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COMPACT CONTRACTIBLE n-MANIFOLDS HAVE
ARC SPINES (n > 5)

FREDRIC D. ANCEL AND CRAIG R. GUILBAULT

The following two theorems were motivated by ques-
tions about the existence of disjoint spines in compact
contractible manifolds.

THEOREM 1. Every compact contractible n-manifold (n > 5) is
the union of two n-balls along a contractible (n — 1)-dimensional
submanifold of their boundaries.

A compactum X is a spine of a compact manifold M if M
is homeomorphic to the mapping cylinder of a map from
dM to X.

THEOREM 2. Every compact contractible n-manifold (n > 5) has
a wild arc spine.

Also a new proof is given that for n > 6, every homology
(n — l)-sphere bounds a compact contractible n-manifold.
The implications of arc spines for compact contractible
manifolds of dimensions 3 and 4 are discussed in §5. The
questions about the existence of disjoint spines in com-
pact contractible manifolds which motivated the preced-
ing theorems are stated in §6.

1. Introduction. Let M be a compact manifold with boundary.
A compactum X is a spine of M if there is a map / : dM -> X
and a homeomorphism h : M —> Cyl(/) such that h(x) = q((x,0))
for x G dM. Here Cyl(/) denotes the mapping cylinder of / and
q : (dM x [0, l ] ) U l - ) Cyl(/) is the natural quotient map. Thus
Q\dMx[o,i) and q\X are embeddings and q(x, 1) = q(f(x)) for x e
dM. So h carries dM homeomorphically onto q(M x {0}), h~ι oq\x

embeds in X int M, and M - h~ι(q(X)) ^ dM x [0,1).
An arc A in the interior of an n-manifold M is tame if A has a

neighborhood U in M such that (U,A) is homeomorphic to
(R n,[-l,l] x (0,0... ,0)). An arc in the interior of a manifold
is wild if it is not tame.
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Recall that a space is contractible if it is homotopy equivalent to
a point, and it is acyclic if its homology groups are isomorphic to
the homology groups of a point. A homotopy n-sphere is a closed
n-manifold which is homotopy equivalent to an n-sphere. A ho-
mology n-sphere is a closed n-manifold whose homology groups are
isomorphic to the homology groups of an n-sphere. (Throughout
this paper all homology groups have integer coefficients.) We now
list some elementary facts about these terms that will be used with-
out comment in the proofs below.

(1) Every contractible space is acyclic, and every homotopy n-
sphere is a homology n-sphere.

(2) The boundary of every compact acyclic n-manifold is a ho-
mology (n — l)-sphere.

(3) Every bicollared homology (n — l)-sphere in a homology n-
sphere separates the homology n-sphere into two compact
acyclic n-manifolds.

(4) Conversely, a closed n-manifold is a homology n-sphere if it is
the union of two compact acyclic n-manifolds which intersect
in their common boundary.

(5) A compact n-manifold is acyclic if it is the union of two com-
pact acyclic n-manifolds which intersect in a compact acyclic
(n — 1)- dimensional submanifold of the boundary of each.

(6) A simply connected acyclic manifold is contractible.

(7) A simply connected homology n-sphere is a homotopy n-sphere.

(8) For n > 4, a compact contractible n-manifold is an n-ball if
its boundary is an (n — l)-sphere.

(9) For n > 4, a homotopy n-sphere is an n-sphere.

Facts (1) - (5) follow from well known results of homology theory in-
cluding homotopy invariance, excision, the Mayer-Vietoris sequence,
and universal coefficient and duality theorems. Facts (6) and (7)
follow from the Hurewicz isomorphism theorem and a theorem of
Whitehead. Facts (8) and (9) follow from the Poincare conjecture
for topological manifolds, [2] and [7].

In the following proofs, all homomorphisms between homology
groups or homotopy groups are inclusion induced unless otherwise
specified.
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We state two lemmas which play essential roles in the subsequent
proofs of the theorems.

