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Lesson 11:  The Symmetry of Bounded Plane Figures 
 

In this lesson we begin the study of symmetry of figures in a plane. 
 
 
Activity 1.  The class should discuss the following two questions.  The eight  

figures on this and the next two pages exhibit symmetry.   
• What makes each figure symmetric? 
• In what way is the symmetry of one figure the same as or different from that of the  

other figures? 
You may find it helpful to use patty paper.  In searching for symmetry in a figure, ignore 
fine distinctions in color and shading that would disappear if you traced the figure on 
patty paper with a pencil.    
 
 
a) 

 
 
b) 
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c) 

  
 
 
 
d) 

 
 
 
 
e) 

 
 
(Imagine that this figure extends to the right and left forever.) 
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f) 

 
 
 
g) 

 
 
(Imagine that this figure fills its plane, extending right, left, up and down forever.) 
 
 
h) 
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 Mathematicians associate the symmetry of a figure in a plane ∏ with the rigid 
motions of ∏ that carry the figure onto itself.  For example, in the figure S pictured 
below, there is 180º rotation about the point C that carries the S onto itself.  On the  
 
                                      
 
 
     
            C 
 
other hand, in the figure T below there is a reflection in the line L that carries the T onto 
itself.  We might express these facts by saying that the figure S has rotational symmetry  
 
 
 

                      T 
 
                                                                       L 
 
and the figure T has reflectional symmetry.   
 
 Some figures have both rotational and reflectional symmetry.  Consider the figure 
H below.   There are two different reflections (in lines L and M) as well as a 180º rotation 
(about the point C) that carry the H to itself. 
 
 

                  M  H 
 
                      L 
               C 
 
 To differentiate the symmetry of the figure H from the figures S and T, 
mathematicians associate the symmetry of a figure with the collection of all of the rigid 
motions that carry the figure onto itself, and they call this collection the symmetry group 
of the figure. 
 
 Definition.  Let X be a figure in a plane ∏.  If M is a rigid motion of ∏ that carries 
the set X to itself, then M is called a symmetry of the figure X.  The set of all symmetries 
of the figure X is called the symmetry group of the figure X and is denoted Sym(X).  
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Thus, if X is a figure in a plane ∏, then each element of the symmetry group 
Sym(X) is a rigid motion M of ∏ such that M(X) = X.  To list the elements of the 
symmetry group of the figure X, one simply lists all the rigid motions of the plane ∏ that 
carry X to itself.  

 
We now list three fundamental properties of symmetry groups of plane figures.  

Let X be a figure in a plane ∏.  Then the symmetry group Sym(X) has the following 
three properties. 
• The identity motion I∏ is an element of Sym(X). 
• If M is an element of Sym(X), then so is M–1.  In other words, Sym(X) is closed under 

inversion. 
• If M1 and M2 are elements of Sym(X), then so is M2ºM1.  In other words, Sym(X) is 

closed under composition. 
 

We will explain these three fundamental properties of symmetries a little more. 
 
First, recall that the identity motion I∏ of the plane ∏ is a rigid motion of ∏ that 

carries every subset of ∏ to itself.  Thus, if X is a figure in ∏, then I∏(X) = X.  Thus, I∏ is 
a symmetry of X.  In other words, I∏ is an element of Sym(X). 
 
 Second, suppose that X is a figure in a plane ∏ and M is a symmetry of X.  (In 
other words, M is an element of Sym(X).)  We will prove that M–1 is a symmetry of X.  
Since M is a symmetry of X, then M is a rigid motion of the plane ∏ such that  

X = M(X). 
We apply M–1 to both sides of this e 
quation to obtain 

M–1(X)  =  M–1(M(X)). 
Now focus on the right hand side of this equation.  Since M–1ºM = I∏, then  

M–1(M(X)) = M–1ºM(X) = I∏(X) = X. 

Combining the preceding two equations, we get 
M–1(X)  =  X. 

Therefore, M–1 is a symmetry of X.  (In other words, M–1 is an element of Sym(X).)  We 
have proved that if M is an element of Sym(X), then so is M–1.  Mathematicians express 
this fact by saying that Sym(X) is closed under inversion. 
 

Third, suppose X is a figure in a plane ∏ and M1 and M2 are symmetries of X.  (In 
other words, M1 and M2 are elements of Sym(X).)  We will prove that the composition 
M2ºM1 is a symmetry of X.  Since M1 and M2 are symmetries of X, then M1  
and M2 are rigid motions of ∏ such that  
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M1(X) = X  and  M2(X) = X. 
We apply M2 to both sides of the equation M1(X) = X to obtain  

M2(M1(X)) = M2(X). 
Combining this equation with the equation M2(X) = X, we get 

M2(M1(X)) = X. 
Since M2ºM1(X) = M2(M1(X)), we conclude 

M2ºM1(X) = X. 

