

Topology and its Applications 71 (1996) 277-293

TOPOLOGY AND ITS APPLICATIONS

Mapping swirls and pseudo-spines of compact 4-manifolds

Fredric D. Ancel*, Craig R. Guilbault¹

Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA Received 14 September 1995; revised 23 October 1995

Abstract

A compact subset X of the interior of a compact manifold M is a *pseudo-spine* of M if M - X is homeomorphic to $(\partial M) \times [0, \infty)$. It is proved that a 4-manifold obtained by attaching k essential 2-handles to a $B^3 \times S^1$ has a pseudo-spine which is obtained by attaching k B^2 's to an S^1 by maps of the form $z \mapsto z^n$. This result recovers the fact that the Mazur 4-manifold has a disk pseudo-spine (which may then be shrunk to an arc). To prove this result, the *mapping swirl* (a "swirled" mapping cylinder) of a map to a circle is introduced, and a fundamental property of mapping swirls is established: homotopic maps to a circle have homeomorphic mapping swirls.

Several conjectures concerning the existence of pseudo-spines in compact 4-manifolds are stated and discussed, including the following two related conjectures: every compact contractible 4manifold has an arc pseudo-spine, and every compact contractible 4-manifold has a handlebody decomposition with no 3- or 4-handles. It is proved that an important class of compact contractible 4-manifolds described by Poénaru satisfies the latter conjecture.

Keywords: Pseudo-spine; Mazur 4-manifold; Mapping swirl; Poénaru 4-manifolds

AMS classification: 57N13

1. Introduction

A compact subset X of the interior of a compact manifold M is a called a (topological) spine of M if M is homeomorphic to the mapping cylinder of a map from ∂M to X. X is called a pseudo-spine of M if M - X is homeomorphic to $(\partial M) \times [0, \infty)$.

It is proved in [1] that for $n \ge 5$, every compact contractible *n*-manifold has a wild arc spine. It is observed, however, that in general compact contractible 4-manifolds don't have arc spines. In fact, a compact contractible 4-manifold with an arc spine must be

^{*} Corresponding author. E-mail: ancel@csd.uwm.edu.

¹ E-mail: craigg@csd.uwm.edu.

either a 4-ball or the cone over a nontrivial homotopy 3-sphere (if one exists). Thus, a compact contractible 4-manifold with a nonsimply connected boundary can't have an arc spine.

The Mazur 4-manifold [6] is a compact contractible 4-manifold with a nonsimply connected boundary. It is a well-known consequence of [5,3] that the Mazur 4-manifold has an arc pseudo-spine.

The naively optimistic conjecture motivating this paper is: every compact contractible 4-manifold has an arc pseudo-spine. The mathematical content of the paper arises from the introduction of the *mapping swirl* construction which allows us to reinterpret and generalize the method of [5]. In Section 2 of this article the mapping swirl of a map to S^1 is defined and two fundamental theorems about it are proved: Theorem 1: Homotopic maps from a compact metric space to S^1 have homeomorphic mapping swirls. Theorem 2: For a compact metric space X and an integer $n \neq 0$, the mapping swirl and the mapping cylinder of the map $(x, z) \mapsto z^n : X \times S^1 \to S^1$ are homeomorphic. Section 3 applies these theorems to produce simple pseudo-spines for the special class of 4-manifolds obtained by adding finitely many essential 2-handles to $B^3 \times S^1$. This approach recovers the previously known result that Mazur's compact contractible 4-manifold has an arc pseudo-spine. Section 4 speculates about the possibility of finding simple pseudo-spines for all compact 4-manifolds. In particular, it includes the conjecture that every compact contractible 4-manifold has an arc pseudo-spine. It also states a closely related conjecture: every compact contractible 4-manifold has a handlebody decomposition with no 3- or 4-handles. It then presents a proof that this conjecture holds for an important class of compact contractible 4-manifolds described by Poénaru.

2. Mapping swirls

Let $f: X \to S^1$ be a map from a compact metric space X to S^1 . Intuitively, the *mapping swirl* of f is obtained from the mapping cylinder of f by "swirling" the fibers of the mapping cylinder around infinitely many times in the S^1 -direction as they approach the S^1 -end of the mapping cylinder. To make this informal definition precise, we use the fact that the mapping cylinder of f embeds naturally in $(CX) \times S^1$, where CX is the cone on X. The mapping swirl of f is defined as a subset of $(CX) \times S^1$. The swirling effect is achieved by using the S^1 -factor. We also define the *double mapping swirl* of f, by "swirling" the fibers of the double mapping cylinder of f at both ends. The double mapping swirl of f is defined as a subset of $(\Sigma X) \times S^1$, where ΣX is the suspension of X. The S^1 -factor is again used to achieve the swirling effect.

Simple examples show that two maps from a compact metric space to S^1 may differ by only a slight homotopy and yet have nonhomeomorphic mapping cylinders and double mapping cylinders. In contrast, our principal result, Theorem 1, says that homotopic maps from a compact metric space to S^1 have homeomorphic mapping swirls. The swirling process kills the topological difference between the mapping cylinders of homotopic maps. **Definition.** Let X be a compact metric space. The suspension of X, denoted ΣX , is the quotient space $[-\infty, \infty] \times X/\{\{-\infty\} \times X, \{\infty\} \times X\}$. Let $q: [-\infty, \infty] \times X \to \Sigma X$ denote the quotient map. For $(t, x) \in [-\infty, \infty] \times X$, let tx = q((t, x)); and let $\pm \infty = q(\{\pm\infty\} \times X)$. The cone on X, denoted CX, is $q([0, \infty] \times X)$.

Definition. Let $f: X \to Y$ be a map between compact metric spaces. The mapping cylinder of f, denoted Cyl(f), is the subspace

$$ig\{ig(tx,f(x)ig)\in (CX) imes Y\colon (t,x)\in [0,\infty) imes Xig\}\cupig(\{\infty\} imes Yig)$$

of $(CX) \times Y$. The double mapping cylinder of f, denoted DblCyl(f), is the subspace

$$\left\{\left(tx,f(x)
ight)\in\left(\varSigma X
ight) imes Y\colon\left(t,x
ight)\in\left(-\infty,\infty
ight) imes X
ight\}\cup\left(\left\{-\infty,\infty
ight\} imes Y
ight)$$

of $(\Sigma X) \times Y$. For $-\infty < t < \infty$, call the set $\{(tx, f(x)): x \in X\}$ the *t-level* of DblCyl(f); it is homeomorphic to X. Call $\{\pm\infty\} \times Y$ the $\pm\infty$ -level of DblCyl(f). Observe that the union of the *t*-levels of DblCyl(f) for $0 \leq t \leq \infty$ is precisely Cyl(f).

To reconcile this definition of the mapping cylinder of f with the usual definition, consider the map from the disjoint union $([0, \infty] \times X) \cup Y$ onto the subset of $(CX) \times Y$ which we have called Cyl(f) which sends $(t, x) \in ([0, \infty] \times X)$ to (tx, f(x)) and sends $y \in Y$ to (∞, y) . The set of inverse images of this map determines the decomposition of $([0, \infty] \times X) \cup Y$ in which the only nonsingleton elements are sets of the form $(f^{-1}(y) \times \{\infty\}) \cup \{y\}$ for $y \in Y$. This is exactly the decomposition which is determined by the inverse images of the "usual" quotient map from $([0, \infty] \times X) \cup Y$ to the "usual" mapping cylinder of f. Consequently, Cyl(f) is homeomorphic to the "usual" double mapping cylinder of f.

Definition. Let X be a compact metric space and let $f: X \to S^1$ be a map. The mapping swirl of f, denoted Swl(f), is the subspace

$$\left\{ \left(tx, e^{2\pi i t} f(x)\right) \in (CX) \times S^{1} \colon (t, x) \in [0, \infty) \times X \right\} \cup \left(\{\infty\} \times S^{1}\right)$$

of $(CX) \times S^1$. The double mapping swirl of f, denoted DblSwl(f), is the subspace

$$\left\{\left(tx, e^{2\pi it} f(x)\right) \in (\Sigma X) \times S^{1} \colon (t, x) \in (-\infty, \infty) \times X\right\} \cup \left(\left\{-\infty, \infty\right\} \times S^{1}\right)$$

of $(\Sigma X) \times S^1$. For $-\infty < t < \infty$, call the set $\{(tx, e^{2\pi i t} f(x)): x \in X\}$ the *t-level* of DblSwl(f); it is homeomorphic to X. Call $\{\pm\infty\} \times S^1$ the $(\pm\infty)$ -level of DblSwl(f). Observe that the union of the *t*-levels of DblSwl(f) for $0 \leq t \leq \infty$ is precisely Swl(f). For $x \in X$, call the set $\{(tx, e^{2\pi i t} f(x)): -\infty < t < \infty\}$ the *x*-fiber of DblSwl(f). If $g: X \to S^1$ is another map and $x \in X$, then the *x*-fiber of Swl(f) (DblSwl(f)) and the *x*-fiber of Swl(g) (DblSwl(g)) are called *corresponding fibers*.