LEMMA 1. For each n > 4, ifΣn is a homology n-sphere, then
there is a bicollared embedding of a homology (n — 1)-sphere Σn~ι

in Σn such that πι{Σn~ι) -» πi(Σ n ) is onto.

Proof. The n = 4 case is just Proposition 2 of [4]. For n > 5,
this result is known. (J. C. Hausmann has called it the "New-
man construction" because it generalizes the method of [15].) We
sketch the argument because we will refer to it in the proofs of
the theorems. Since # 4 ( Σ n ; Z 2 ) = 0, then by [12] Σn has a PL
structure. Since Hι(Σn) = 0, then 7Γχ(Σn) is a finitely presented
perfect group. According to §2.1 of [8] (or see Proposition 4.4
of [3]), τri(Σn) is the homomorphic image of a finitely presented
perfect group G of deficiency 0. (A group presentation has defi-
ciency 0 if the number of generators equals the number of relators.)
Use the presentation of G to construct a finite 2-complex K with
τrι(K) « G. An analysis of the cellular homology sequence of K
reveals that K is acyclic. (The fact that the presentation of G has
defiency 0 is used here.) The epimorphism πχ(K) « G —> τri(Σn)
determines an embedding of K in Σ n so that the inclusion induced
homomorphism 7Γi(.ftΓ) —>- τri(Σn) is onto. Let iV be a regular neigh-
borhood of K in Σ n . Then N is acyclic and, hence, dN is a homol-
ogy (n — l)-sphere. Since n > 5, general position arguments show
that πχ(dN) -> τri(iV) is an isomorphism. Since πχ(K) —> τri(iV)
is an isomorphism, and 7Γi(ίΓ) —> πi(Σ n ) is onto, it follows that
πι(dN) -> τr!(Σn) is onto. D

LEMMA 2. Every compact contractible n-manifold (n > 4) is de-
termined by its boundary.

Proof Suppose C and D are compact contractible n-manifolds
with dC = dD = Σ. We must prove C is homeomorphic to D.
Observe that S = {C x {0}) U (Σ x [1,0]) U ( f l x {1}) is homology
n-sphere which, by Van Kampen's Theorem, is simply connected.
Thus, S is a homotopy n-sphere and, hence an n-sphere by the
Poincare conjecture. So S is the boundary of an (n + l)-ball B.
Therefore, (JB, C X {0}, D x {1}) is a simply connected /ι-cobordism
which already has a product structure joining dC x {0} to dD x {1}
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in dB. Hence, the known /ι-cobordism theorems imply there is a
product structure on B joining C x {0} to D x {1}. This product
structure induces a homeomorphism from C to D. D

Another crucial ingredient in the proofs of Theorems 1 and 2 is
the following result.

THEOREM 0. Every homology n-sphere bounds a compact con-
tractible (n + 1)-manifold.

This is proved for n > 4 in [11] and for n = 3 in [7]. Later we
will give a new proof for n > 5, which relies on the n-dimensional
Poincare conjecture.

2. Proof of Theorem 1. Suppose C is a compact contractible
n-manifold (n > 5). Then Lemma 1 provides a bicollared embed-
ding of a homology (n — 2)- sphere Σ in dC such that τri(Σ) ->
π\(dC) is onto. Σ separates dC into two compact acyclic (n — 1)-
manifolds Q\ and Q2. Each loop in Q\ is homotopic in dC to a loop
in Σ. If such a homotopy is cut off on dQ\ = Σ, then we see that
each loop in Qι is a boundary component of a (singular) punctured
disk in Qι which has its other boundary components in Σ. The same
is true of the loops in Q2 In algebraic language: every element of
τri(Qΐ) lies in the normal closure of the image of τri(Σ) —>• π\{Qi)

