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Lesson 4: Large-Scale Measurements and More About Similar Triangles 
 

 Activity 1.  The class will discuss the following question.  Suppose that you and 
a friend are standing in a large parking lot, which is featureless except for two light 
poles, and you wish to measure the distance between the two light poles.  You have 
only a 3-meter measuring tape, but the distance between the two poles is much greater 
than 3 meters.  How can you measure the distance between the poles? 
 
 
 Activity 2.  The groups will discuss the following question and report their results 
to the class.  Suppose that a line L is painted across a giant and otherwise featureless 
parking lot.  You are standing at a point P in the middle of the parking lot.  The point P is 
some distance away from the line L.  You have a 3-meter measuring tape and you are 
accompanied by three friends who are holding the vertices of a 3-foot-by-4-foot-by-5-
foot rope triangle and are free to move about the parking lot.  How can you and your  
friends use this equipment to: 
a)  drop a perpendicular form P to L, and 
b)  measure the distance from P to L? 
 
 
 Activity 3.  The class will view a large classroom or the lobby of the building and 
will discuss methods for measuring the length of the diagonal of the lobby.  The class 
should come up with at least one method that doesn’t rely on floor tiles or walls.  (Hint:  
Recall Activity 1.)  Each group should then be assigned a different method for 
measuring the lobby’s diagonal, and it should carry out the measurement by the 
assigned method.  (If your measurement process involves calculation, remember to use 
the Calculation Rules to avoid unnecessary inaccuracy.)  The groups should then report 
their results to the class.  The class will compare  and discuss these measurements and 
try to account for any differences between them. 
 
 

 
Some Geometry Notation 

 
 We establish some geometric notation that we will use for the rest of the course. 
 
 Let A and B be points in a plane or in space.  Let AB denote the distance  
between A and B.  We list three basic properties of distance. 
1) AB ≥ 0. 
2) AB = 0 if and only if A = B. 
3) AB = BA.  
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Let 

! 

AB  denote the line segment joining the points A and B.  Then 

! 

AB is a set in a plane 
or space, whereas AB is a non-negative real number.  Furthermore, the number AB is 
the length of the line segment 

! 

AB. 
 
 Warning:  Be careful to distinguish between 

! 

AB and AB.  Don’t write one when 
you mean the other.  Remember: 

! 

AB is a set while AB is a number. 
 
 Let A, B and C be three points in a plane or in space.  If A, B and C all lie on the 
same line, we say they are collinear.  If A, B and C do not lie on a single, then we say 
they are noncollinear. 
 
 If A, B and C are three noncollinear points in a plane or in space, then they are 
the vertices (or corners) of a triangle.  This triangle is denoted ΔABC.  This triangle is 
the union of the three line segments 

! 

AB, 

! 

AC and 

! 

BC.  The line segments 

! 

AB, 

! 

AC and 

! 

BC are called the sides of the triangle ΔABC.  Thus, the three numbers AB, AC and BC 
are the lengths of the sides of ΔABC. 
 
 We now relate the notation we have just introduced to the Pythagorean Theorem.  
Suppose that ΔABC is a triangle that has a right angle at the vertex C.  In other words, 
the two sides 

! 

AC and 

! 

BC form a right angle.  Then the Pythagorean Theorem tells us  
that 

(AC)2 + (BC)2 = (AB)2. 
 
      B 
 
 
 
 
      C     A 
 
 
 

More about Similar Triangles 
 
 We now present a more detailed discussion of similar triangles. 
 
 Recall: two triangles T and T´ are similar if there is a correspondence between 
the sides of T and the sides of T´ and there is a real number r > 0 called a scale factor 
such that the length of each side of T´ is equal to r times the length of the corresponding 
side of T. 
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 Let ΔABC and ΔA´B´C´ be triangles.  We write ΔABC ~ ΔA´B´C´ if there is a real  
number r > 0 such that  

A´B´ = r(AB),     A´C´ = r(AC)     and      B´C´ = r(BC). 
Thus, the relationship ΔABC ~ ΔA´B´C´ implies that the two triangles ΔABC and 
ΔA´B´C´ are similar.  However, the relationship ΔABC ~ ΔA´B´C´ conveys more than just 
the fact that the two triangles ΔABC and ΔA´B´C´ are similar.  It also includes the 
information that the correspondence inherent in the similarity relation between ΔABC  
and ΔA´B´C´ associates: 

• side 

! 