Theorem 1. If X is a compact metric space, and $f, g: X \to S^1$ are homotopic maps, then Swl(f) is homeomorphic to Swl(g). Furthermore, the homeomorphism maps the 0- and ∞ -levels of Swl(f) onto the 0- and ∞ -levels of Swl(g), respectively, and maps each fiber of Swl(f) onto the corresponding fiber of Swl(g).

Proof. The proof has two steps. First we find a homeomorphism of $(\Sigma X) \times S^1$ which carries DblSwl(f) onto DblSwl(g). This homeomorphism moves Swl(f) into DblSwl(g), because $Swl(f) \subset DblSwl(f)$. Second we find a homeomorphism of $(\Sigma X) \times S^1$ which "twists" the image of Swl(f) onto Swl(g) within DblSwl(g).

Step 1. For each $x \in X$, set $\mathcal{F}(x) = \{(tx, e^{2\pi i t} f(x)): -\infty < t < \infty\}$ and set $\mathcal{G}(x) = \{(tx, e^{2\pi i t} g(x)): -\infty < t < \infty\}$. $\mathcal{F}(x)$ and $\mathcal{G}(x)$ are the x-fibers of DblSwl(f) and DblSwl(g), respectively. Both lie in $((-\infty, \infty)x) \times S^1 \subset (\Sigma(X)) \times S^1$.

For each $x \in X$, the x-fibers $\mathcal{F}(x)$ and $\mathcal{G}(x)$ form a "double helix" in the cylinder $((-\infty,\infty)x) \times S^1$. The angle $\theta(x)$ between $\mathcal{F}(x)$ and $\mathcal{G}(x)$ in the S^1 -direction is precisely the angle between f(x) and g(x) in S^1 , and a twist of the cylinder $((-\infty,\infty)x) \times S^1$ in the S^1 -direction through the angle $\theta(x)$ would move $\mathcal{F}(x)$ to $\mathcal{G}(x)$. Unfortunately, one can't form the "union" of these twists over all the cylinders $((-\infty,\infty)x) \times S^1$ to move DblSwl(f) to DblSwl(g) in $(\Sigma X) \times S^1$, because $\theta(x)$ may vary with x, so that there is no single rotation of $\{-\infty,\infty\} \times S^1$ that extends the twists of all the cylinders. Instead of using a twist, one observes that the helix $\mathcal{F}(x)$ can be moved to the helix $\mathcal{G}(x)$ by a slide of the cylinder $((-\infty,\infty)x) \times S^1$ in the $(-\infty,\infty)x$ -direction. The length of the slide in the $(-\infty,\infty)x$ -direction varies with x and is essentially determined by lifting the homotopy joining f to g in S^1 to a homotopy in $(-\infty,\infty)$. Unlike the previously considered twist, this slide extends to $\{-\infty,\infty\} \times S^1$ via the identity. This is because the slide makes no motion in the S^1 -direction and preserves the "ends" of $(-\infty,\infty)x$. The details follow.

Suppose $h: X \times [0, 1] \to S^1$ is a homotopy such that h(x, 0) = g(x) and h(x, 1) = f(x). We exploit the fact that S^1 is a group under complex multiplication to define the map $k: X \times [0, 1] \to S^1$ by k(x, t) = h(x, t)/h(x, 0). Thus, k(x, 0) = 1 and k(x, 1)g(x) = f(x) for $x \in X$. Let $e: (-\infty, \infty) \to S^1$ denote the exponential covering map $e(t) = e^{2\pi i t}$. Let $\tilde{k}: X \times [0, 1] \to (-\infty, \infty)$ be the lift of k (i.e., $e \circ \tilde{k} = k$) such that $\tilde{k}(x, 0) = 0$ for all $x \in X$. Define $\sigma: X \to (-\infty, \infty)$ by $\sigma(x) = \tilde{k}(x, 1)$. Observe that for each $x \in X$, $f(x)/e^{2\pi i \sigma(x)} = f(x)/e(\tilde{k}(x, 1)) = f(x)/k(x, 1) = g(x)$. Since X is compact, there is a $b \in (0, \infty)$ such that $\sigma(X) \subset (-b, b)$. As we will see, $\sigma(x)$ specifies the length of the slide of the cylinder $((-\infty, \infty)x) \times S^1$ in the $(-\infty, \infty)x$ -direction that moves $\mathcal{F}(x)$ to $\mathcal{G}(x)$.

Now define the function $\Phi: (\Sigma X) \times S^1 \to (\Sigma X) \times S^1$ by setting $\Phi(tx, z) = ((t + \sigma(x))x, z)$ for $(t, x) \in (-\infty, \infty) \times X$ and $z \in S^1$, and by requiring that $\Phi|\{-\infty, \infty\} \times S^1 =$ id. Clearly Φ is continuous at each point of $(\Sigma X) \times S^1 - \{-\infty, \infty\} \times S^1$. For each $z \in S^1$, the continuity of Φ at the points $(\pm \infty, z)$ follows from the inclusions

$$egin{aligned} &\varPhiig(([t,\infty]x) imes\{z\}ig)\subsetig((t-b,\infty]xig) imes\{z\},\ &\varPhiig(([-\infty,t]xig) imes\{z\}ig)\subsetig([-\infty,t+b)xig) imes\{z\}. \end{aligned}$$

Next we verify that $\Phi(\text{DblSwl}(f)) \subset \text{DblSwl}(g)$. To this end, let $x \in X$ and consider a typical point $(tx, e^{2\pi i t} f(x))$ of the fiber $\mathcal{F}(x)$. Φ moves this point to the point F.D. Ancel, C.R. Guilbault / Topology and its Applications 71 (1996) 277-293

$$\left(\left(t + \sigma(x)\right)x, e^{2\pi i t} f(x) \right) = \left(\left(t + \sigma(x)\right)x, e^{2\pi i (t + \sigma(x))} f(x) / e^{2\pi i \sigma(x)} \right)$$
$$= \left(\left(t + \sigma(x)\right)x, e^{2\pi i (t + \sigma(x))} g(x) \right)$$

which is a point of the fiber $\mathcal{G}(x)$. Consequently, $\Phi(\mathcal{F}(x)) \subset \mathcal{G}(x)$. Thus, Φ maps each fiber of DblSwl(f) into the corresponding fiber of DblSwl(g). Also $\Phi(\{-\infty, \infty\} \times S^1) = \{-\infty, \infty\} \times S^1$. Since DblSwl(f) and DblSwl(g) are the unions of their fibers and of $\{-\infty, \infty\} \times S^1$, we conclude that $\Phi(\text{DblSwl}(f)) \subset \text{DblSwl}(g)$.

To complete Step 1, we must verify that Φ is a homeomorphism and that $\Phi(\text{DblSwl}(f)) = \text{DblSwl}(g)$. We accomplish this by defining the function $\overline{\Phi}: (\Sigma X) \times S^1 \to (\Sigma X) \times S^1$ by setting $\overline{\Phi}(tx,z) = ((t - \sigma(x))x, z)$ for $(t,x) \in (-\infty,\infty) \times X$ and $z \in S^1$, and by requiring that $\overline{\Phi}|\{-\infty,\infty\} \times S^1 = \text{id.}$ Arguments similar to those just given show that $\overline{\Phi}$ is continuous and that $\overline{\Phi}(\text{DblSwl}(g)) \subset \text{DblSwl}(f)$. Also it is easily checked that the composition of Φ and $\overline{\Phi}$ in either order is the identity. Hence, Φ is a homeomorphism, and $\Phi(\text{DblSwl}(f)) \supset \Phi(\overline{\Phi}(\text{DblSwl}(g))) = \text{DblSwl}(g)$. So $\Phi(\text{DblSwl}(f)) = \text{DblSwl}(g)$.

Step 2. Here we will find a homeomorphism Ψ of $(\Sigma X) \times S^1$ such that

 $\Psi(\Phi(\operatorname{Swl}(f))) = \operatorname{Swl}(g).$

For each $x \in X$, set $\mathcal{F}^+(x) = \{(tx, e^{2\pi i t} f(x)): 0 \leq t < \infty\}$ and set $\mathcal{G}^+(x) = \{(tx, e^{2\pi i t} g(x)): 0 \leq t < \infty\}$. $\mathcal{F}^+(x)$ and $\mathcal{G}^+(x)$ are the x-fibers of Swl(f) and Swl(g), respectively.