Theorem 0 implies that Σ bounds a compact contractible (n — 1)-
manifold D. Hence, for i = 1 or 2, Qi Us D is a homology (n — 1)-
sphere. Since every element of πi(Qi) is in the normal closure of
the image of τri(Σ) —> τri(Q ), and since ττι(D) = 1, then every
element of πι(Qi) includes trivially into πι(QiL>zD). Consequently,
πι(Qi UΣ D) = 1. Thus each Qi Us D is a homotopy (n — 1)-
sphere and, hence, an (n— l)-sphere by the Poincare conjecture. So
each (Qi U^ D) bounds an n-ball Bi. Observe that Bγ Up B2 is a
compact acyclic n-manifold which is simply connected and, hence
contractible. Furthermore, d(Bι UD B2) = Qi Us Q2 = dC. Lemma
2 now implies that C is homeomorphic to J5i U^ B2. O

3. Proof of Theorem 2. Let C be a compact contractible n-
manifold (n > 5). Then Lemma 1 provides an embedding of Σ x [0,1]
in dC where Σ is homology (n — 2)-sphere such that for each t €
[0,1], the inclusion of Σ x {t} into dC induces an epimorphism of
fundamental groups. Therefore, dC — Σ x (0,1) = Qo U Q\ where
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each Qi is a compact acyclic (n — l)-manifold with dQi = Σ x {i}.
Define the map /: dC -> [0,1] by /(Q o) = 0, / ( Σ x {t}) = t for
0 < t < 1, and f(Qι) = 1. We will argue below that Cyl(/) is
the cell-like image of C and that Cyl(/) satisfies the disjoint disks
property. Since Cyl(/) is clearly finite dimensional, it will then
follow by Edwards' theorem [6] that C is homeomorphic to Cyl(/),
proving that C has an arc spine.

We make some preliminary remarks about the topology of Cyl(/).
Cyl(/) is the image of a metrizable space via a quotient map which
is a closed map with compact point inverses. According to Theorem
XI.5.2 on page 235 of [5], this makes Cyl(/) metrizable. Cyl(/) is
an ANR because, in the terminology of Theorem VI. 1.2 on page
178 of [10], Cyl(/) is an "adjunction space" which is formed from
spaces that are all ANR's.

The construction of a cell-like map from C to Cyl(/) is similar
to the proof of Theorem 1. By Theorem 0, Σ bounds a compact
contractible (n — l)-manifold D. As in the proof of Theorem 1,
Qi Usx{i> (D x {i}) is an (n — l)-sphere, for i = 0 or 1. So each
Qi UΣX{I} (D x {z}) bounds an n-ball B{. Consequently, J30 U^x{0}
D x [0, 1]UDX{I} B\ is a compact contractible n-manifold. Moreover,
d{B0 UDx{0} D x [0,1] UDx{1} Bλ) = Qo U Σ x { 0 } Σ x [0,1] U Σ x { 1 }

Qλ = dC. So Lemma 2 implies Bo UDX{O} D X [0,1] UDX{I} # I

is homeomorphic to C. Let dC x [0,1] be an exterior collar on
Bo Uχ)X{o} D x [0,1] U/)X{i} B\ so that (x, 1) identified with x for
each x 6 dC. Then the union of Bo U/)X{o} D x [0,1] U^x{i} J5χ and
the exterior collar dC x [0,1] is homeomorphic to C. Let us identify
C with this union. Then dC is identified with dC x {0} in the collar
dC x [0,1]. We define a cell-like map g : C -> Cyl(/) as follows.
Let q : (dC x [0,1]) U [0,1] -> Cyl(/) be the natural quotient map.
For a point (x,ί) in the collar dC x [0,1], set g((x,t)) = q((x,t)).
Set g(BQ) = qr(O), g(D x {ί}) = q(t) for 0 < t < 1, and g(Bx) =
q(l). Hence, for x G dC,g(x) = q((x, 0)). g is cell-like because
the only non-singleton point inverses of g are the contractible sets

= Bo, g-\q{t)) = D x {t} for 0 < t < 1, and ίΓ

We now verify that Cyl(/) has the disjoint disks property. Assign
Cyl(/) a metric. Let A = q([0,1]). First we will prove the following
assertion: if Y is a dense subset of A, φ : B2 -> Cyl(/) is a map,
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and ε > 0, then φ is within ε of a map φ' : B2 —> Cyl(/) such that
φ'(B2)Γ\A C Y. Then we will show that this assertion easily implies
the disjoint disks property.