AB of ΔABC with side 

! 

A´B´ of ΔA´B´C´, 

• side 

! 

AC of ΔABC with side 

! 

A´C´ of ΔA´B´C´ and 

• side 

! 

BC of ΔABC with side 

! 

B´C´ of ΔA´B´C´. 
 
 We will now state several fundamental and useful facts about similar triangles.  
These facts are all provable, and hence are called theorems.  (A theorem is a provable 
fact. ) 
 
 Before starting these theorems, we recall some logical terminology.  Let P and Q 
be statements.  Then the implication “if P, then Q” can also be expressed as “P implies 
Q”.  The implication “Q implies P” is called the converse of the implication “P implies Q”.  
Recall that an implication may be true while its converse is false, and vice versa.  
However, the statement “P if and only if Q” means that both the implication “P implies Q” 
and its converse “Q implies P” are true.  In other words, “P if and only if Q” means “P 
implies Q, and Q implies P”.  Another way to express “P if and only if Q” is to say “the 
statements P and Q are equivalent”.  Thus, “P and Q are equivalent” means “P implies 
Q and Q implies P”.  Consequently, saying “the statements P, Q, and R are equivalent” 
means “(i) P implies Q, (ii) Q implies P, (iii) Q implies R, (iv) R implies Q, (v) P implies R, 
and (vi) R implies P”. 
 
 Notice that implication is transitive; in other words, the implication “P implies R” 
automatically follows from the two implications “P implies Q” and ”Q implies R”.  Hence, 
if you were trying to prove that statements P, Q, and R are equivalent it would not be 
necessary to prove all of the implication (i) through (vi) listed above.  It would be 
sufficient to prove implications (i) through (iv) only, because implication (v) follows 
automatically from implications (i) and (iii), and implication (vi) follows automatically from 
implication (ii) and (iv). 
 
 We now state the first theorem about similar triangles.  The theorem reveals that 
we can use simple algebra to recast the definition of “similarity” so that the scale factor 
is not explicitly mentioned. 
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 The Side Theorem for Similar Triangles.  Suppose ΔABC and ΔA´B´C´ are 
triangles.  Then the following statements are equivalent. 
a)  ΔABC ~ ΔA´B´C´. 

b)  

! 

A´B´

AB
  =  

! 

A´C´

AC
  =  

! 

B´C´

BC
. 

c)  

! 

AB

AC
 = 

! 

A´B´

A´C´
   and   

! 

AB

BC
 = 

! 

A´B´

B´C´
. 

 
 
Proof.  First we prove “a) implies b)”.  Assume that a) is true.   

Then ΔABC ~ ΔA´B´C´.  Hence there is a scale factor r > 0 such that  

A´B´ = r(AB),  A´C´ = r(AC),  and  B´C´ = r(BC). 
Hence 
 

! 

A´B´

AB
 = r,  

! 

A´C´

AC
 = r,  and  

! 

B´C´

BC
 = r. 

Therefore 

! 

A´B´

AB
  =  

! 

A´C´

AC
  =  

! 

B´C´

BC
. 

Thus b) is true.  We have now proved that a) implies b). 
 
 Second we prove that b) implies a).  Assume that b) is true.  Then 

! 

A´B´

AB
  =  

! 

A´C´

AC
  =  

! 

B´C´

BC
. 

Let r = 

! 

A´B´

AB
.  Then r = 

! 

A´C´

AC
 and r = 

! 

B´C´

BC
.  Therefore, 

A´B´ = r(AB),  A´C´ = r(AC)  and  B´C´ = r(BC). 
Thus r is a scale factor relating the lengths of the sides of ΔABC to the lengths of the 
sides of ΔA´B´C´.  So ΔABC ~ ΔA´B´C´.  Hence a) is true.  We have proved b) implies 
a). 
  
 Since a) implies b) and b) implies a), then statements a) and b) are equivalent. 
 
 Third we prove b) implies c).  Assume b) is true.  Then 

                                                

! 

A´B´

AB
  =  

! 

A´C´

AC
  =  

! 

B´C´

BC
.
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Hence  

! 

A´B´

AB
 = 

! 

A´C´

AC
  and  

! 

A´B´

AB
 = 

! 

B´C´

BC
 

A little algebra converts the first equation to 

! 

AB

AC
 = 

! 

