don’t write one of these notations  
when you mean the other.  Also, we recall that distance has the following three  
properties: 

AB ≥ 0,     AB = 0  if and only if  A = B,     and     AB = BA. 
 
 Definition.  Let A, B and C be three points in a plane or in space.  If A, B and C 
all lie on the same line, we say they are collinear.  If A, B and C do not lie on a single 
line, then we say they are noncollinear. 
 
 Here is our second axiom for geometry. 
 
 The Length Addition Axiom.  If A, B and C are collinear points and B  
lies between A and C, then  

AC  =  AB + BC. 
 

 
 
                                                                                C 

                          A                    B 
 
 
 
 Next we recall the definition of angle. 
 
 Definition.  Let A, B and C be three points in space such that A ≠ B and A ≠ C.  
The union of the two rays 

! 

AB and 

! 

AC is called the angle with vertex A and sides 

! 

AB 
and 

! 

AC.  This angle can be denoted either ∠BAC or ∠CAB. 
 
 
                           C 
 
                            
                            A 
           
                  B 

 
∠BAC 
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We assume that you understand that every angle ∠BAC has a measure that is a 
number between 0 and 180. The measure of the angle ∠BAC is denoted m(∠BAC).  To 
indicate that angles are being measured in degrees, we attach the symbol “º” to the 
numerical measure of each angle.  Thus, 0º ≤ m(∠BAC) ≤ 180º. 

 
We observe that if ∠BAC is an angle in space, then ∠BAC is a set in space, 

while m(∠BAC) is a number between 0º and 180º.  Warning:  Don’t write one of these 
notations when you mean the other. 
 
 Here is our third axiom for geometry. 
 
 The Angle Addition Axiom.  If D is a point that lies in the interior of the  
angle ∠BAC, then  

m(∠BAC)  =  m(∠BAD) + m(∠DAC). 
 
 
 
                           C 
 
                            
                            A           D 
           
                  B 
 
 
 
 
 We remark that the equation “m(∠BAC)  =  m(∠BAD) + m(∠DAC)” makes sense 
because m(∠BAC), m(∠BAD) and m(∠DAC) are numbers and we know how to add 
numbers.  On the other hand, the equation “∠BAC  =  ∠BAD + ∠DAC” does not make 
sense because ∠BAC, ∠BAD and ∠DAC are sets in space, and, in general, we don’t 
know how to add sets. 
 

(We observe that a similar remark applies to the two equations: “AC  =  AB + BC” 
and “AC   =  AB  + BC ”.  The first equation makes sense because we know how to add 
numbers, but the second equation doesn’t make sense because, in general, we don’t 
know how to add sets.) 
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 We recall some geometry terminology about angles.  If A, B and C are collinear 
points, and B lies between  A and C, then the angle ∠ABC is often called a straight 
angle. 
 
 
                                                                                C 

                          A                    B 
 
 
 We now state our fourth axiom for geometry. 
 
 The Straight Angle Axiom.  If A, B and C collinear points and B is  
between A and C, then  

m(∠ABC)  =  180º. 
 
 Up to this point we have stated four axioms of geometry.  We have assumed that 
these four statements are true.  Hopefully, their truth is obvious to you.  We now come 
to our first theorem.  In other words, the truth of the following geometric statement will 
not simply be assumed.  It will be demonstrated by proving it from the previously stated 
axioms.  Before stating this theorem, we need to introduce the concept of vertical 
angles. 
 
 Definition.  If lines AB  and CD  intersect at a point E such that E lies between A 
and B on line AB  and E lies between C and D on line CD , then the angles ∠AEC and 
∠BED are called vertical angles or opposite angles.  The angles ∠AED and ∠BEC are 
also called vertical angles or opposite angles. 
 
 

       B 
     C 

              E 
 
 

A         D 
 
 
 
 Theorem 1: The Vertical Angles Theorem.  Vertical angles have equal 
measures.  In other words, if AB  and CD   are lines that intersect at a point E such that 
E lies between A and B on line AB  and E lies between C and D on line CD , then  
m(∠AEC)  =  m(∠BED).  (Also m(∠AED)  =  m(∠BEC).) 
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 Activity 1.  The class as a whole should carry out the following activity.  A proof 
of Theorem 1 is given below.  However, in seven lines of the proof there are blanks 
where the name of one of the previously stated axioms or the numbers of earlier lines of 
the proof need to be entered to justify the line.  Fill in the name of an appropriate axiom 
or the appropriate line numbers to justify each of the seven lines of the proof in which a 
blank occurs. 
 