Therefore, M2ºM1 is a symmetry of X.  (In other words, M2ºM1 is an element of Sym(X).)  
We have proved that if M1 and M2 are elements of Sym(X), then so is M2ºM1.  
Mathematicians express this fact by saying that Sym(X) is closed under compostion.  
 
 Two planar figures have different symmetry if their symmetry groups differ in 
some essential way.  For example, the figures S, T and H have different symmetry  
because their symmetry groups are essentially different:   
• Sym(S) contains a rotation but no reflection. 
• Sym(T) contains a reflection but no rotation. 
• Sym(H) contains both a rotation and a reflection. 
 
 We will study the symmetry groups of both bounded and unbounded figures.  
Figures a), b), c), d), f) and h) in Activity 1 as well as the figures S, T and H are 
bounded.  Figures e) and g) in Activity 1 are unbounded. 
  
 Definition.  A figure in a plane or in 3-dimensional space is bounded  it can be 
enclosed in a circle or sphere of finite radius.  A figure which is not bounded is said to 
be unbounded.  Thus, a figure which extends infinitely in any direction, like figures e) 
and g) in Activity 1, are unbounded. 
 
 We now explore the symmetry groups of various bounded figures. 
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 Activity 2.  Each group should carry out the following activities and report its 
results to the class.  List all the elements of the symmetry group of each of the figures 
below and on the next page.  You may draw and label points and lines in these figures 
to help you name the elements of the symmetry groups.  (Don’t forget the identity 
motion.) 
 
 
 
a)        b) 
 
 
 
 
 
 
 

 
 
 
 
 
c)      d) 
 
 
 
 
 
 
 
 
 
 
 
 
e)      f) 
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g)      h) 
 
 
 
 
 
 
 
 
 
 
 
i)      j)  
 
 
 
 
 
 
 
 
 
 
 The symmetry groups of the bounded figures we just studied in Activity 2 fall into 
two categories.  The symmetry groups of bounded figures that contain no reflections are 
called cyclic groups, while the symmetry groups of bounded figures that contain 
reflections are called dihedral groups.  We can be more explicit about the forms of these 
groups. 
 
 First observe that if C is a point in a plane ∏, then the rotations RC,0 and RC,360 
around the point C through angles of measure 0 degrees and 360 degrees are both the 
same as the identity motion I∏ of ∏.  In other words, RC,0 = RC,360 = I∏. 
 
 Definition.  A cyclic group of rotations of a plane ∏ has the following form.  Let n  
be a positive number.  (Thus, n = 1 or n = 2 or n = 3 or n = 4 or n = 5 ….)  Let  

a = 

! 

360

n
. 

(Thus,  a = 

! 

360

1
 = 360  if n = 1,  a = 

! 

360

2
 = 180  if n = 2,  a = 

! 

360

3
 = 120  if n = 3,  

a = 

! 

360

4
  = 90  if n = 4,  a = 

! 

360

5
 = 72  if n = 5,  ….)  Let C be a point in a plane ∏.   

Then the cyclic group of rotations of the plane ∏ centered at the point C of order n is the  
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set 
{ RC,a, RC,2a, RC,3a, … , RC,(n–1)a, RC,na }. 

Notice that na = 360.  Therefore, RC,na = RC,360 = I∏.  Thus, the cyclic group of order n 
can also be expressed as the set  

{ I∏, RC,a, RC,2a, … , RC,(n–2)a, RC,(n–1)a }. 
Therefore the cyclic group of rotations of the plane ∏ centered at the point C of order n 
is the set consisting of the n rotations of ∏ around the point C through oriented angles 
whose measures are whole number multiples of a = 360/n. 

 
 Definition.  A dihedral group of reflections and rotations has the following form.   
Again let n be a positive whole number, and as before let 

a = 

! 

360

n
. 

Let C be a point in a plane ∏.  Let L1, L2, … , Ln be n lines in the plane ∏ that pass 
through the point C so that the oriented measure of the oriented angle between two 
successive lines in this list is equal to 

! 

180

n
 = 

! 

a

2
 degrees.  In other words, the oriented 

measures of the oriented angles between the lines L1 and L2, between the lines L2 and 
L3, between the lines L3 and L4, … , between the lines Ln–2 and Ln–1, and between the 
lines Ln–1 and Ln are all equal to 180/n = a/2 degrees.  These angle restrictions force the 
measure of the oriented angle between the lines Ln and L1 to also equal 180/n = a/2  
degrees.  (Draw some pictures to verify this.)  Now:  
• let Z1 denote the reflection in the line L1,  
• let Z2 denote the reflection in the line L2,       

• let Z3 denote the reflection in the line L3, 

  

! 