For $x \in X$, since $\mathcal{F}^+(x) \subset \mathcal{F}(x)$, then $\Phi(\mathcal{F}^+(x)) \subset \Phi(\mathcal{F}(x)) \subset \mathcal{G}(x)$; also $\mathcal{G}^+(x) \subset \mathcal{G}(x)$. We will describe a homeomorphism Ψ which gives the cylinder $((-\infty, \infty)x) \times S^1$ a screw motion that carries the fiber $\mathcal{G}(x)$ onto itself and moves $\Phi(\mathcal{F}^+(x))$ onto $\mathcal{G}^+(x)$. Also Ψ will restrict to the identity on a neighborhood of $\{-\infty, \infty\} \times S^1$.

Recall that $b \in (0,\infty)$ such that $\sigma(X) \subset (-b,b)$. There is a map $\tau: (-\infty,\infty) \times X \to (-\infty,\infty)$ such that for each $x \in X$, $t \mapsto \tau(t,x): (-\infty,\infty) \to (-\infty,\infty)$ is an order preserving piecewise linear homeomorphism which restricts to the identity on $(-\infty, -b] \cup [b,\infty)$ and which moves $\sigma(x)$ to 0. For example, τ can be defined by the formulas:

$$\begin{aligned} \tau(t,x) &= \left(b/\left(b+\sigma(x)\right) \right) \left(t-\sigma(x)\right) & \text{for } t \in \left[-b,\sigma(x)\right], \\ \tau(t,x) &= \left(b/\left(b-\sigma(x)\right) \right) \left(t-\sigma(x)\right) & \text{for } t \in \left[\sigma(x),b\right], \\ \tau(t,x) &= t & \text{for } t \in (-\infty,-b] \cup [b,\infty). \end{aligned}$$

Now define the function $\Psi: (\Sigma X) \times S^1 \to (\Sigma X) \times S^1$ by setting

$$\Psi(tx,z) = \left(\tau(t,x)x, \mathrm{e}^{2\pi\mathrm{i}(\tau(t,x)-t)}z\right) \quad \text{for } (t,x) \in (-\infty,\infty) \times X \text{ and } z \in S^1,$$

and by requiring that $\Psi|\{-\infty,\infty\} \times S^1 = \text{id. Since } \tau \text{ is continuous, then } \Psi \text{ is continuous}$ at each point of $(\Sigma X) \times S^1 - \{-\infty,\infty\} \times S^1$. Also since $\tau(t,x) = t$ for $t \in (-\infty,-b] \cup [b,\infty)$, then Ψ restricts to the identity on the neighborhood of $\{-\infty,\infty\} \times S^1$ in $(\Sigma X) \times S^1$ consisting of all points of the form (tx,z) where $t \in [-\infty,-b] \cup [b,\infty], x \in X$ and $z \in S^1$. Hence, Ψ is continuous at each point of $\{-\infty,\infty\} \times S^1$.

Next we verify that $\Psi(\Phi(\text{Swl}(f))) \subset \text{Swl}(g)$. To this end, let $x \in X$ and consider a typical point p of $\mathcal{F}^+(x)$. p has the form $(tx, e^{2\pi i t}f(x))$ where $0 \leq t < \infty$. Thus $\Phi(p) = ((t + \sigma(x))x, e^{2\pi i (t + \sigma(x))}g(x))$. Hence,

$$\begin{split} \Psi(\varPhi(p)) &= \left(\tau\left(t + \sigma(x), x\right) x, \mathrm{e}^{2\pi\mathrm{i}\left(\tau\left(t + \sigma(x), x\right) - t - \sigma(x)\right)} \mathrm{e}^{2\pi\mathrm{i}\left(t + \sigma(x)\right)} g(x)\right) \\ &= \left(\tau\left(t + \sigma(x), x\right) x, \mathrm{e}^{2\pi\mathrm{i}\tau\left(t + \sigma(x), x\right)} g(x)\right). \end{split}$$

Since $u \mapsto \tau(u, x) : (-\infty, \infty) \to (-\infty, \infty)$ is an order preserving homeomorphism, $\tau(\sigma(x), x) = 0$ and $t \ge 0$, then $\tau(t + \sigma(x), x) \ge 0$. It follows that $\Psi(\Phi(p))$ belongs to the fiber $\mathcal{G}^+(x)$. This proves $\Psi(\Phi(\mathcal{F}^+(x))) \subset \mathcal{G}^+(x)$. So $\Psi \circ \Phi$ maps each fiber of $\operatorname{Swl}(f)$ into the corresponding fiber of $\operatorname{Swl}(g)$. Also $\Psi \circ \Phi(\{\infty\} \times S^1) = \{\infty\} \times S^1$. Since $\operatorname{Swl}(f)$ and $\operatorname{Swl}(g)$ are the unions of their fibers and of $\{\infty\} \times S^1$, we conclude that $\Psi(\Phi(\operatorname{Swl}(f))) \subset \operatorname{Swl}(g)$.

It remains to establish that $\Psi: (\Sigma X) \times S^1 \to (\Sigma X) \times S^1$ is a homeomorphism and that $\Psi \circ (\operatorname{Swl}(f)) = \operatorname{Swl}(g)$. To this end, first note that there is a map $\overline{\tau}: (-\infty, \infty) \times X \to (-\infty, \infty)$ such that for each $x \in X$, $t \mapsto \overline{\tau}(t, x): (-\infty, \infty) \to (-\infty, \infty)$ is the inverse of the homeomorphism $t \mapsto \tau(t, x): (-\infty, \infty) \to (-\infty, \infty)$. (Thus, for each $x \in X$, $t \mapsto \overline{\tau}(t, x): (-\infty, \infty) \to (-\infty, \infty)$. (Thus, for each $x \in X$, $t \mapsto \overline{\tau}(t, x): (-\infty, \infty) \to (-\infty, \infty)$ is an order preserving piecewise linear homeomorphism which restricts to the identity on $(-\infty, -b] \cup [b, \infty)$ such that $\overline{\tau}(0, x) = \sigma(x)$, and $\overline{\tau}(\tau(t, x), x) = t$ and $\tau(\overline{\tau}(t, x), x) = t$ for $-\infty < t < \infty$.) Then define the function $\overline{\Psi}: (\Sigma X) \times S^1 \to (\Sigma X) \times S^1$ by setting

$$\overline{\Psi}(tx,z) = \left(ar{ au}(t,x)x, \mathrm{e}^{2\pi\mathrm{i}(ar{ au}(t,x)-t)}z
ight) \quad ext{for } (t,x) \in (-\infty,\infty) imes X ext{ and } z \in S^1,$$

and by requiring that $\overline{\Psi}|\{-\infty,\infty\} \times S^1 = \text{id.}$ The proof of the continuity of $\overline{\Psi}$ is similar to the proof of the continuity of Ψ .

Next we verify that $\overline{\Psi}(\text{Swl}(g)) \subset \Phi(\text{Swl}(f))$. To this end, let $x \in X$ and consider a typical point p of $\mathcal{G}^+(x)$. p has the form $(tx, e^{2\pi i t}g(x))$ where $0 \leq t < \infty$, and

$$\overline{\Psi}(p) = \left(\overline{\tau}(t,x)x, \mathrm{e}^{2\pi\mathrm{i}(\overline{\tau}(t,x)-t)}\mathrm{e}^{2\pi\mathrm{i}t}g(x)\right) = \left(\overline{\tau}(t,x)x, \mathrm{e}^{2\pi\mathrm{i}\overline{\tau}(t,x)}g(x)\right).$$

Since $u \mapsto \overline{\tau}(u, x) : (-\infty, \infty) \to (-\infty, \infty)$ is an order preserving homeomorphism, $\overline{\tau}(0, x) = \sigma(x)$ and $t \ge 0$, then $\overline{\tau}(t, x) = u + \sigma(x)$ for some $u \ge 0$. Hence,

$$\overline{\Psi}(p) = \left(\left(u + \sigma(x) \right) x, e^{2\pi i (u + \sigma(x))} g(x) \right).$$

Since $u \ge 0$, then the point $(ux, e^{2\pi i u} f(x))$ belongs to $\mathcal{F}^+(x)$, and $\Phi(ux, e^{2\pi i u} f(x)) = ((u + \sigma(x))x, e^{2\pi i (u + \sigma(x))}g(x))$. Consequently,

$$\overline{\Psi}(p) = \Phi(ux, e^{2\pi i u} f(x)) \in \Phi(\mathcal{F}^+(x))$$

This proves $\overline{\Psi}(\mathcal{G}^+(x)) \subset \Phi(\mathcal{F}^+(x))$. So $\overline{\Psi}$ maps each fiber of $\mathrm{Swl}(g)$ into the Φ -image of the corresponding fiber of $\mathrm{Swl}(f)$. Also $\overline{\Psi}(\{\infty\} \times S^1) = \{\infty\} \times S^1 = \Phi(\{\infty\} \times S^1)$. Since $\mathrm{Swl}(g)$ and $\mathrm{Swl}(f)$ are the unions of their fibers and of $\{\infty\} \times S^1$, we conclude that $\overline{\Psi}(\mathrm{Swl}(g)) \subset \Phi(\mathrm{Swl}(f))$.

