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Lesson 7:  Patty Paper Constructions and Rigid Motions 
 
 This lesson begins an exploration of rigid motions of planes and the symmetry of 
plane figures.  Many of the concepts that we will study can be generalized to rigid 
motions of 3-dimensional space and the symmetry of solid figures, but time won’t permit 
us to explore this. 
 
 One of our principal tools for studying rigid motions and symmetry is patty paper.1  
We begin by developing techniques for using patty paper to carry out geometric 
constructions. 
 
 
 Activity 1.  Groups should carry out this activity and report their results to the 
class.  In parts a) through d) of this activity on this and the next two pages, points, lines, 
line segments and angles are given.  You must devise techniques that use a pencil, a 
ruler and a piece of patty paper to carry out the indicated geometric constructions. 
 
a)  Construct the perpendicular bisector of the given line segment 

! 

AB.  (The 
perpendicular bisector of 

! 

AB is the line that is perpendicular to 

! 

AB and passes through 
the midpoint of 

! 

AB.) 
 
 
 
 
 
 
 
 
          A 
 
 
 
 
 
 

   B 
 
 
 
 
 
 

                                            
1 The program Cabri Jr. on a hand-held calculator performs similar functions. 
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b)  Drop the perpendicular from the given point P to the given line L. 
 
 
 
 
              P 

     L 
 
 
 
 
 
 

      L 
 
 
 
 
 
 
c)  Construct the line through the given point Q that is parallel to the given line M. 
 
 
 
 
 

     Q 
 
 

    M 
 
 

 M 
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d)  Construct the bisector of the given angle ∠DEF. 
 
 
 
 
 
 
 

       D 
 
 
 
 
 
        E 

             F 
 
 
 
 
 Remark.  Although patty paper construction is “low tech”, it is none the less a 
serious geometric technique.  As a construction technique, it is at least as powerful as 
the technique of ruler and compass construction. 
 
 We now begin our exploration of the subject of rigid motions.  Our first step is to 
introduce notation for some fundamental geometric concepts that will allow us to define 
and discuss rigid motions. 

 
Notation.  Let A and B be points in space. 

• If A ≠ B, let 

! 

AB denote the unique line determined by A and B. 

• Let 

! 

AB denote the line segment with endpoints A and B. Thus, 

! 

AB consists of all the 
points of the line 

! 

AB that lie between A and B, together with the points A and B   
themselves. 

• If A ≠ B, let 

! 

AB denote the ray that emanates from A and passes through B.  Thus, 

! 

AB consists of all the points of the line 

! 

AB that lie either between A and B or on the  
opposite side of B from A, together with the points A and B themselves. 

• Let AB denote the distance between A and B. 
 
 We make several observations about this notation.  First note that if A and B are 
points in space, then AB is a number which is ≥ 0, while 

! 

AB, 

! 

AB and 

! 

AB are sets in  
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space.  Indeed, AB is the length of 

! 

AB.  Warning:  Don’t write one of these expressions 
when you mean the other.  Also, we recall that distance has the following three 
properties: 

AB ≥ 0,     AB = 0  if and only if  A = B,     and     AB = BA. 
 
 Definition.  Let A, B and C be three points in a plane or in space.  If A, B and C 
all lie on the same line, we say they are collinear.  If A, B and C do not lie on a single 
line, then we say they are noncollinear. 
 

Here is a basic fact concerning the concepts just introduced. 
 
 The Length Addition Axiom.  If A, B and C are collinear points and B  
lies between A and C, then  

AC  =  AB + BC. 
 

 
 
                                                                                C 

                          A                    B 
 
 
 
 Next we define the concept of angle. 
 
 Definition.  Let A, B and C be three points in space such that A ≠ B and A ≠ C.  
The union of the two rays 

! 

AB and 

! 

AC is called the angle with vertex A and sides 

! 

AB 
and 

! 

AC.  This angle can be denoted either ∠BAC or ∠CAB. 
 
 
                           C 
 
                            
                            A 
           
                  B 

 
∠BAC 

  
 
We assume that you understand that every angle ∠BAC has a measure that is a 

number between 0 and 180. The measure of the angle ∠BAC is denoted m(∠BAC).  To 
indicate that angles are being measured in degrees, we attach the symbol “º” to the 
numerical measure of each angle.  Thus, 0º ≤ m(∠BAC) ≤ 180º. 



 101 

We observe that if ∠BAC is an angle in space, then ∠BAC is a set in space, 
while m(∠BAC) is a number between 0º and 180º.  Warning:  Don’t write one of these 
when you mean the other. 

 
 Recall that if A, B and C are collinear points, and B lies between  A and C, then 
the angle ∠ABC is often called a straight angle. 
 
 
                                                                                C 

                          A                    B 
 
 

Here are two basic facts about angles. 
 