 
 Proof of the Vertical Angles Theorem.  
1)  m(∠AEB)  =  m(∠AEC) + m(∠CEB)  by the  ____________________  Axiom. 

2)  m(∠AEB)  =  180º  by the  ____________________  Axiom. 

3)  Therefore, m(∠AEC) + m(∠CEB)  =  180º by lines ____________________ . 

4) m(∠CED)  =  m(∠CEB) + m(∠BED)  by the  ____________________  Axiom. 

5)  m(∠CED)  =  180º  by the  ____________________  Axiom. 

6)  Therefore, m(∠CEB) + m(∠BED)  =  180º by lines ____________________ . 

7)  Hence, m(∠AEC) + m(∠CEB)  =  m(∠CEB) + m(∠BED) by lines _______________. 

8)  Subtracting m(∠CEB) from both sides of the equation in line 7) gives: 
m(∠AEC)  =  m(∠BED). 

The proof that m(∠AED)  =  m(∠BEC) is similar. 

This completes the proof of the Vertical Angles Theorem. 
 
 
 We continue our axiomatic development of geometry with a review of two of the 
most important concepts of the subject: rigid motion and congruence.  Recall: 
 
 Definition.  A rigid motion of a plane is a motion of points of the plane to other 
points of the plane that preserves the distance between any two points.  Thus, M is a 
rigid motion of a plane P if: 
• M moves each point A of the plane P to another point M(A) of the plane P,  
and 
• if A and B are any two points of the plane P, then the distance from A to B equals 
 the distance from M(A) to M(B).  (In terms of our notation: AB = M(A)M(B).) 
A rigid motion of space can be defined similarly.  It is a distance preserving motion of 
the points of space. 
 
 Recall that we have identified four different types of rigid motions of a plane: 
translations, rotations, reflections and glide reflections.   Furthermore, according to the  
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Classification Theorem for Rigid Motions of a Plane, every rigid motion of a plane is of 
one of these for types. 
 
 Once we have introduced the notion of a rigid motion, we are in a position to 
define the most important idea in geometry: congruence.  
 
 Definition.  Two geometric figures in a plane are congruent if and only if there is 
a rigid motion of the plane that moves one figure to the other.   
 
 We remark that we can similarly define the relation of congruence for two 
geometric figures in space.  Two geometric figures in space are congruent if there is a 
rigid motion of space that moves one figure to the other. 
 
 Notation.  If S and T are geometric figures in a plane, then we will write S 

! 

" T to 
indicate that S is congruent to T.  Thus, S 

! 

" T means there is a rigid motion of the plane 
containing S and T that moves S to T. 
 
 Here are our first two axioms involving the notion of congruence. 
 
 The Congruence Axiom for Line Segments.  Two line segments are congruent 
if and only if they have the same length.  Thus, AB  

! 

" CD  if and only if AB = CD. 
 

The Congruence Axiom for Angles.  Two angles are congruent if and only if 
they have the same measures.  Thus, ∠ABC 

! 

" ∠DEF if and only if m(∠ABC) = 
m(∠DEF). 
 
 Observe that each of these Congruence Axioms is an “if and only if” statement.  
Thus, each of these axioms breaks into two separate assertions which convey 
independent information.   

 
For example, the Congruence Axiom for Line Segments implies the two 

assertions: 

1)  If AB  

! 

" CD , then AB = CD. 

2)  If AB = CD, then AB  

! 

" CD .   

Assertion 1) says that if there is a rigid motion that moves AB  to CD , then AB = CD.  
This assertion isn’t surprising because rigid motions preserve distance.  Assertion 2) 
says that if the distances AB and CD are equal, then there must exist a rigid motion that 
moves AB  to CD .  This assertion 2) is a more substantial claim because it promises the 
existence of a rigid motion based only on the equality of two distances. 
 

Similarly, the Congruence Axiom for Angles breaks into two independent 
assertions.  One assertion says that if there is a rigid motion moving angle ∠ABC to 
angle ∠DEF, then these two angles have the same measure.  The other assertion says  
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that if the two angles have the same measure, then there must exist a rigid motion that 
moves one angle to the other.  Again the second assertion is more substantial. 
 
 One of the simplest types of geometric objects is a triangle.  We will study the 
congruence of triangles extensively.  We begin by defining this class of geometric 
objects. 
 