It is easy to verify that the composition of Ψ and $\overline{\Psi}$ in either order is the identity. (Remember that $\overline{\tau}(\tau(t, x)x) = t$ and $\tau(\overline{\tau}(t, x), x) = t$ for $x \in X$ and $-\infty < t < \infty$.) Hence, Ψ is a homeomorphism.

We have seen that $\Psi(\Phi(\text{Swl}(f))) \subset \text{Swl}(g)$ and $\overline{\Psi}(\text{Swl}(g)) \subset \Phi(\text{Swl}(f))$. So

$$\Psi(\Phi(\operatorname{Swl}(f))) \supset \Psi(\overline{\Psi}(\operatorname{Swl}(g))) = \operatorname{Swl}(g).$$

Thus, the homeomorphism $\Psi \circ \Phi$ maps Swl(f) onto Swl(g).

In the course of the proof, we have seen that for each $x \in X$, $\Psi(\Phi(\mathcal{F}^+(x))) \subset \mathcal{G}^+(x)$ and $\overline{\Psi}(\mathcal{G}^+(x)) \subset \Phi(\mathcal{F}^+(x))$. So $\Psi(\Phi(\mathcal{F}^+(x))) \supset \Psi(\overline{\Psi}(\mathcal{G}^+(x))) = \mathcal{G}^+(x)$. Thus, $\Psi(\Phi(\mathcal{F}^+(x))) = \mathcal{G}^+(x)$. In other words, the homeomorphism $\Psi \circ \Phi$ maps each fiber of $\mathrm{Swl}(f)$ onto the corresponding fiber of $\mathrm{Swl}(g)$.

A typical point of the 0-level of Swl(f) has the form (0x, f(x)) and

$$\begin{split} \Psi\big(\Phi\big(0x,f(x)\big)\big) &= \Psi\big(\sigma(x)x, \mathsf{e}^{2\pi \mathsf{i}\sigma(x)}g(x)\big) \\ &= \big(\tau\big(\sigma(x),x\big)x, \mathsf{e}^{2\pi \mathsf{i}(\tau(\sigma(x),x)-\sigma(x))}\mathsf{e}^{2\pi \mathsf{i}\sigma(x)}g(x)\big) = \big(0x,g(x)\big) \end{split}$$

because $\tau(\sigma(x), x) = 0$. Thus, $\Psi \circ \Phi$ maps the 0-level of Swl(f) onto the 0-level of Swl(g).

Since $\Psi(\Phi(\{-\infty\} \times S^1)) = \Psi(\{-\infty\} \times S^1) = \{-\infty\} \times S^1$, then $\Psi \circ \Phi$ maps the ∞ -level of Swl(f) onto the ∞ -level of Swl(g). \Box

The next theorem and its corollaries make it possible to identify the mapping swirls of a special types of maps.

Theorem 2. If X is a compact metric space, n is a nonzero integer, and $f: X \times S^1 \to S^1$ is the map $f(x, z) = z^n$, then Cyl(f) is homeomorphic to Swl(f). Furthermore, the homeomorphism maps the t-level of Cyl(f) onto the t-level of Swl(f) for $0 \le t \le \infty$.

Proof. We will find a homeomorphism from $C(X \times S^1) \times S^1$ to itself which carries Cyl(f) onto Swl(f) by twisting motion in the S^1 -direction in the $C(X \times S^1)$ factor of $C(X \times S^1) \times S^1$. This is possible because of the S^1 -factor in the domain of f and the special form of f.

Define the function

 $\phi: C(X \times S^1) \to C(X \times S^1)$

by setting $\phi(t(x, z)) = t(x, e^{-2\pi i t/n} z)$ for $t \in [0, \infty)$ and $(x, z) \in X \times S^1$ and $\phi(\infty) = \infty$. ϕ is clearly continuous on $C(X \times S^1) - \{\infty\}$; and because ϕ maps the *t*-level of $C(X \times S^1)$ into itself, then ϕ is continuous at ∞ . We show that ϕ is a homeomorphism of $C(X \times S^1)$ by exhibiting its inverse. Indeed, let us define the function $\overline{\phi} : C(X \times S^1) \to C(X \times S^1)$ by setting $\overline{\phi}(t(x, z)) = t(x, e^{2\pi i t/n} z)$ for $t \in [0, \infty)$ and $(x, z) \in X \times S^1$ and $\overline{\phi}(\infty) = \infty$. Then $\overline{\phi}$ is continuous by an argument similar to the one just given. Also it is easily checked that the composition of ϕ and $\overline{\phi}$ in either order is the identity. So ϕ and $\overline{\phi}$ are homeomorphisms.

Next define a homeomorphism $\Phi: C(X \times S^1) \times S^1 \to C(X \times S^1) \times S^1$ by $\Phi = \phi \times id$. Clearly $\overline{\Phi} = \overline{\phi} \times id$ defines the homeomorphism of $C(X \times S^1) \times S^1$ which is the inverse of Φ .

We now prove that $\Phi(\text{Cyl}(f)) = \text{Swl}(f)$. Let $0 \leq t < \infty$, and consider a typical point $p = (t(x, z), f(x, z)) = (t(x, z), z^n)$ of the t-level of Cyl(f) where $(x, z) \in X \times S^1$. Set $z' = e^{-2\pi i t/n} z$. Then

$$\begin{split} \varPhi(p) &= \left(\phi\big(t(x,z),z^n\big)\big) = \left(t\big(x,e^{-2\pi i t/n}z\big),z^n\right) \\ &= \left(t\big(x,e^{-2\pi i t/n}z\big),e^{2\pi i t}\big(e^{-2\pi i t/n}z\big)^n\right) \\ &= \left(t(x,z'),e^{2\pi i t}(z')^n\right) = \left(t(x,z'),e^{2\pi i t}f(x,z')\right). \end{split}$$

So $\Phi(p)$ belongs to the *t*-level of Swl(*f*). Also $\Phi(\{\infty\} \times S^1) = \{\infty\} \times S^1$. It follows that $\Phi(\text{Cyl}(f)) \subset \text{Swl}(f)$, and Φ maps the *t*-level of Cyl(*f*) into the *t*-level of Swl(*f*) for $0 \leq t \leq \infty$.

A similar argument shows that $\overline{\Phi}$ maps the *t*-level of Swl(*f*) into the *t*-level of Cyl(*f*) for $0 \leq t \leq \infty$. Indeed, if $0 \leq t < \infty$ and $p = (t(x, z)e^{2\pi i t}f(x, z)) = (t(x, z), e^{2\pi i t}z^n)$ is a typical point of the *t*-level of Swl(*f*), and we set $z' = e^{2\pi i t/n}z$, then

$$\overline{\varPhi}(p) = \left(\overline{\phi}(t(x,z)e^{2\pi i t}z^n)\right) = \left(t(x,e^{2\pi i t/n}z),\left(e^{2\pi i t/n}z\right)^n\right) = \left(t(x,z'),f(x,z)\right)$$

which is a point of the *t*-level of Cyl(f). Also $\overline{\Phi}(\{\infty\} \times S^1) = \{\infty\} \times S^1$. Hence, $\overline{\Phi}(Swl(f)) \subset Cyl(f)$. Since $\overline{\Phi} = \Phi^{-1}$, it follows that $\Phi(Cyl(f)) = Swl(f)$, and Φ maps the *t*-level of Cyl(f) onto the *t*-level of Swl(f) for $0 \leq t \leq \infty$. \Box

We now exploit Theorems 1 and 2 together to state two corollaries which allows us to identify the mapping swirls of certain kinds of maps.

Corollary 1. If X is a compact metric space, $f: X \times S^1 \to S^1$ and $g: X \times S^1 \to S^1$ are homotopic maps, and $g(x, z) = z^n$ where n is a nonzero integer, then Swl(f) is homeomorphic to Cyl(g). Furthermore, the homeomorphism maps the 0- and ∞ -levels of Swl(f) onto the 0- and ∞ -levels of Cyl(g).

Corollary 2. If $f: S^1 \to S^1$ is a map of degree $n \neq 0$, then Swl(f) is homeomorphic to $Cyl(z \mapsto z^n)$. Furthermore, the homeomorphism maps the 0- and ∞ -levels of Swl(f) onto the 0- and ∞ -levels of $Cyl(z \mapsto z^n)$. In particular, Swl(f) is an annulus if $n = \pm 1$, and Swl(f) is a Möbius strip if $n = \pm 2$.