 The Angle Addition Axiom.  If D is a point that lies in the interior of the  
angle ∠BAC, then  

m(∠BAC)  =  m(∠BAD) + m(∠DAC). 
 
 
 
                           C 
 
                            
                            A           D 
           
                  B 
 
 
 
 The Straight Angle Axiom.  If A, B and C collinear points and B is  
between A and C, then  

m(∠ABC)  =  180º. 
 
 
 Definition.  A rigid motion of a plane is a motion of points of the plane to other 
points of the plane that preserves the distance between any two points.  Thus, M is a 
rigid motion of a plane ∏ if: 
• M moves each point A of the plane ∏ to another point M(A) of the plane ∏, and 
• if A and B are any two points of the plane ∏, then the distance from A to B equals  

the distance from M(A) to M(B).  (In terms of our notation: AB = M(A)M(B).) 
(∏ is the upper case Greek alphabet letter whose name is “pi”.) 
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We remark that a rigid motion of space can be defined similarly.  It is a distance 
preserving motion of the points of space. 

 
Note that we are using function notation to write about rigid motions.  In function 

notation, if a rigid motion of a plane is named M and a point of the plane is named A, 
then the point to which the rigid motion M moves A is denoted M(A).  Similarly, a rigid 
motion named T would move the point named B to the point denoted T(B).  We also use 
function notation to denote the result of applying a rigid motion to a set: if M is a rigid 
motion of a plane and S is a set in the plane, then the set to which the rigid motion M 
moves S is denoted M(S). 

 
 Now that we have introduced the concept of a rigid motion, we are in a position to 
define the most important idea in geometry: congruence.  
 
 Definition.  Two geometric figures in a plane are congruent if and only if there is 
a rigid motion of the plane that moves one figure to the other.   
 
 We remark that we can similarly define the relation of congruence for two 
geometric figures in space.  Two geometric figures in space are congruent if there is a 
rigid motion of space that moves one figure to the other. 
 
 Notation.  If S and T are geometric figures in a plane ∏, then we will write S 

! 

" T 
to indicate that S is congruent to T.  Thus, S 

! 

" T means there is a rigid motion of ∏ that 
moves S to T.  In other words, S is congruent to T if and only if there is a rigid motion M 
of ∏ such that M(S) = T. 

 
A rigid motion of a plane moves the plane onto itself rigidly.  It doesn’t bend, fold, 

stretch, shrink or tear the plane.  It acts as if the plane where a stiff piece of wood or 
metal.  The rigidity of the motion is expressed mathematically by saying that the motion 
preserves distances between points.  Another name for a rigid motion is an isometry.  
The word isometry is Greek for “same distance”. 

 
 To enrich your understanding of rigid motions, we describe four different types of 
rigid motions of a plane. 
 
Type 1: Translation.  A translation moves all the points of the plane in the same 
direction through the same distance. 
 
        M(A) 
                         M(B) 
                              A                                                     
                                  B    

       M(C) 
                                     C 
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Type 2: Rotation.  A rotation fixes one point C and rotates every other point of the 
plane about C through the same angle. 
 
           M(A) 
 
        
      C 
                 A 
 
 
 
 
Type 3:  Reflection.  A reflection fixes all the points of a line L, and it moves each point 
A that lies on one side of L to a point M(A) lying on the other side of L so that A and 
M(A) determine a line that is perpendicular to L and A and M(A) are equidistant from L. 
 

 
         A         L 
 
 
 
 

    M(A) 
 
 
 
 
Type 4: Glide Reflection.  A glide reflection is a rigid motion that results from first 
performing a translation in a direction that is parallel to a line L and then performing a 
reflection across the line L. 
 
 
 

L 
 
 

         A 
    M(A) 
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 Remarkably, every rigid motion of a plane is of one of these four types.  We state 
this important fact in the form of a theorem. 
 
 The Classification Theorem for Rigid Motions of a Plane.  Every rigid motion 
of a plane is either a translation, a rotation, a reflection or a glide reflection. 
 
 This is a powerful and useful theorem which we will unfortunately not have time 
to prove.  However, we will use it to draw various conclusions in subsequent lessons. 
  
 

We now introduce some useful notation for these four types of rigid motions, and 
observe some important properties of each type of rigid motion. 
 
 

Notation for and Properties of the Four Types of Rigid Motions 
 

Translations.  If A and B are points in a plane ∏, then we let TA,B denote the 
unique translation of ∏ that moves the point A to the point B.  Thus, if P is any point of 
the plane ∏, then TA,B moves P to the point TA,B(P).  In particular, TA,B(A) = B. 