 Definition.  Let A, B and C be three points in space.  The union of the three line 
segments AB , AC  and BC  is called a triangle.  We denote this triangle by ΔABC.  
(Observe that the same triangle can also be denoted by writing ΔBCA, ΔCAB, ΔACB, 
ΔBAC and ΔCBA.)  The points A, B and C are called the vertices of the triangle.  The 
line segments AB , AC  and BC  are called the sides of the triangle.  We write ∠A, ∠B 
and ∠C as abbreviations for the three angles ∠CAB, ∠ABC and ∠BCA of the triangle.        
 
                   C 
 
 
                  B 

 A 
 
 
 Observe that if the two triangles ΔABC and ΔDEF that lie in the same plane are 
congruent, then there is a rigid motion of the plane that moves ΔABC to ΔDEF.  This 
rigid motion will move the vertices A, B and C of the triangle ΔABC to the vertices D, E 
and F of the triangle ΔDEF.  There are potentially six different ways that a rigid motion  
can create a correspondence between the vertices A, B, C and the vertices D, E, F:  
• A → D, B → E, C → F, 

• A → D, B → F, C → E, 

• A → E, B → F, C → D, 

• A → E, B → D, C → F, 

• A → F, B → D, C → E, and 

• A → F, B → E, C → D. 

So the assertion that ΔABC is congruent to ΔDEF tells us only that there are possibly as 
many as six different rigid motions that move triangle ΔABC to triangle ΔDEF.  It does 
not tell us which of these six possibilities is actually realized by a rigid motion that 
moves ΔABC to ΔDEF.  We now enrich definition of congruence and the notation “

! 

"” to 
overcome this failing. 
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 Definition.  When we use the notation “

! 

"” with triangles, we will endow it with 
extra meaning.  If ΔABC and ΔDEF are triangles in a plane, then the writing “ΔABC 

! 

"  
ΔDEF” will mean more than just that the two triangles ΔABC and ΔDEF are congruent. 
“ΔABC 

! 

" ΔDEF” will mean that there is a rigid motion of the plane that moves vertex A 
to vertex D, vertex B to vertex E, and vertex C to vertex F.  Such a rigid motion will then 
necessarily move edge 

! 

AB to edge 

! 

DE , edge 

! 

BC to edge 

! 

EF, and edge 

! 

AC to edge 

! 

DF .  The rigid motion will also move angle ∠A to angle ∠D, angle ∠B to angle ∠E, and 
angle ∠C to angle ∠F.  Furthermore, when ΔABC 

! 

" ΔDEF, we will say that ΔABC is 
congruent to ΔDEF via a rigid motion that extends the vertex correspondence  
A → D, B → E, C → F. 
 
 The two triangles ΔABC and ΔDEF pictured below are congruent via a rigid 
motion that extends the vertex correspondence A → E, B → F, C → D.  According to the 
prescription just stated for the use of the notation “

! 

"”,  all of the following three 
statements about these two triangles are also true:   

ΔABC 

! 

" ΔEFD,     ΔBAC 

! 

" ΔFED,     and     ΔCAB 

! 

" ΔDEF. 

On the other hand, each of the following three statements is false: 
ΔABC 

! 

" ΔDEF,     ΔBCA 

! 

" ΔFED     and     ΔCBA 

! 

" ΔFDE. 

(These are not the only true and false statements expressing congruence relations 
between these two triangles.  For example, ΔCBA 

! 

" ΔDFE is true and ΔCBA 

! 

" ΔDEF is 
false. ) 
 
                C            D 
 
 
               B                                                              F 
                    A                          E 
 
  

We now state four congruence axioms for triangles.  By declaring these 
statements to be axioms, we assume that they are true.  We do not require proofs to 
establish their truth.   The four congruence axioms stated next tell us that to 
demonstrate that triangles T and T´ are congruent, it is sufficient to match up three 
appropriately chosen measurements on T to three corresponding measurements on T´. 
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The Side-Angle-Side Axiom (SAS).  If T and T´ are triangles and there is a  
correspondence between the vertices of T and the vertices of T´ so that: 
• two of the sides of T are congruent to the corresponding sides of T´, and  
• the included angle between these two sides of T is congruent to the corresponding  

angle of T´, 
then T and T´ are congruent via a rigid motion that extends the given vertex 
correspondence. 
 

 
 
 
 
 
 

 
  T             T´ 
 

 
 

The Angle-Side-Angle Axiom (ASA).  If T and T´ are triangles and there is a  
correspondence between the vertices of T and the vertices of T´ so that: 
• two of the angles of T are congruent to the corresponding angles of T´, and  
• the included side between these two angles of T is congruent to the corresponding  

side of T´, 
then T and T´ are congruent via a rigid motion that extends the given vertex 
correspondence. 
 