A´B´

A´C´
  and the second equation to 

! 

AB

BC
 = 

! 

A´B´

B´C´
.  Thus c) is true.  We have proved b) implies c). 

 
Fourth we prove c) implies b).  Assume c) is true.  Then 

! 

AB

AC
 = 

! 

A´B´

A´C´
   and   

! 

AB

BC
 = 

! 

A´B´

B´C´
. 

A little algebra converts the first equation to 

! 

A´B´

AB
 = 

! 

A´C´

AC
 and the second equation to 

! 

A´B´

AB
 = 

! 

B´C´

BC
.  We can combine these two equations into one: 

 

! 

A´B´

AB
 = 

! 

A´C´

AC
 = 

! 

B´C´

BC
. 

Hence, b) is true.  We have proved c) implies b). 
 
 Since b) implies c) and c) implies b), then statements b) and c) are equivalent. 
 
 Finally, the implication “a) implies c)” follows by transitivity from the already 
proved implications “a) implies b)” and “b) implies c)”.  Similarly, the implication  
“c) implies a)” follows by transitivity from the already proved implications “c) implies b)” 
and “b) implies a)”.  Therefore, since “a) implies c)” and “c) implies a)” are true, then 
statements a) and c) are equivalent. 
 
 We have shown that statements a), b), and c) are equivalent.  This finishes the 
proof of the Side Theorem for Similar Triangles. 
 
 What is the significance of the Side Theorem for Similar Triangles?  Statement b) 
shows us that it is possible to express the fact that two triangles are similar without 
explicitly mentioning the scale factor.  Statement c) also expresses triangle similarities 
without using a scale factor.  However, statement c) has another important use. 
 
 Notice that in each ratio appearing in statement c) the numerators and 
denominators are side lengths of the same triangle.  These ratios never mix side lengths 
of different triangles.  As a consequence, if the side lengths of ΔABC are expressed on 
terms of one unit (say miles) while the side lengths of ΔA´B´C´ are  
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expressed in terms of a different unit (say inches), then statement c) can be applied 
without converting these lengths to a common unit.  Because the lengths appearing in 
each ratio are expressed in the same units, the units in each ratio essentially “cancel 
out” yielding ratios that are unitless “pure” numbers.  When you use statement c) to 
decide whether two triangles are similar, you simply check that the equations in 
statement c) between the unitless pure number ratios hold without bothering to convert 
the side lengths of the two triangles to a common unit. 
 
 Here is a example of an application of statement c) of the Side Theorem for  
Similar Triangles.  Suppose ΔABC is a triangle with side lengths 

AB = 6 in,     BC = 9 in,      AC = 12 in 
and suppose ΔA´B´C´ is a triangle with side lengths 

A´B´ = 10 mi,      B´C´ = 15 mi,     A´C´ = 20 mi. 
Then  

 

! 

AB

AC
  =  

! 

6

12
  =  

! 

1

2
  =  

! 

10

20
  =  

! 

A´B´

A´C´
     and     

! 

AB

BC
  =  

! 

6

9
  =  

! 

2

3
  =  

! 

10

15
  =  

! 

A´B´

B´C´
. 

Now Similar Triangle Theorem 1 implies that ΔABC ~ ΔA´B´C´.  The crucial point here is 
that we established the similarity relationship between ΔABC and ΔA´B´C´ without 
converting the side lengths of these two triangles to same units. 
 
 We remark that in everyday life, similar triangles commonly occur with the sides 
of one of the triangles measured in inches and the sides of the other triangle measured 
in miles.  If on a map that has a scale of 1 inch = 12/3 miles, you draw a triangle with side 
lengths of 6 in, 9 in and 12 in, then this triangle represents a similar triangle with side 
lengths 10 mi, 15 mi and 20 mi. 
 
 Our second theorem about similar triangles connects the similarity relation 
between triangles to the relation between their angles.  This theorem is one of the 
fundamental results of plane or Euclidean geometry.  We will state this theorem without 
proof.  (The proof is a bit complicated and would divert us too far from the main path of 
the course.) 
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The Angle Theorem for Similar Triangles.  Suppose ΔABC and ΔA´B´C´ are  
triangles. 
a)  If ΔABC ~ ΔA´B´C´, then 

• the angle of ΔABC at A has the same measure as the angle of ΔA´B´C´ at A´, 

• the angle of ΔABC at B has the same measure as the angle of ΔA´B´C´ at B´, and 

• the angle of ΔABC at C has the same measure as the angle of ΔA´B´C´ at C´. 

b)  If 
• the angle of ΔABC at A has the same measure as the angle of ΔA´B´C´ at A´, and 

• the angle of ΔABC at B has the same measure as the angle of ΔA´B´C´ at B´,  

then ΔABC ~ ΔA´B´C´. 