There is a finite sequence 0 = t0 < t\ < Ϊ2 < .. < ί^-i < tk — 1
and a 5 > 0 such that the sets Uo = ?((Qo U (Σ x [0, tλ))) x (5,1]),
Ui = g((Σ x (ίi_i,Wi)) x (5,1]) for 0 < i < k, and E4 = ?(((Σ x
(t*_i, 1]) U Qi) x (5,1]) are of diameter < ε/3. Clearly {t/?; : 0 <
i < k} is a collection of contractible open subsets of Cyl(/) which
covers A. Observe that UQ - A = g((Q0 U (Σ x [0,ίi))) x (Λ\ D),
£/z - A = q((Σ x (ti_i, t i + i)) x (5,1)) for 0 < i < k, and [/* - .4 =
q(((Σ x (ifc-i, 1]) UQi) x (5,1)). Hence, each Ui — A is a non-empty,
connected, dense subset of Uj. Let T be a triangulation of B2 which
is so fine that if σ G T and φ(σ) intersects A, then φ(σ) is contained
in some Ui. Then 0 can be perturbed by less than ε/3 so that it maps
the 1-skeleton of T into Cyl(/) - A. Since π x (Σ x {*}) -> π^dC) is
onto for 0 < t < 1, then the argument given in the proof of Theorem
1 can be used here to show that if 0 < u < ΐi, then every element
of τri(Qo U (Σ x [0, ίi))) is in the normal closure of the image of
πι(Σ x {u}) -> τri(<2o U (Σ x [0,ίi))). Consequently, if 0 < u < tu

then every element oΐττι(Uo—A) is in the normal closure of the image
ofπi(g((Σx{i4})x(ί,l))) -* πι(UQ-A). Similarly, if tk-X <u<l,
then every element of ττι(Uk—A) is in the normal closure of the image
of ττi(g((Σ x {u}) x (5,1))) -> m(Uk - A). Also for 0 < i < k, if
ΐz_i < u < ίf+i, then 7Γχ(g((Σ x {w}) x (5,1))) —> τri(C^ - 4̂) is
onto. Since F is a dense subset of A, we can choose UQ 6 [0, ίi),
^ 6 (ίi_i,ίi+i) for 0 < i < k, and ^ G (ί/c-i, 1] such that q(uj) G F
for 0 < i < k. Set yι = g(^) for 0 < i < A:. Now suppose
σ G Γ is a 2-simplex such that 0(σ) Π A φ 0 . Then 0(σ) C C/j
for some i between 0 and A;, and φ(dσ) Π A = 0. It follows from
the facts cited above that there is a punctured disk r C σ such
that dσ is a component of dr and there is a map ψσ : r —> t/j — A
such that τ/;σ|aσ = ψ\dσ and ^σ(9r - dσ) C g((Σ x {u j) x (5,1)).
(If 0 < i < k, then r can be taken to be an annulus.) Since the
components of the closure of σ - r are disks in the int(σ) and since
q((Σ x {ui}) x (5,1]) is the interior of a cone with vertex q(ui) — yι
and base q((Σ x {ui}) x {δ}), then ψσ extends to a map χσ : σ —>
(ί/i - A) U {i/i}. Now define φf : B2 -^ Cyl(/) as follows. Let σ G Γ
be a 2-simplex. If φ(σ) Π A = 0, set <// = 0|σ. If ^(σ) ΓΊ A φ 0 , set
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φ\σ = χσ. Then φ' is within ε of <£, and φ'(B2) C (Cyl(/) - A ) U 7 .
This establishes our first assertion.