 

 
 
 
 
 
 

 
  T             T´ 
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The Side-Side-Side Axiom (SSS).  If T and T´ are triangles and there is a  
correspondence between the vertices of T and the vertices of T´ so that each side of T 
is congruent to the corresponding side of T´, then T and T´ are congruent via a rigid 
motion that extends the given vertex correspondence. 

 
 
 
 
 
 
 
 

 
  T             T´ 

 
 

Recall the measures of the three angles of a triangle add up to 180º.  Hence, if 
two angles of a triangle T are congruent to two angles of the triangle T´, then the third 
angle of T must be congruent to the third angle of T´!  It follows that the ASA Axiom can 
be strengthened: the side doesn't have to be included between the two angles. 
 

The Angle-Angle-Side Axiom (AAS). If T and T´ are triangles and there is a  
correspondence between the vertices of T and the vertices of T´ so that: 
• two of the angles of T are congruent to the corresponding angles of T´, and  
• one of the sides of T is congruent to the corresponding side of T´, 
then T and T´ are congruent via a rigid motion that extends the given vertex  
correspondence. 
(The selected side of T does not have to be included between the two selected angles 
of T.) 
 

 
 
 
 
 
 

 
  T             T´ 
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Warning.  Unlike the ASA Principle, the SAS Principle does not generalize.  In 
other words, there is no ASS principle.   This is because it is possible for two triangles 
T and T´ to be non-congruent and yet have two sides and a non-included angle of T 
congruent to the corresponding two sides and non-included angle of T´. 

 
 
 
 
 
 

 
  T             T´ 

 
 
Observe that we have not bothered to formulate the four preceding congruence 

axioms for triangles as “if and only if” statements.  This is because it is obvious that the 
converses of these four axioms are true, and it is unnecessary to include the assertion 
of the truth of the converse in the statement of the axiom.  Indeed, if the triangles T and 
T´ are congruent, then there is a rigid motion that carries T to T´.  This rigid motion will 
carry each side or angle of T to the corresponding side or angle of T´.  Therefore, the 
existence of this rigid motion automatically implies that each side or angle of T is 
congruent to the corresponding side or angle of T´. 

 
We have just stated four congruence principles as axioms.  We could have taken 

a more economical approach: we could have stated only one congruence axiom and 
proved the other three principles as theorems from this axiom.  This is the approach 
Euclid took in The Elements where he stated the SAS principle as an axiom and proved 
the ASA, SSS and AAS principles from it.  We avoid this more economical approach 
here because the process of proving three congruence principles from one is long and 
complicated and is not consistent with the focus of this course.  We prefer to assume all 
four congruence principles as axioms and have the immediate use of them to give 
simple proofs of other theorems. 
  
 We now use the congruence axioms to prove a fundamental geometric theorem.  
First we need a definition. 
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Definition.  A triangle is isosceles if two of its sides are congruent. 
 

A 
 
 
 
 
 
 

B  C 
 
 
 Theorem 2: The Isosceles Triangle Theorem.  Let ΔABC be a triangle.  Then 

! 

AB is congruent to 

! 

AC if and only if ∠B is congruent to ∠C. 
 

Remark.  This theorem asserts an if and only if statement.  Recall that such 
statements break into two separate assertions each of which conveys independent  
information.  The two assertions conveyed by this statement are:    
1)  if 

! 

AB is congruent to 

! 

AC, then ∠B is congruent to ∠C, and 

2)  if ∠B is congruent to ∠C, then 

! 

AB is congruent to 

! 

AC. 

To prove this theorem, we will prove assertions 1) and 2) separately. 
 
 We will present two different proofs of this theorem, one here and another as 
Homework Problem 3.  Either proof alone is enough to establish the theorem.  There 
are several reasons for presenting two different proofs.  One reason is simply to 
demonstrate that different proofs are possible.   Another reason is that different proofs 
give different insights into the meaning of the theorem.  The proof we give here is short 
but subtle, and perhaps a little hard to understand.  The second proof which is appears 
in Homework Problem 3 is longer but perhaps more obvious.  Students may find that it 
is easier to imagine how someone could come up with the idea for the second proof.  
 
 
 Activity 2.  The class as a whole should carry out the following activity.  Proofs of 
parts 1) and 2) of Theorem 2 are given below.  However, in one line of each proof there 
is a blank where the name of one of the previously stated axioms needs to be entered to 
justify the line.  Fill in the name of an appropriate axiom to justify the line of the proof in 
which a blank occurs. 