 
 Statement a) of the Angle Theorem for Similar Triangles tells us that if two 
triangles are similar, then the angles of one triangle have the same size as the 
corresponding angles of the other triangle.  Observe that Statement b) of the Angle 
Theorem for Similar Triangles reverses the logical order of this statement.  In other 
words, Statement b) is a sort of converse to Statement a).  Statement b) says that if two 
or the three angles of one triangle have the same size as two of the three angles of a 
second triangle, then the two triangles are similar. 
 
 It is a little misleading to stress the fact that statement b) requires knowledge of 
the sizes of only two of the three angles of each triangle.  The reason is that if we know 
the sizes of two of the three angles of a triangle, then we also know the size of the third 
angle.  Why? 
 
 We will see that Statement b) of the Angle Theorem for Similar Triangles is a 
very useful fact.  This is because we will often be confronted with two triangles for which 
we know that two angles of the first triangle are the same size as two angles of the 
second triangle, and we will want to conclude that the two triangles are similar.  
Statement b) tells us that this conclusion is justified. 
 
 We will state one more useful theorem about similar triangles.  First we recall 
another well known geometry term.  An altitude of a triangle T is a line segment that has 
one endpoint at a vertex of T and has the other endpoint of the opposite side of T and is 
perpendicular to that side of T.   
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     A 
 
 
 
 
      B       F   C 
 
In this picture, 

! 

AF  is an altitude of ΔABC. 
 
 The following theorem says that if two triangles T and T´ are similar, then the 
scale factor which relates the lengths of corresponding sides of T and T´ also relates the 
lengths of corresponding altitudes of T and T´.  This theorem can also be formulated in 
terms of ratios between side lengths in a way that doesn’t explicitly mention scale 
factors.  Furthermore, in this formulation there are two different ways to express the 
ratios between side lengths.  One can either form the ratio between the length of a side 
of T and the length of the corresponding side of T´, or one can form ratios in which the 
numerators and denominators are lengths of sides that come from a single triangle.  
(This is the kind of distinction that differentiates statements b) and c) in the Side 
Theorem for Similar Triangles.) 
 
 

The Altitude Theorem for Similar Triangles.  Suppose ΔABC and ΔA´B´C´ are 
triangles such that ΔABC ~ ΔA´B´C´, and suppose 

! 

AF  is an altitude of ΔABC and 

! 

A´F´  
is an altitude of ΔA´B´C´. 

a)  If r is the scale factor relating the side lengths of ΔABC to the side lengths of  
ΔA´B´C´ (so that r(AB) = A´B´, r(AC) = A´C´, and r(BC) = B´C´), then r(AF) = A´F´. 

b)  

! 

A´F´

AF
  =  

! 

A´B´

AB
  =  

! 

A´C´

AC
  =  

! 

B´C´

BC
.   

c)  

! 

A´F´

A´B´
  =  

! 

AF

AB
,   

! 

A´F´

A´C´
  =  

! 

AF

AC
,   and  

! 

A´F´

B´C´
  =  

! 

AF

BC
. 

 
 
 Simple algebraic manipulations like those used in the proof of the Side Theorem 
for Similar Triangles can be used to convert any one of the statements a), b), and c) into 
any other.  We assign the proof of this theorem as Homework Problem 4. 
 
 Statement c) of the Altitude Theorem for Similar Triangles can be applied even if 
the side lengths of one of the two triangles are measured in different units than the sides 
lengths of the other triangle.  This is because in Statement c), the side lengths 
appearing in the numerator and denominator of each ratio always come from the same 
triangle and never mix units. 
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 Here is another example of an application of the three theorems for similar 
triangles.  Consider the two triangles shown below.  We must find the lengths a and h of 
the indicated line segments.  The Angle Theorem for Similar Triangles tells us that the  
 
  
 
                  
                                5.4 in                30.17 cm 
          4.5 in             h = ? 
 