The last assertion of this corollary follows from the observation that the mapping cylinder of the map $z \mapsto z^n : S^1 \to S^1$ is an annulus if $n = \pm 1$, and it is a Möbius strip if $n = \pm 2$.

3. Pseudo-spines of 4-manifolds

Recall that a compact subset X of the interior of a compact manifold M is a pseudospine of M if M - X is homeomorphic to $(\partial M) \times [0, \infty)$.

Let || || denote the Euclidean norm on \mathbb{R}^n : $||x|| = (x_1^2 + x_2^2 + \dots + x_n^2)^{1/2}$. Set $B^n = \{x \in \mathbb{R}^n : ||x|| \le 1\}$ and $S^n = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$.

For each integer n, let $\gamma_n : S^1 \to S^1$ denote the map $\gamma_n(z) = z^n$, and let X(n) denote the adjunction space $B^2 \cup_{\gamma_n} S^1$. Thus, $X(\pm 1)$ is a 2-dimensional disk, and $X(\pm 2)$ is a projective plane. If |n| > 2, then X(n) is a 2-dimensional polyhedron which is not a 2-manifold. For nonzero integers n_1, n_2, \ldots, n_k , let $X(n_1, n_2, \ldots, n_k)$ denote the adjunction space $(B^2 \times \{1, 2, \ldots, k\}) \cup_{\Gamma} S^1$ where $\Gamma : S^1 \times \{1, 2, \ldots, k\} \to S^1$ is the map defined by $\Gamma(z, i) = \gamma_{n_i}(z)$ for $z \in S^1$ and $1 \leq i \leq k$. Thus, $X(n_1, n_2, \ldots, n_k)$ is homeomorphic to a union of $X(n_1), X(n_2), \ldots, X(n_k)$ in which all the "edge circles" of the $X(n_i)$'s are identified with a single copy of S^1 .

A simple closed curve C in the boundary of a manifold N is called *essential* if it is not homotopically trivial in ∂N . If C is essential, then any 2-handle attached to N along C is also called *essential*.

Theorem 3. Suppose C_1, C_2, \ldots, C_k are disjoint essential simple closed curves in $\partial B^3 \times S^1$, and M^4 is the 4-manifold obtained by attaching disjoint 2-handles to $B^3 \times S^1$ along C_1, C_2, \ldots, C_k . Let $\pi : \partial B^3 \times S^1 \to S^1$ denote the projection map. For $1 \le i \le k$, let n_i denote the degree of the map $\pi | C_i : C_i \to S^1$. Then M^4 has a pseudo-spine which is homeomorphic to $X(n_1, n_2, \ldots, n_k)$.

Proof. Note that $n_i \neq 0$ because C_i is essential for $1 \leq i \leq k$. We write $M^4 = (B^3 \times S^1) \cup (H_1 \cup H_2 \cup \cdots \cup H_k)$ where H_i is the 2-handle attached to $B^3 \times S^1$ along C_i . Thus, for $1 \leq i \leq k$, there is a homeomorphism $h_i: B^2 \times B^2 \to H_i$ such that $(B^3 \times S^1) \cap H_i = h_i((\partial B^2) \times B^2) \subset \partial B^3 \times S^1$ and $h_i((\partial B^2) \times \{0\}) = C_i$. For $1 \leq i \leq k$, set $D_i = h_i(B^2 \times \{0\})$; then $\partial D_i = C_i$ and D_i is the "core disk" of H_i .

Clearly $B^3 \times S^1$ is homeomorphic to $Cyl(\pi)$ by a homeomorphism that takes $\partial B^3 \times S^1$ onto the 0-level of $Cyl(\pi)$. In addition, Theorem 2 provides a homeomorphism from $Cyl(\pi)$ to $Swl(\pi)$ which takes the 0-level of $Cyl(\pi)$ to the 0-level of $Swl(\pi)$. The composition of these homeomorphisms allows us to identify $B^3 \times S^1$ with $Swl(\pi)$ so that $\partial B^3 \times S^1$ is identified with the 0-level of $Swl(\pi)$. Thus, we can regard C_1, C_2, \ldots, C_k as disjoint simple closed curves lying in the 0-level of $Swl(\pi)$.

Let $1 \leq i \leq k$. Observe that $\operatorname{Swl}(\pi|C_i)$ can be naturally identified with a subset of $\operatorname{Swl}(\pi)$ so that the 0-level of $\operatorname{Swl}(\pi|C_i)$ is the subset of the 0-level of $\operatorname{Swl}(\pi)$ identified with C_i , and ∞ -levels of $\operatorname{Swl}(\pi|C_i)$ and $\operatorname{Swl}(\pi)$ coincide. Since $\pi|C_i:C_i \to S^1$ is a map of degree n_i , then Corollary 3 provides a homeomorphism from $\operatorname{Swl}(\pi|C_i)$ to the mapping cylinder of the map $z \mapsto z^{n_i}: S^1 \to S^1$ which preserves 0-levels and ∞ -levels. Since C_i is the 0-level of $\operatorname{Swl}(\pi|C_i)$ and $C_i = \partial D_i$, then clearly $\operatorname{Swl}(\pi|C_i) \cup D_i$ is homeomorphic to $X(n_i)$.

Set $X = \bigcup_{i=1}^{k} \text{Swl}(\pi | C_i) \cup D_i$. Then X is a compact subset of $\text{int}(M^4)$, and X is clearly homeomorphic to $X(n_1, n_2, \ldots, n_k)$.

It remains to prove that $M^4 - X$ is homeomorphic to $(\partial M^4) \times [0, \infty)$. Observe that $M^4 - X$ is the union of $\text{Swl}(\pi) - \bigcup_{i=1}^k \text{Swl}(\pi | C_i)$ and the sets $H_i - D_i$ for $1 \le i \le k$. Furthermore, $\text{Swl}(\pi) - \bigcup_{i=1}^k \text{Swl}(\pi | C_i)$ is the union of the fibers of $\text{Swl}(\pi)$ that emanate from the points of $(\partial B^3 \times S^1) - \bigcup_{i=1}^k C_i$, and each of these fibers is homeomorphic to $[0, \infty)$. We will "extend" these fibers to fill the sets $H_i - D_i$, $1 \le i \le k$. We will define a homeomorphism $G: (\partial M^4) \times [0, \infty) \to M^4 - X$. To begin, there is clearly a homeomorphism $F: (\partial B^3 \times S^1) \times [0, \infty) \to \text{Swl}(\pi) - (\{\infty\} \times S^1)$ which takes $\{(x, z)\} \times [0, \infty)$ onto the (x, z)-fiber of $\text{Swl}(\pi)$, for $(x, z) \in \partial B^3 \times S^1$. Indeed, the formula $F((x, z), t) = (t(x, z), e^{2\pi i t} z)$ for $((x, z), t) \in (\partial B^3 \times S^1) \times [0, \infty)$ determines such a homeomorphism.

For each $i, 1 \leq i \leq k$, set

$$A_i = h_i ((\partial B^2) \times B^2)$$
 and $B_i = h_i (B^2 \times (\partial B^2)).$

 A_i is called the *attaching tube* of H_i , and B_i is called the *belt tube* of H_i . Then $A_i = Swl(\pi) \cap H_i$ and

$$\partial M^4 = \left(\left(\partial B^3 \times S^1 \right) - \bigcup_{i=1}^k \operatorname{int}(A_i) \right) \cup \left(\bigcup_{i=1}^k B_i \right).$$

We set

$$G \left| \left((\partial B^3 \times S^1) - \bigcup_{i=1}^k \operatorname{int}(A_i) \right) \times [0, \infty) \right.$$

= $F \left| \left((\partial B^3 \times S^1) - \bigcup_{i=1}^k \operatorname{int}(A_i) \right) \times [0, \infty). \right.$

It remains to define $G|B_i \times [0,\infty)$ for $1 \le i \le k$. Consider a point $p \in B_i$. Then $p = h_i(x, y)$ where $(x, y) \in B^2 \times (\partial B^2)$. If x = 0, then $G(\{p\} \times [0,\infty))$ is the "deleted radius" $h_i(\{(0, ty): 0 < t \le 1\})$ of the disk $h_i(\{0\} \times B^2)$ joining the center point $h_i(0,0)$ to p. If $x \ne 0$, then $G(\{p\} \times [0,\infty))$ is the union of an arc in H_i joining the point p to a point $q \in A_i$ together with the ray $F(\{q\} \times [0,\infty))$. Moreover, the arc in H_i joining p to q is the h_i -image of the subarc of the "hyperbola" $\{(sx, ty): st = 1\}$ joining the point (x, y) to the point (x/||x||, ||x||y). So $q = h_i(x/||x||, ||x||y)$.