M 
• let Zn–1 denote the reflection in the line Ln–1, and 
• let Zn denote the reflection in the line Ln, 
Observe that since the measure of the oriented angle between two succesive lines Li 
and Li+1 is a/2 degrees, then composition of any two successive reflections Zi and Zi+1 
must equal RC,a.  Thus, Z2ºZ1 = RC,a, Z3ºZ2 = RC,a, Z4ºZ3 = RC,a, … , Zn–1ºZn–2 = RC,a and 
ZnºZn–1 = RC,a.  Also since the measure of the oriented angle between the lines Ln and L1  
is a/2, then Z1ºZn = RC,a.  Then the set 

{ Z1, Z2, Z3, … , Zn–1, Zn, RC,a, RC,2a, RC,3a, … , RC,(n–1)a, RC,na } 
is a dihedral group of reflections and rotations of the plane ∏ centered at the point C of 
order 2n.  Again since RC,na = RC,360 = I∏, then this dihedral group of order 2n can also be 
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expressed as the set  
{ Z1, Z2, Z3, … , Zn–1, Zn, I∏, RC,a, RC,2a, … , RC,(n–2)a, RC,(n–1)a }. 

Therefore a dihedral group of reflections and rotations of the plane ∏ centered at the 
point C of order 2n is the set consisting of reflections in n lines that pass through the 
point C and divide the plane ∏ into n congruent sectors of “angular width” a/2 = 180/n 
together with the n rotations of ∏ around the point C through oriented angles whose 
oriented measures are whole number multiples of a = 360/n. 
 
 We have just described a “cyclic group of order n” and a “dihedral group of order 
2n”.  Observe that a cyclic group of order n has n elements, and a dihedral group of 
order 2n has 2n elements.  In general, the order of a cyclic or dihedral group is the 
number of elements of the group. 
 
 We make an observation about the relationship between cyclic groups of order n 
and dihedral groups of order 2n.  The list of elements of a dihedral group of reflections  
and rotations of the plane ∏ centered at the point C of order 2n is 

Z1, Z2, Z3, … , Zn–1, Zn, RC,a, RC,2a, RC,3a, … , RC,(n–1)a, RC,na. 
In this list, the sublist 

RC,a, RC,2a, RC,3a, … , RC,(n–1)a, RC,na 
is a list of the elements of the cyclic group of rotations of the plane ∏ centered at the 
point C of order n.  Thus we conclude that the cyclic group of rotations of the plane ∏ 
centered at the point C of order n is a subgroup of any dihedral group of reflections and 
rotations of the plane ∏ centered at the point C of order 2n. 
 
 Next we present examples of cyclic and dihedral groups. 
 
 To determine the symmetry group of the following figure X, 
 
  
 
 
 
 
 

    X 
 
 
first locate the center point C of the figure.  Then we can write 
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            C 
 
 
 
 

    X 
 

Sym(X)  =  { RC,90, RC,180, RC,270, RC,360 }. 
Observe that this symmetry group can also be expressed as the set   

{ I∏, RC,90, RC,180, RC,270 }. 
Hence, the symmetry group of the set X is the cyclic group of rotations centered at C of 
order 4.  Notice that the arrowheads on the sides of X prevent it from having reflectional 
symmetry.  Thus, the symmetry group of X contains no reflections and can’t be a 
dihedral group. 
 
 To determine the symmetry group of the following figure Y, first draw the lines K,  
 
 
 
 
 
 
 
 
 
 

  Y 
 
 
 
 
L and M and the point C.  Then we can write 
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        M                                        L 
 
 
 
 
              C 
 
   K                    K 
 

       Y 
 
 
 
 

  L             M 
 
 

Sym(Y)  =  { ZK, ZL, ZM, RC,120, RC,240, RC,360 }. 
Alternatively, we can write  

Sym(Y)  =  { ZK, ZL, ZM, I∏, RC,120, RC,240 }. 
Hence, the symmetry group of the set Y is a dihedral group of reflections and rotations 
centered at C of order 6. 
 
 Activity 3.  The class should discuss the following problem.  For each of the ten  
figures in Activity 2, fill in the blanks in the following statement: 

The symmetry group of this figure is a ________________ group of order ______. 
Fill in the first blank with either the word cyclic or the word dihedral, and fill in the second 
blank with a number. 
 