  6.3 in 
        a = ? 
         
two triangles are similar because two of the angles of one of the triangles have the  
same measures as two of the angles of the other triangle.  Statement c) of the Side  
Theorem for Similar Triangles implies that 

! 

a

30.17
  =  

! 

6.3

5.4
, 

and Statement c) of the Altitude Theorem for Similar Triangles implies that 

! 

h

30.17
  =  

! 

4.5

5.4
. 

Before proceeding further with these calculations, observe that this is an appropriate 
situation in which to use significant figures, because it involves division and the input 
data is given in different units to different degrees of accuracy.  Multiplying on both 
sides of these equations by 30.17 gives: 

a  =  

! 

6.3

5.4

" 

# 
$ 

% 

& 
' (30.17)   and   h  =  

! 

4.5

5.4

" 

# 
$ 

% 

& 
' (30.17). 

Now, using a pocket calculator, we get: 
a  =  (1.16666…)(30.17)  =  35.1983333… 

and 
h  =  (.83333…)(30.17)  =  25.1416666… 

The triangle which contains the segments of length a and h also contains a segment of 
length 30.17 cm  to the nearest hundredth of a centimeter.  If we round the values for a 
and h to the nearest hundredth of a centimeter, we get: 
 

a  =  35.20 cm  and  h  =  25.14 cm. 
These values of a and h have 4 significant figures.  However, the lengths of the sides 
and altitude of the other triangle have only 2 significant figures.  So expressing a and h  
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to 4 significant figures is unjustifiable in this situation.  The values for a and h are only 
reliable up to 2 significant figures.  Hence, we must round the values of a and h to 2  
significant figures, giving us: 

a  =  35 cm   and   h  =  25 cm. 
 
Note that we obey the Calculation Rules while performing this calculation. 
 
 
 Activity 4.  Groups should read and discuss Homework Problem 5 (below) from 
this lesson and report their results to the class. 
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Homework Problem 1.  In each of parts a) through g) of this problem, justify why the 
two triangles are similar by citing one of the three theorems for similar triangles.  Then 
find the length of the unknown line segment.  Be sure to obey the two Calculation Rules. 
 
 
a)        a = ? 
               
                       1.5 cm              6.0 cm 
  3.7 m              
      
 
 
 
 
 
b) 
 
 
                                    2.2 cm                                    c = ? 
                 7.1 cm 
 
 

                28,300 mi 
           to the nearest 100 mi 

 
 
 
 
 
 
c)             5.9 cm 
 
             5.1 cm 
                   

h = ? 
 
 
 
 

42.4 m 
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d) 
 

          2.0 cm 
 
           5.0 cm                                                                  10.0 cm 

      
 
                                                                                  c = ? 
 
 
 
 
 
e) 

    3.00 in 
 
 
                              a = ? 
              6.00 in 
 
 
 

   12.25 in 
 
 
 
 
f)              x = ?            8.4 cm 
 
 
        4.8 cm 
7.2 cm 
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g) 
 
 
5.23 m        d = ? 
 
 
 
                2.3 cm   

                              4.5 cm      1.5 cm   
          
 
 
 
 
 
Homework Problem 2.  Flagpole Number One is 57 feet tall, Flagpole Number Two is 
84 feet tall, and the distance between them is 283 feet (all measured to the nearest 
foot).  If you stand at a point where from your perspective, the top of Flagpole Number 
Two is directly behind the top of Flagpole Number One, how far are you standing from 
Flagpole Number One? 
 
Homework Problem 3.  Standing on top of a hill, you see a car driving along a distant 
road.  If you hold your arm straight out in front of you and stick up your thumb, then from 
your perspective, the width of your thumb exactly covers the length of the car.  Suppose 
the distance from your eye to your thumb is .61 meters and your thumb is 2.5 
centimeters wide.  Estimate the distance between you and the car.  (Here's a helpful 
piece of information: the typical car is about 5.0 meters long.) 
 
Homework Problem 4.  It is possible to write a proof of the Altitude Theorem for Similar 
Triangles that appeals to the Side and Angle Theorems for Similar Triangles.  Write  
such a proof.  Here are three suggestions. 

a)  In the first part of the proof, assume that ∆ABC ~ ∆A´B´C´ and that 

! 

AF  and 

! 