The precise definition of G follows. As we stated earlier,

$$G \left| \left((\partial B^3 \times S^1) - \bigcup_{i=1}^k \operatorname{int}(A_i) \right) \times [0, \infty) \right.$$

= $F \left| \left((\partial B^3 \times S^1) - \bigcup_{i=1}^k \operatorname{int}(A_i) \right) \times [0, \infty) \right.$

Now suppose $1 \leq i \leq k, p \in B_i$ and $p = h_i(x, y)$, where $(x, y) \in B^2 \times (\partial B^2)$. If x = 0, then

$$G(p,t) = h_i \left(0, \left(\frac{1}{t+1} \right) y \right) \quad \text{for } 0 \leqslant t < \infty.$$

If $x \neq 0$, then

$$G(p,t) = \begin{cases} h_i \Big((t+1)x, \Big(\frac{1}{t+1}\Big)y \Big), & \text{if } 0 \leq t \leq \frac{1}{\|x\|} - 1, \\ F\Big(h_i \Big(\frac{x}{\|x\|}, \|x\|y\Big), t+1 - \frac{1}{\|x\|}\Big), & \text{if } \frac{1}{\|x\|} - 1 \leq t < \infty. \end{cases}$$

The following remarks are intended to further clarify the properties of G. G maps

$$\left((\partial B^3 \times S^1) - \bigcup_{i=1}^k \operatorname{int}(A_i)\right) \times [0,\infty)$$

onto

$$\operatorname{Swl}\left(\pi \left| \left((\partial B^3 \times S^1) - \bigcup_{i=1}^k \operatorname{int}(A_i) \right) \right) \right.$$

For $1 \leq i \leq k$, G maps

$$\left\{(p,t)\in B_i\times [0,\infty):\ 0\leqslant t\leqslant \frac{1}{\|x\|}-1,\ p=h_i(x,y),\ (x,y)\in B^2\times (\eth B^2)\right\}$$

onto $H_i - D_i$, and G maps

$$\left\{ (p,t) \in B_i \times [0,\infty): \ \frac{1}{\|x\|} - 1 \leqslant 1 < \infty, \ p = h_i(x,t), \ (x,y) \in B^2 \times (\partial B^2) \right\}$$

onto $\operatorname{Swl}(\pi | A_i - C_i)$. \Box

Corollary 3. Suppose C is a simple closed curve in $(\partial B^3) \times S^1$, and $M^4 = (B^3 \times S^1) \cup H$ where H is a 2-handle attached to $B^3 \times S^1$ along C. Let $\pi: B^3 \times S^1 \to S^1$ denote the projection map, and suppose that the map $\pi | C: C \to S^1$ is degree one. Then M^4 has an arc pseudo-spine.

Proof. Theorem 3 provides M^4 with a pseudo-spine X that is homeomorphic to the 2-dimensional disk X(1). According to [3], X can be "squeezed" to an arc in $int(M^4)$. In other words, there is an arc A in $int(M^4)$ and an onto map $f: M^4 \to M^4$ such that f(X) = A and f maps $M^4 - X$ homeomorphically onto $M^4 - A$. (Interpreted literally, [3] applies only in manifolds of dimension 3. However, the methods of [3] work in manifolds of all dimensions ≥ 3 . This is fully explained on p. 95 of [2].) Consequently, $M^4 - A$ is homeomorphic to $\partial M^4 \times [0, \infty)$, making A an arc pseudo-spine of M^4 . \Box

Since Mazur's compact contractible 4-manifold [6] is obtained by attaching a 2-handle to $B^3 \times S^1$ along a degree one curve, we recover the result of [5,3].

Corollary 4. Mazur's compact contractible 4-manifold has an arc pseudo-spine.

4. Conjectures

The results proved in this paper exhibit simple pseudo-spines for a very modest collection of 4-manifolds: those obtained by attaching essential 2-handles to $B^3 \times S^1$. The following conjectures are founded on the possibly naive hope that these results can be extended to a more general class of compact 4-manifolds.

Conjecture 1. If a compact 4-manifold with boundary is homotopy equivalent to $X(n_1, n_2, \ldots, n_k)$ (where n_1, n_2, \ldots, n_k are nonzero integers), then it has a pseudo-spine which is homeomorphic to $X(n_1, n_2, \ldots, n_k)$.

In the case of a compact contractible 4-manifold, Conjecture 1 combined with the result of [3] would yield:

Conjecture 2. Every compact contractible 4-manifold has an arc pseudo-spine.

Corollary 3 provides an arc pseudo-spine for every compact contractible 4-manifold that is obtained by attaching a 2-handle to $B^3 \times S^1$. Such a 4-manifold has a handlebody decomposition consisting of a single 0-handle, a single 1-handle and a single 2-handle. No 3- or 4-handles are needed. This suggests breaking Conjecture 2 into the following two parts.

Conjecture 2A. Every piecewise linear compact contractible 4-manifold has a handlebody decomposition with no 3- or 4-handles.

Conjecture 2B. Every compact contractible 4-manifold that has a handlebody decomposition with no 3- or 4-handles has an arc pseudo-spine.

Here is a less general and apparently more elementary question than those raised by the previous conjectures. If M^4 and N^4 are 4-manifolds with boundary, define their boundary connected sum $M^4 \cup_{\partial} N^4$ to be the adjunction space $M^4 \cup_h N^4$ where h is a homeomorphism from a collared 3-ball in ∂M^4 to a collared 3-ball in ∂N^4 .

Conjecture 3. If two compact 4-manifolds have arc pseudo-spines, then so does their boundary-connected sum.

If two compact contractible 4-manifolds are each obtained by attaching a single 2-handle to $B^3 \times S^1$, then their boundary connected sum has a tree pseudo-spine which is homeomorphic to the letter "H". This is proved by using the methods of the proof of Theorem 3 and [3]. (Recall that a *tree* is a compact contractible 1-dimensional polyhedron.) This raises the question of whether a tree pseudo-spine can be simplified to an arc pseudo-spine. We can ask, more generally, whether a compact 1-dimensional polyhedral pseudo-spine be simplified to a homotopy equivalent canonical model.

Conjecture 4. If a compact 4-manifold has a tree pseudo-spine, then it has an arc pseudo-spine.

Conjecture 5. If a compact noncontractible 4-manifold has a pseudo-spine which is a compact 1-dimensional polyhedron, then it has a pseudo-spine which is a wedge of circles.

There are clear limitations on the amount to which a pseudo-spine can be simplified within its homotopy class. If a compact 4-manifold has a point pseudo-spine, then it is a cone over its boundary, which implies that its boundary is simply connected. On the other hand, there are compact contractible 4-manifolds with nonsimply connected boundaries which have arc pseudo-spines (e.g., the Mazur manifold). Clearly, the arc pseudo-spines of such manifolds can't be simplified to points.

The study of spines and pseudo-spines pursued in this paper and in [1] was partially motivated by the question of whether a compact contractible *n*-manifold other than the *n*-ball can have disjoint spines. (The existence of disjoint spines is equivalent to the existence of disjoint pseudo-spines.) In [4] it is shown that for $n \ge 9$, there is a large family of distinct compact contractible *n*-manifolds with disjoint spines. We conjecture a different situation in dimension 4.

Conjecture 6. The only compact contractible 4-manifold that has disjoint spines is the 4-ball.

We conclude with some remarks concerning Conjectures 2, 2A and 2B. The "classical" examples of compact contractible 4-manifolds include, in addition to the Mazur 4-manifold, those described by Poénaru in [7]. We will sketch the construction of Poénaru's examples, and we will explain why many Poénaru 4-manifolds have handlebody decompositions with no 3- or 4-handles. Hence, they provide some evidence for Conjecture 2A. The authors, however, do not know whether Poénaru's examples have arc pseudo-spines. These manifolds are, thus, a likely place to take up the study of Conjectures 2 and 2B.

The following discussion fits most naturally into the piecewise linear category. For this reason we identify the *n*-ball B^n with $[0,1]^n$ for the remainder of the paper. A locally unknotted piecewise linearly embedded 2-dimensional disk D in B^4 such that $D \cap (\partial B^4) = \partial D$ is called a *slice disk* in B^4 and ∂D is called a *slice knot* in ∂B^4 . A piecewise linear simple closed curve J is ∂B^4 is called a *ribbon knot* if there is a piecewise linear map $f: B^2 \to \partial B^4$ which maps ∂B^2 onto J such that the singular set of f.