Now to verify that Cyl(/) has the disjoint disks property, suppose
φ : B2 -> Cyl(/) and φ : B2 -> Cyl(/) are maps and ε > 0. Let
Y and Z be disjoint dense subsets of the arc A. Our previous
assertion provides maps φ1 : B2 —>> (Cyl(/) - A ) U F and ?// :
B2 -» (Cyl(/) - A) U Z such that ^ is within ε/2 of φ and ^ ' is
within ε/2 of ^ . Thus </>'(£2) Π V'(£ 2) Π A = 0 . Since <? carries
dC x [0,1) homeomorphically onto Cyl(/) - A, then Cyl(/) - A is
an n-manifold. Since n > 5, then <^,-i ( C y l ( / ) _ A ) and Φ'w-ι{Cyλ{f)_A)

can be perturbed into "general position", thereby producing maps
φ" : B2 -+ Cyl(/) and φ" : B2 -> Cyl(/) with disjoint images such
that φ" is within ε of φ and φ" is within ε of φ.

Now Edwards' theorem [6] implies that the cell-like map g : C —>
Cyl(/) can be approximated by homeomorphisms. Moreover, the
approximating homeomorphisms can be chosen to agree with g over
any closed subset of Cyl(/) which is interior to the subset of Cyl(/)
over which g is already a homeomorphism. In particular, there is
a homeomorphism h : C -> Cyl(/) which agrees with g on dC. So
h{x) = g(x) = g((x, 0)) for x e dC. We conclude that C has an arc
spine.

We now prove that the arc spine of C is wild, or equivalently that
A = g([0,1]) is a wild arc in Cyl(/). In fact, we will argue that A
is wild as long as Σ is not simply connected. It is automatically the
case that Σ is not simply connected if dC is not simply connected,
because τri(Σ x {t}) -» πι(dC) is onto for 0 < t < 1. However if dC
is simply connected (i.e., if C is an n-ball), then we must explicitly
choose Σ to be a non-simply connected homology (n — 2)-sphere
such that Σ x [0,1] embeds in dC. This is easily accomplished
because, in fact, every homology (n — 2)-sphere Σ has a collared
embedding in Sn~ι. (Proof: Σ bounds a compact contractible (n —
l)-manifold D whose double D UΣ D is an (n — l)-sphere by the
Poincare conjecture.) Thus, we may assume (after taking special
care to choose Σ appropriately in the case that C is an n-ball) that
τri(Σ) φl. If A were tame, then the point ?(l/2) e A would have
a neighborhood U in q((Σ x (0,1)) x (0,1]) such that U - A is
simply connected. Let U be any neighborhood of q(l/2) in q((Σ x
(0,1)) x (0,1]). There is a δ G (0,1) such that q((Σ x {1/2}) x
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{δ}) C U. Since #|(ΣX(O,I))X(O,I) is a homeomorphism, then πχ(g((Σx
{1/2}) x {δ})) -^πi(g((Σx(0, l ))x (0,1))) is an isomorphism. Since
this isomorphism factors through ττι(U — A),and since τri(g((Σ x
{1/2}) x {δ})) « τri(Σ) φ 1, then U — A can't be simply connected.
Consequently, A must be wild in Cyl(/). D

4. Proof of Theorem 0 for n > 5. Let Σ be a homology n-
sphere (n > 5). As is the Proof of Lemma 1, there is an acyclic
finite 2-complex K embedded in Σ such that ττι(K) —> 7Γχ(Σ) is
onto. Furthermore, if N is a regular neighborhood of K in Σ, then
dN is a homology (n — l)-sphere such that πι(dN) —»τri(Σ) is onto.
Set Q = Σ — int N. Then Q is a compact acyclic n-manifold.