A´F´ are 
altitudes of ∆ABC and ∆A´B´C´, respectively.  Appeal to the Angle Theorem for Similar   
Triangles to prove that ∆ABF ~ ∆A´B´F´. 
b)  Next use the Side Theorem for Similar Triangles to prove statement b) of the Altitude   
Theorem for Similar Triangles. 
c)  Finally use algebra to prove statement c) of the Altitude Theorem for Similar 
Triangles from statement b) of this theorem. 
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Homework Problem 5: Melissa’s Problem.  Melissa wants to measure the height of 
the flagpole in front of her school.  She stands at a point that is 26 m from the flagpole 
and holds a meter stick vertically so that, from her perspective, the meter stick lines up 
next to the flagpole with the bottom (zero end) of the meter stick lining up next to the 
bottom of the flagpole.  (This does not mean that the bottom of the meter stick is on the 
ground.)  The top of the flagpole lines up next to the 37 cm mark on the meter stick.  
Also, Melissa’s eyes are 158 cm above the ground, and the distance from Melissa’s 
eyes to the bottom of the meter stick is 44 cm. Melissa uses all this information to 
calculate the height of the flag pole.  What answer do you think she should get? 
 
Hint:  First draw a picture of the situation described in the problem.  Or else try to make 
a scale model of this situation using string to represent the path light travels from a point 
on the flagpole through a point on the ruler to Melissa’s eye.  As a second step, find the 
distance from Melissa’s eyes to the bottom of the flagpole. 
 
 
Homework Problem 6: Bernardo’s Problem.  Bernardo knows that the flagpole in 
front of his school is 14 meters high.  He wants to measure the distance from the front 
door of the school building to the flagpole.  So he stands next to the front door and holds 
a meter stick vertically so that, from his perspective, the meter stick lines up next to the 
flagpole with the bottom of the meter stick lining up next to the bottom of the flagpole. 
The top of the flagpole lines up next to the 34 cm mark on the meter stick.  Also, 
Bernardo’s eyes are 163 cm above the ground, and the distance from Bernardo’s eyes 
to the bottom of the meter stick is 46 cm.  Bernardo uses all this information to calculate 
the distance from the front door of the school building to the flagpole.  What answer do 
you think he should get? 
 
Hint:  First draw a picture of the situation described in the problem, or make a scale 
model using string to represent light paths. 
 
 
Homework Problem 7: Sharonda’s Problem.  Sharonda wants to measure the height 
of the UWM Education Building Enderis Hall.  So she stands at a point that is 70 m from 
a corner of the building and holds a clipboard with a piece of paper on it vertically so 
that she can draw lines on the paper that run from her eye to the corner of the building.  
She draws three lines on the paper: one from her eye to the bottom of the building, one 
from her eye to the top of the building, and one vertical line.  These lines are shown on 
the next page.  Next she tapes a piece of paper to the left edge of her diagram and 
extends the two non-vertical lines until they meet, forming a triangle.  She then 
measures some distances in this extended diagram on the two pieces of paper and 
calculates the height of the building.  What answer do you think she should get?   
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Hint:  Tape a piece of paper to the left edge of this paper, complete the triangle and 
measure the appropriate distances. 
 
 
 
 
 
 
 
 
 
                  to top of  

        building 
 
 
 
 
to eye 
 
 
 
 

          vertical 
 
 
 
 
 
 
to eye  
 
 
 

    to bottom 
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Homework Problem 8: Kristin’s Problem.  Kristin wants to measure the distance from 
the front door of her house to a 73-foot tall willow tree in her front yard.  She stands at 
her front door and holds a clipboard with a piece of paper on it vertically so that she can 
draw lines on the paper that run from her eye to the tree.  She draws three lines on the 
paper: one form her eye to the bottom of the tree, one from her eye to the top of the 
tree, and one vertical line.  Her diagram is shown on the next page.  Next she extends 
the two non-vertical lines until they meet (taping another piece of paper to the left edge 
of her diagram if needed).  She then constructs another line in her extended diagram 
and measures some distances in the diagram.  Finally, she uses these measurements 
to calculate the distance from her front door to the tree.  What answer do you think she 
should get?  Is there any danger that if the tree blew over in a storm that it would hit her 
front door? 
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                 to top of 
      tree  

  
 
 
 
 
 
 
                    

        
 
 
 
 
to eye 
 
 
 
 

          vertical 
 
 
 
 
 
to eye 
  
 
 
 

    to bottom 
    of tree 
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