 $\{p \in \partial B^4: f^{-1}(p) \text{ contains more than one point}\}$

—is the union of a pairwise disjoint collection of piecewise linear arcs A_1, A_2, \ldots, A_k in ∂B^4 and for $1 \le i \le k$, $f^{-1}(A_i)$ is the union of two disjoint piecewise linear arcs A'_i and A''_i in B^2 where $A'_i \subset int(B^2)$, $A''_i \cap (\partial B^2) = \partial A''_i$, and f maps each of A'_i and A''_i homeomorphically onto A_i . Clearly f can be homotoped rel ∂B^2 to a piecewise linear embedding whose image is a slice disk by pushing $f|int(B^2)$ radially into $int(B^4)$ and pushing $f|A'_i$ "deeper" than the rest of $f|int(B^2)$. The slice disk formed in this manner is called a *ribbon disk*. Thus, every ribbon knot is a slice knot. The converse assertion: every slice knot is a ribbon knot, is one of the fundamental unresolved problems of knot theory.

Poénaru's construction of a compact contractible 4-manifold begins with a slice disk Din B^4 such that ∂D is knotted in ∂B^4 and with a knotted piecewise linear simple closed curve K in the boundary of a second 4-ball \tilde{B}^4 . Let N be a regular neighborhood of D in B^4 such that $N \cap (\partial B^4)$ is a regular neighborhood of ∂D in ∂B^4 . Set $A = \operatorname{cl}(B^4 - N) \cap N$. Then A is a solid torus (i.e., A is piecewise linearly homeomorphic to $S^1 \times B^2$), and we can think of N as a 2-handle attached to $\operatorname{cl}(B^4 - N)$ along A to yield B^4 . Let T be a regular neighborhood of K in $\partial \tilde{B}^4$. Then T is a solid torus. Let $g:T \to A$ be a piecewise linearly homeomorphism. Now define the Poénaru 4-manifold $P^4(D, K)$ to be the adjunction space $\tilde{B}^4 \cup_g \operatorname{cl}(B^4 - N)$. We can think of \tilde{B}^4 as a "knotted 2-handle" with knotted attaching tube T which is attached to $\operatorname{cl}(B^4 - N)$ by the homeomorphism $g:T \to A$ to yield $P^4(D, K)$. To see that $P^4(D, K)$ is contractible, notice that $\operatorname{cl}(B^4 - N)$ by g "kills" this curve. However, $\partial P^4(D, K)$ is not simply connected because it is the union of the two nontrivial knot complements $\operatorname{cl}(\partial B^4 - (N \cap (\partial B^4)))$ and $\operatorname{cl}(\partial B^4 - T)$. See [7] for further details.

Finally we verify that some Poénaru 4-manifolds have handlebody decompositions with no 3- or 4-handles.

Proposition. If D is a ribbon disk in B^4 and K is a piecewise linear knot in $\partial \tilde{B}^4$, then the Poénaru 4-manifold $P^4(D, K)$ has a handlebody decomposition with no 3- or 4-handles.

Proof. Let N, A, T and g be as in the paragraph describing the construction of $P^4(D, K)$. To prove the Proposition, we will established two assertions.

(a) $cl(B^4 - N)$ has a handlebody decomposition with no 3- or 4-handles.

(b) There is a piecewise linear homeomorphism from \tilde{B}^4 to $B^3 \times [0, 1]$ which identifies T with a subset $T_0 \times \{0\}$ of $B^3 \times \{0\}$ so that $B^3 \times [0, 1]$ is obtained from $T_0 \times [0, 1]$ by attaching 1- and 2-handles to $(\partial T_0) \times [0, 1]$.

The proof of the Proposition is then completed by noting that since $cl(B^4 - N)$ is piecewise linearly homeomorphic to $(T_0 \times [0, 1]) \cup_g cl(B^4 - N)$, then by assertion (a), $(T_0 \times [0, 1]) \cup_g cl(B^4 - N)$ has a handlebody decomposition with no 3- or 4-handles. Furthermore, by assertion (b), $(B^3 \times [0, 1]) \cup_g cl(B^4 - N)$ is obtained from $(T_0 \times [0, 1]) \cup_g cl(B^4 - N)$ by attaching 1- and 2-handles. We conclude that $(B^3 \times [0, 1]) \cup_g cl(B^4 - N) = P^4(D, K)$ has a handlebody decomposition with no 3- or 4-handles.

We now demonstrate assertion (a): $cl(B^4 - N)$ has a handlebody decomposition with no 3- or 4-handles. (Evidently, a related fact is proved in [8], though the language there is quite different.) We can identify B^4 with $B^3 \times [0, 1]$ so that $\partial D \subset int(B^3) \times \{1\}$. Furthermore, we can assume that the ribbon disk D is positioned in a special way that we now describe. D arises from a map $f: B^2 \to int(B^3) \times \{1\}$ with singular set equal to the union of a pairwise disjoint collection of arcs A_1, A_2, \ldots, A_k such that for $1 \le i \le k$, $f^{-1}(A_i)$ is the union of two disjoint arcs A'_i and A''_i in B^2 where $A'_i \subset int(B^2)$, $A''_i \cap (\partial B^2) = \partial A''_i$, and f maps each of A'_i and A''_i homeomorphically onto A_i .

We impose a "collared" handlebody decomposition on B^2 as follows. The 0-handles are disjoint disks E_1, E_2, \ldots, E_k in $int(B^2)$ such that $A'_i \subset int(E_i)$ and $E_i \cap A''_j = \emptyset$ for $1 \leq i, j \leq k$. For $1 \leq i \leq k$, we add an exterior collar to E_i to obtain a slightly

larger disk E_i^+ in $int(B^2)$ so that $E_1^+, E_2^+, \ldots, E_k^+$ are pairwise disjoint and are disjoint from $A_1'', A_2'', \ldots, A_k''$. Next we connect the k disks $E_1^+, E_2^+, \ldots, E_k^+$ with k-1 disjoint 1-handles or "bands" $F_1, F_2, \ldots, F_{k-1}$ in $int(B^2) - \bigcup_{i=1}^k int(E_i^+)$. Set

$$G = \left(\bigcup_{i=1}^{k} E_i^+\right) \cup \left(\bigcup_{j=1}^{k-1} F_j\right).$$

Then G is a disk in $\operatorname{int}(B^2)$. For $1 \leq j \leq k-1$, each of the sets $(\partial F_j) \cap (\bigcup_{j=1}^k E_i^+)$ and $(\partial F_j) \cap (\partial G)$ is the union of two disjoint arcs in ∂F_j , and these four arcs subdivide ∂F_j and have disjoint interiors. We add an exterior collar to G to obtain a slightly larger disk G^+ in $\operatorname{int}(B^2)$. Of course, $B^2 - \operatorname{int}(G^+)$ is an annulus.

To form the ribbon disk D from the map f, we push f "vertically" down the [0, 1]-fibers of $B^3 \times [0, 1]$ and make some minor "horizontal" adjustments to achieve an embedding with the following properties. (We now identify B^2 with its image D.) The 0-handles E_1, E_2, \ldots, E_k lie in the level $B^3 \times \{1/4\}$. For $1 \le i \le k$, the collar $E_i^+ - \operatorname{int}(E_i)$ lies vertically over ∂E_i in the product $B^3 \times [1/4, 1/2]$ so that ∂E_i^+ lies in the level $B^3 \times \{1/2\}$. The 1-handles $F_1, F_2, \ldots, F_{k-1}$ lie in the level $B^3 \times \{1/2\}$. The collar $G^+ - \operatorname{int}(G)$ lies vertically over ∂G in the product $B^3 \times [1/2, 3/4]$ so that ∂G^+ lies in the level $B^3 \times \{3/4\}$. The annulus $D - \operatorname{int}(G^+)$ lies in the product $B^3 \times [3/4, 1]$ so that each level circle of the annulus lies in a $B^3 \times \{t\}$ -level and, of course, ∂D lies in $B^3 \times \{1\}$.

Let $\pi: B^3 \times [0,1] \to B^3$ denote projection. The regular neighborhood N of D can be assumed to have the following form:

$$N = (N_1 \times [1/4 - \delta, 1/4 + \delta]) \cup (N_2 \times [1/4 + \delta, 1/2 - \delta]) \\ \cup (N_3 \times [1/2 - \delta, 1/2 + \delta]) \cup (N_4 \times [1/2 + \delta, 3/4]) \cup N_5$$

where N_1 , N_2 , N_3 and N_4 are regular neighborhoods of $\pi(D \cap (B^3 \times \{t\}))$ in int (B^3) for t = 1/4, 3/8, 1/2 and 5/8, respectively. N_5 is a regular neighborhood of the annulus $D - \text{int}(G^+)$ in $B^3 \times [3/4, 1]$, and $0 < \delta < 1/8$.