Let K' be a copy of K embedded in 5 n , and let N' be a regular
neighborhood of K1 in Sn. Then N' is acyclic and, hence, dN' is a
homology (n—l)-sphere. Set D' = Sn—int N'. Then D' is a compact
acyclic n-manifold. τri(£>') « π i ( 5 n - ϋf), and TΓ^^7 1 - ϋf) = 1 by
general position since K is 2-dimensional and n > 5. So D ; is simply
connected. Therefore Z?' is a compact contractible n-manifold with

We will now prove that iV is homeomorphic to N'. Since n > 5,
then according to [14], regular neighborhoods of the 2-complex K
in manifolds of dimension n are classified up to homeomorphism by
homotopy classes of maps from K to BPL. We will argue that any
two maps from K to BPL are homotopic. Then N = Nf will follow.
Let φ,ψ : K —>• BPL be any two maps. Since K is acyclic, then
πχ(K) is perfect. Also τn(BPL) « Z 2 . (πχ(BPL) « τri(BO) by the
Hirsch-Mazur Theorem stated at the bottom of page 384 of [13], and
τri(BO) « 7Γ0(O) « Z 2 by the homotopy exact sequence of a bundle
and the fact that the orthogonal group has two components.) Hence,
φφ : TΓI(JRT) -> ττi(BPL) and φφ : 7Γi(AΓ) ~> τri(BPL) are zero maps.
Therefore, φ and φ lift to maps φ,φ : K -> BPL where BPL is the
universal cover of BPL. Since BPL is simply connected it is n-simple
for all n > 1 (i.e., ττi(BPL) acts trivially on τrn(BPL) for n > 1).
Consequently, obstruction theory applies routinely to the problem of
finding homotopies between maps into BPL. Since BPL is simply
connected, there is a homotopy h : Kι x [0,1] —> BPL joining
Φ\κι to ψ\κi. (Here Kι denotes the z-skeleton of K for i = 0,1,2.)
According to Eilenberg's homotopy theorem (Theorem 8.3 on page
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184 of [9]), φ is homotopic to ψ via a homotopy which extends
h\κ°x[o,i] if and only if an obstruction δ2(φ, ψ, h) e H2(K\ τr2(BPL))
vanishes. Since K is acyclic, then a universal coefficient theorem
implies ίΓ2(.ίf;7Γ2(BPL)) = 0. We conclude that φ is homotopic to
φ. Therefore, φ is homotopic to ψ. So N is homeomorphic to N'.

Since dN is homeomorphic to dN\ then dN bounds a compact
contractible n-manifold D. As in the proof of Theorem 1, N UdN D
and Q UQN D are homotopy n-spheres and, hence, n-spheres by the
Poincare conjecture. So N UQN D and Q U&/v D bound (n + l)-balls
Bι and 5 2 ? respectively. Then Bι Up B2 is a compact contractible
n-manifold with d(Bx UD B2) = N UdN Q = Σ. D

5. Arc spines in dimensions 3 and 4. Suppose C is a compact
contractible manifold of dimension 3 or 4 and A is an arc spine of
C. Then [1] and [16] imply that A is tame. Hence, A can be shrunk
to a point, revealing that C is just a cone on its boundary and that
dC must be simply connected. We conclude that the only compact
contractible 3-manifold that admits an arc spine is the 3-ball and
its spine must be tame. We also conclude that the only compact
contractible 4-manifolds that admit arc spines are either the 4-ball
or cones on exotic homotopy 3-spheres (if they exist) and again the
spines must be tame.

6. Questions.
1. Is the n-ball the only compact contractible n-manifold (n > 4)

that has two disjoint spines?

2. Does every compact contractible n-manifold (n > 4) have two
disjoint spines?

We remark that although Theorem 2 provides each high dimen-
sional compact contractible manifold with a wild arc spine, the ex-
istence of disjoint spines does not follow directly, because a wild arc
can't necessarily be pushed off itself by ambient homeomorphism.
Indeed, according to [17], for each n > 4, there is an arc A in Rn

which is sticky in the sense that there is an ε > 0 such that no
homeomorphism of Rn which is within ε of the identity moves A off
itself.
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