 
 Activity 4.  Each group should carry out the following activities and report its 
results to the class.  In parts a), b), c) and d) of this activity you will create patterns on 
pieces of patty paper and you will be asked to answer the following three questions   
about the symmetry groups of these patterns. 
1)  List the elements of the symmetry group.  (You may draw and label points and lines  
to help you name the elements of the symmetry group.) 
2)  Is the symmetry group cyclic or dihedral? 
3)  What is the order of the symmetry group? 
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a)  Fold a piece of patty paper in half, and then fold it again along a line that is the 
perpendicular bisector of the first fold line.  Then the two fold lines meet at the center 
point C of the piece of patty paper.  Now make a snowflake by cutting the folded paper 
along an irregular curve that joins one folded edge to the other and that “cuts off” the 
two unfolded edges of the folded paper.  Unfold the paper to obtain a snowflake.   
Now answer questions 1), 2) and 3) (above) about the symmetry group of the 
snowflake. 
 
b)  As in part a), fold a piece of patty paper twice along lines that perpendicularly bisect 
each other and meet at the center C of the piece of patty paper.  Next, instead of cutting 
the folded piece of paper, draw a non-symmetric pattern (e.g., an F) on one exposed 
side.  Then turn the folded piece of paper over and trace this pattern on the other 
exposed side.  Then unfold the paper once and trace the “doubled” pattern on the 
exposed side of the paper that has no pattern drawn on it yet.  Then unfold the 
remaining fold.  Now answer questions 1), 2) and 3) (above) about the symmetry group 
of the pattern you have created on the unfolded piece of patty paper. 
 
c)  This time make three folds in a piece of patty paper.  First: fold along a line that goes 
through the center C of the piece of patty paper.  Second: fold along the line through C 
that is perpendicular to the first fold line.  Third: fold along the line through C that bisects 
the 90 degree angle between the edges created by the first two folds.  Next follow either 
the method in part a) to create a snowflake, or the method in part b) to create a pattern 
on the piece of patty paper.   Finally answer questions 1), 2) and 3) (above) about the 
symmetry group of the snowflake or pattern that you have created. 
 
d)  Discover a way to fold a piece of patty paper along three lines that pass through the 
center C so that the measures of the angles between adjacent lines are all equal to 
180/3 = 60 degrees.  Next follow either the method in part a) to create a snowflake, or 
the method in part b) to create a pattern on the piece of patty paper.   Finally answer 
questions 1), 2) and 3) (above) about the symmetry group of the snowflake or pattern 
that you have created. 
 
e)  Can you find a way to fold a piece of patty paper along five lines that pass through 
the center C so that the measures of the angles between adjacent lines are all equal to 
180/5 = 36 degrees?  If so, follow either the method in part a) to create a snowflake, or 
the method in part b) to create a pattern on the piece of patty paper.   Finally answer 
questions 1), 2) and 3) (above) about the symmetry group of the snowflake or pattern 
that you have created. 
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Homework Problem 1.  Complete the parts of Activiity 4 outside of class that you did 
not have time to complete in class. 
 
 
Homework Problem 2.  Create 13 patterns on pieces of patty paper that have the  
following symmetry groups: 
• cyclic groups of rotations of orders 2, 3, 4, 5, 6, 7 and 
• dihedrail groups of reflections and rotations of orders 2, 4, 6, 8. 10. 12. 14. 
Make your patterns as artistic as possible, and sign your name.  We will mount some of 
these patterns on a poster board. 
 
 
Homework Problem 3.  Let C be a point in the plane ∏.  Let K and L be lines in ∏ that 
pass through the point C.   
 
a)  What is the order of the smallest cyclic group of rotations of ∏ that contains the 
rotation RC,72? 
 
b)  What is the order of the smallest dihedral group of reflections and rotations of ∏ that 
contains the rotation RC,72? 
 
c)  What is the order of the smallest cyclic group of rotations of ∏ that contains the 
rotation RC,144? 
 
d)  What is the order of the smallest cyclic group of rotations of ∏ that contains the 
rotation RC,80? 
 
e)  If the measure of the smaller angle created by lines K and L is 30º, what is the order 
of the smallest dihedral group of reflections and rotations of ∏ that contains the 
reflections ZK and ZL? 
 
f)  If the measure of the smaller angle created by lines K and L is 72º, what is the order 
of the smallest dihedral group of reflections and rotations of ∏ that contains the 
reflections ZK and ZL? 
 
g)  If the measure of the smaller angle created by lines K and L is 54º, what is the order 
of the smallest dihedral group of reflections and rotations of ∏ that contains the 
reflections ZK and ZL? 