 N_1 is a regular neighborhood of the union of the k disks $\pi(E_i)$, $1 \le i \le k$; and N_2 is a regular neighborhood of the union of the k simple closed curves $\pi(\partial E_i)$, $1 \le i \le k$. Thus, N_1 has k components each of which is a 3-ball containing one of the disks $\pi(E_i)$, and N_2 has k components each of which is a solid torus containing one of the simple closed curves $\pi(\partial E_i)$. Moreover, we can assume that $N_2 \subset N_1$, and that $cl(N_1 - N_2)$ has k components each of which is a 3-ball that intersects $cl(B^3 - N_1)$ in a pair of disjoint boundary disks. This allows us to view each component of $cl(N_1 - N_2)$ as a 3-dimensional 1-handle attached to $cl(B^3 - N_1)$. Hence, $cl(B^3 - N_2)$ is obtained by attaching k 3-dimensional 1-handles (the components of $cl(N_1 - N_2)$) to $cl(B^3 - N_1)$.

Let X denote the union of the simple closed curves ∂E_i^+ , $1 \leq i \leq k$, and the "bands" F_j , $1 \leq j \leq k$. N_3 is a regular neighborhood of $\pi(X)$. Hence, we can assume that $N_2 \subset N_3$ and that N_3 is obtained from N_2 by attaching k - 1 3-dimensional 1-handles, each 1-handle containing one of the disks $\pi(F_j)$. N_4 is a regular neighborhood of $\pi(\partial G)$, and ∂G is obtained from X by removing from X all of F_j except for the

two arcs comprising $F_j \cap (\partial G)$ for $1 \leq j \leq k - 1$. It follows that we can assume that $N_4 \subset N_3$, and that $cl(N_3 - N_4)$ has k - 1 components each of which is a 3-ball that intersects $cl(B^3 - N_3)$ in a boundary annulus. This allows us to view each component of $cl(N_3 - N_4)$ as a 3-dimensional 2-handle attached to $cl(B^3 - N_3)$. Hence, $cl(B^3 - N_4)$ is obtained by attaching k - 1 3-dimensional 2-handles (the components of $cl(N_3 - N_4)$) to $cl(B^3 - N_3)$.

The following seven assertions clearly imply that $cl(B^4 - N)$ has a handlebody decomposition involving no 3- or 4-handles.

- (i) $Y_0 = B^3 \times [0, 1/4 \delta]$ is a 4-ball and can, thus, be regarded as a 0-handle.
- (ii) $Y_{0+} = Y_0 \cup (cl(B^3 N_1) \times [1/4 \delta, 1/2 \delta])$ is homeomorphic to Y_0 .
- (iii) $Y_1 = cl(B^3 \times [0, 1/2 \delta] N)$ is obtained from Y_{0+} by attaching 1-handles.
- (iv) $Y_{1+} = Y_1 \cup (cl(B^3 N_3) \times [1/2 \delta, 3/4])$ is homeomorphic to Y_1 .
- (v) $Y_2 = cl(B^3 \times [0, 3/4] N)$ is obtained from Y_{1+} by attaching 2-handles.
- (vi) $Y_{2+} = Y_2 \cup (cl(B^3 N_4) \times [3/4, 1])$ is homeomorphic to Y_2 .
- (vii) $cl(B^4 N)$ is homeomorphic to Y_{2+} .

Assertions (i), (ii), (iv) and (vi) are immediate.

To prove assertion (iii), observe that $Y_1 = Y_{0+} \cup (cl(N_1 - N_2) \times [1/4 + \delta, 1/2 - \delta])$. Since $cl(N_1 - N_2)$ can be viewed as the union of k 3-dimensional 1-handles attached to $cl(B^3 - N_1)$, then $cl(N_1 - N_2) \times [1/4 + \delta, 1/2 - \delta]$ can be viewed as the union of k 4-dimensional 1-handles attached to Y_{0+} along $(\partial cl(B^3 - N_1)) \times [1/4 + \delta, 1/2 - \delta]$. Hence, Y_1 is obtained from Y_{0+} by attaching k 4-dimensional 1-handles.

To prove assertion (v), observe that $Y_2 = Y_{1+} \cup (\operatorname{cl}(N_3 - N_4) \times [1/2 + \delta, 3/4])$. Since $\operatorname{cl}(N_3 - N_4)$ can be viewed as the union of k - 1 3-dimensional 2-handles attached to $\operatorname{cl}(B^3 - N_3)$, then $\operatorname{cl}(N_3 - N_4) \times [1/2 + \delta, 3/4]$ can be viewed as the union of k - 1 4-dimensional 2-handles attached to Y_{1+} along $(\operatorname{dcl}(B^3 - N_3)) \times [1/2 + \delta, 3/4]$. Hence, Y_2 is obtained from Y_{1+} by attaching k - 1 4-dimensional 2-handles.

Finally, to prove assertion (vii), we observe that the original map $f: B^2 \to B^3 \times \{1\}$ embeds the annulus $B^2 - \operatorname{int}(G^+)$. Hence, there is a piecewise linear ambient isotopy of $B^3 \times \{1\}$ which "drags" $f(\partial G^+)$ through the level circles of the annulus $f(B^2 - \operatorname{int}(G^+))$. This ambient isotopy can be "spread out" as a level preserving piecewise linear homeomorphism h of $B^3 \times [3/4, 1]$ which restricts to the identity on $B^3 \times \{3/4\}$, which carries the "cylinder" $\pi(\partial G^+) \times [3/4, 1]$ onto the annulus $D - \operatorname{int}(G^+)$, and which carries $N_4 \times [3/4, 1]$ onto N_5 . (If $h(N_4 \times [3/4, 1]) \neq N_5$ initially, we correct this by redefining N_5 .) We extend h over $B^3 \times [0, 3/4]$ via the identity. Then h carries Y_{2+} onto

$$Y_2 \cup cl(B^3 \times [3/4, 1] - N_5) = cl(B^3 \times [0, 1] - N) = cl(B^4 - N).$$

This completes the proof of assertion (a): $cl(B^4 - N)$ has a handlebody decomposition with no 3- or 4-handles.

It remains to demonstrate assertion (b): there is a piecewise linear homeomorphism from \tilde{B}^4 to $B^3 \times [0, 1]$ which identifies T with a subset $T_0 \times \{0\}$ of $B^3 \times \{0\}$ so that $B^3 \times [0, 1]$ is obtained from $T_0 \times [0, 1]$ by attaching 1- and 2-handles to $(\partial T_0) \times [0, 1]$. Let C^3 be a 3-ball in $\partial \tilde{B}^4$ such that $T \subset \operatorname{int}(C^3)$. $C^3 - \operatorname{int}(T)$ has a handlebody decomposition based on T; in other words, C^3 can be obtained by attaching 0-, 1-, 2and 3-handles to T. The 0-handles of this decomposition can be eliminated by cancelling them with some 1-handles, and the 3-handles can be eliminated by cancelling them with some 2-handles. These cancellations can be performed without moving T, but then C^3 may be forced to move. At the end of the process, T is still a subset of the (possibly repositioned) 3-ball C^3 . (T may no longer be interior to C^3 .) Now C^3 is obtained by attaching 1- and 2-handles to T. Since C^3 is a piecewise linear 3-ball in $\partial \tilde{B}^4$, there is a piecewise linear homeomorphism $k: B^3 \times [0, 1] \rightarrow \tilde{B}^4$ such that $k(B^3 \times \{0\}) = C^3$. There is a solid torus T_0 in B^3 such that $k(T_0 \times \{0\}) = T$. It follows that B^3 can be obtained from T_0 by adding 3-dimensional 1- and 2-handles. By "crossing" each of these handles with [0, 1], we see that $B^3 \times [0, 1]$ can be obtained from $T_0 \times [0, 1]$ by attaching 4-dimensional 1- and 2-handles to $(\partial T_0) \times [0, 1]$. This proves assertion (b). \Box

Acknowledgment

The authors wish to thank Andrew Casson and Martin Scharlemann for a helpful discussion concerning Conjectures 2, 2A and 2B and the Proposition.

References

- [1] F.D. Ancel and C.R. Guilbault, Compact contractible *n*-manifolds have arc spines $(n \ge 5)$, Pacific J. Math. 168 (1995) 1–10.
- [2] R.J. Daverman, Decompositions of Manifolds (Academic Press, Orlando, FL, 1986).
- [3] R.J. Daverman and W.T. Eaton, An equivalence for the embeddings of cells in a 3-manifold, Trans. Amer. Math. Soc. 145 (1969) 369–381.
- [4] C.R. Guilbault, Some compact contractible manifolds containing disjoint spines, Topology 34 (1995) 99–108.
- [5] C.H. Giffen, Disciplining dunce hats in 4-manifolds, unpublished manuscript, 1976.
- [6] B. Mazur, A note on some contractible 4-manifolds, Ann. of Math. 73 (1961) 221–228.
- [7] V. Poénaru, Les décompositions de l'hypercube en produit topologique, Bull. Soc. Math. France 88 (1960) 113–129.
- [8] T. Yanagawa, On ribbon 2-knots II, Osaka J. Math. 6 (1969) 465-473.