 
 

   TA,B   B 
            
           A               TA,B(P) 
                                                                                   
                                  P    

         
         TA,B(Q) 

       
    Q 

 
 

Observation.  If P and Q are distinct points of the plane ∏, notice that the 
quadrilateral with vertices P, TA,B(P), TA,B(Q) and Q is a parallelogram.  (Recall that a 
quadrilateral is a parallelogram if its opposite sides are parallel. 
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Rotations.  Let C be a point in a plane ∏.  Every angle in the plane ∏ with vertex 
C has two possible orientations: counterclockwise and clockwise.  An angle to which an  
 
 
 
 
 
 
 
  Counterclockwise           Clockwise 
 
 
orientation has been assigned is called an oriented angle.  We indicate the orientation of 
an angle in a figure by drawing a dotted arrow.   
 
                                           
 
 
              
 
            C                                                 C 
 

    Counterclockwise        Clockwise 
      oriented angle     oriented angle 
 

 
Every oriented angle has an oriented measure.  The measure of an oriented angle has 
the same absolute value as the measure of the corresponding unoriented angle.  But 
the measure of the oriented angle is positive if the angle is oriented counterclockwise 
and negative if the angle is oriented clockwise.  
 
 
 
 
             +45º              –45º 
 
            C                                                 C 
 

Counterclockwise           Clockwise 
                 oriented angle with    oriented angle with 

        oriented measure +45º                   oriented measure –45º 
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We will illustrate an oriented angle with oriented measure a by drawing an angle with 
dotted arrow to indicate orientation and the letter a written next to the dotted arrow to 
indicate the measure of the oriented angle.  If the dotted arrow shows a 
counterclockwise orientation, then a represents a positive number; and if the dotted 
arrow shows a clockwise orientation, then a represents a negative number. 
 
 
 
 
             a             a 
 
            C                                                 C 
 

Here the orientation   Here the orientation 
is counterclockwise   is clockwise and a < 0. 
and a > 0. 
 
 

 Now let C be a point in a plane ∏,  and let a be the oriented measure of an 
oriented angle in the plane ∏ with vertex C.  (a > 0 if the angle is oriented 
counterclockwise, and a < 0 if the angle is oriented clockwise.)  Then we let RC,a denote 
the unique rotation that fixes the point C and rotates every other point of the plane Π 
around C through an oriented angle of measure a.  We call the point C the center of the 
rotation RC,a.  Thus, if P is any point of the plane Π, then RC,a moves P to the point 
RC,a(P).  In particular, RC,a(C) = C.   
 
 
                                                     RC,a(Q) 
                                                                a 
 
 
 
            a 
     P                                                         C 
        a 

                                                  Q 
 
 
 
 
 
 
            RC,a(P) 
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Observation.  Let P be any point of the plane ∏ other than C.  In the previous 
figure, find the oriented angle ∠PC(RC,a(P)).  Notice that this angle has oriented 
measure a.  Also notice that the perpendicular bisector of the line segment 

! 

P(RC,a (P)) 
passes through the point C. 
 
 
 

Reflections. If L is a line in a plane ∏, then we let ZL denote the unique reflection 
across the line L.  We call the line L the line of reflection of ZL.  Thus, if P is any point of 
the plane ∏, then ZL moves P to the point ZL(P).  In particular, if the point P lies on the 
line L, then ZL(P) = P. 

 
 

 
           ZL(Q)              P         L 
 
 
 
 

     ZL(P) 
 
 
 
 

Q 
 
 
 

Observation.  If P is any point of the plane ∏ that does not lie on the line L, then 
notice that the line L is the perpendicular bisector of the line segment 

! 

P(ZL(P)) . 
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Glide Reflections. If A and B are points in a plane ∏, we let GA,B denote the 
unique glide reflection of ∏ that translates the point A to the point B and then reflects 
every point of ∏ across the line 

! 

AB. We call the line 

! 

AB the line of reflection of GA,B.  
Thus, if P is any point of the plane ∏, then GA,B moves P to the point GA,B(P).  In 
particular, GA,B(A) = B. 

 
 
 

                            TA,B(P) 
               

 
 
 

         P 
                                         GA,B(P) 
                     B 
 
 
                     

 A                     

! 

Z
AB

(P) 
 
 
 
 
Observation.  Notice that performing the glide reflection GA,B has the same effect 

as first performing the translation TA,B and then performing the reflection 

! 

Z
AB

 across the 
line 

! 

AB.  (Also, GA,B has the same effect as first performing the reflection 

! 

Z
AB

 
translation TA,B and then performing the translation TA,B.  In other words, the glide 
reflections GA,B results from performing the translation TA,B and the reflection 

! 

Z
AB

 in 
either order.)  Also notice that if P is point in the plane ∏ that does not lie on the line 

! 

AB, then the quadrilateral with vertices P, TA,B(P), GA,B(P) and 

! 

Z
AB

(P) is a rectangle.  
Furthermore, the line 

! 

AB bisects two sides of this rectangle and is parallel to the other 
two sides.  Also the line 

! 

AB bisects the diagonal 

! 

P(GA,B (P)) of this rectangle. 
    
 
 
 
 
 
 
 
 


