The locally flat approximation of cell-like embedding relations

By F. D. Ancel and J. W. Cannon

Abstract

By means of M.A. Štan'ko's clever unknotting technique we show that every embedding $f: M^{n-1} \rightarrow N^{n}(n \geqq 5)$ from a topological ($n-1$)-manifold M^{n-1} into a topological n-manifold N^{n} can be approximated by locally flat embeddings. A serious technical difficulty forces us to work in the category of cell-like embedding relations rather than single-valued embeddings. The bonus of this enforced generality is that the results obtained will surely have application to the study of cell-like decompositions and generalized manifolds.

1. Introduction

By means of M. A. Štan'ko's unknotting technique [S1], [S2], we show that every embedding $f: M^{n-1} \rightarrow N^{n}(n \geqq 5)$ from a topological (n-1)-manifold M^{n-1} into a topological n-manifold N^{n} can be approximated by locally flat embeddings. Others have reported tentative success in the same venture [Š3], [BES]; however, so far as we can determine, previous proofs have all run afoul of an unexpected pathology in the topology of codi-mension-one embeddings discovered by R. J. Daverman [D1]. (See the remark in Section 5.3.) We circumvent the difficulty by passing from the category of (single-valued) embeddings into the category of (multiple-valued) cell-like embedding relations (Appendix I) where the flexibility of "large points" allows us to destroy Daverman's pathology. (See the Embedding Theorem of Section 5.)

Štan'ko's original paper [Š1] and Cannon's Park City paper [C1] (where cell-like relations are introduced) are the major sources of our techniques. Although the reader may wish to refer to Štan'ko's paper, we give a complete exposition of his technique here.

As a trade-off for the unfamiliar demands we make of the reader, we shall in the main body of the paper consider only the simplest case, that of

[^0]a cell-like embedding relation $R: S^{n-1} \rightarrow S^{n}(n \geqq 5)$. We have made every effort, however, to state the proofs in such a way that they generalize almost without change to many more situations. We discuss the basic generalizations in Section 6. One corollary is a one-sided 1-LCC taming theorem for ($n-1$)-manifolds in an n-manifold. Seebeck [S] has a proof of a stronger one-sided result. A. V. Černavskīi [Č] has also claimed a proof, but it apparently has not appeared in print. Daverman [D2] has used our main result in proving that every crumpled n-cell $(n \geqq 5)$ is a closed n-cell complement.

2. Conventions and terminology

(2.1) All spaces are assumed locally compact and separable metric.
(2.2) We take Euclidean n-space E^{n} to be the space $\left\{t=\left(t_{1}, \cdots, t_{n}\right) \mid t_{i} \in \mathbf{R}\right\}$ of n-tuples of real numbers, with norm $|t|=\max _{i}\left|t_{i}\right|$ and metric $d(s, t)=$ $|s-t|$ induced by the norm. We write S^{n} (the n-spere) for the subspace $\left\{t \in E^{n+1}| | t \mid=1\right\}$ of E^{n+1} and $B^{n}\left(\right.$ the n-ball) for the subspace $\left\{t \in E^{n}| | t \mid \leqq 1\right\}=$ $[-1,1] \times \cdots \times[-1,1]$ (n times) of E^{n}. We write $I=[-2,2]$ and $I^{n}=2 B^{n}=$ $[-2,2] \times \cdots \times[-2,2]$ (n times). We think of I^{k} as $I^{k} \times\{0\} \subset I^{k} \times I^{m}=I^{k+m} \subset$ E^{k+m}.
(2.3) An n-manifold is a space, each point of which has a neighborhood homeomorphic with Euclidean n-space E^{n}. Thus our manifolds have no boundary.
(2.4) We use the $(+)$ symbol to denote finite disjoint topological union so that a disk $(+)$ is a space having finitely many components each of which is a disk. Similarly, a pinched-disk (+) is a space having finitely many components each of which is a pinched disk (defined in Section 4), etc. This $(+)$ convention allows us to describe constructions essentially component by component and to economize with our definitions and notations. For example we generally use the same kind of notation to denote a disk (+) that we use to denote a disk.

3. The 1-LCC Approximation Theorem

Cell-like embedding relations are defined at the end of Appendix I. We define a cell-like embedding relation $R: S^{n-1} \rightarrow S^{n}$ to be 1-LCC if for each $x \in S^{n-1}$ and each neighborhood U of $R(x)$ in S^{n} there is a neighborhood W of $R(x)$ in S^{n} such that each loop in $W-\operatorname{Im} R$ shrinks to a point in $U-\operatorname{Im} R$. Our main result is the following.

1-LCC Approximation Theorem. Suppose $R: S^{n-1} \rightarrow S^{n}(n \geqq 5)$ is a cell-
like embedding relation and L is a neighborhood of R in $S^{n-1} \times S^{n}$. Then L contains a 1-LCC cell-like embedding relation $R^{\prime}: S^{n-1} \rightarrow S^{n}$.

Corollary. The neighborhood L contains a locally flat embedding $r: S^{n-1} \rightarrow S^{n}$.

For $n=3$, the corollary has been proved by R. H. Bing [B1]. The theorem and corollary are unresolved for $n=4$.

Proof of the corollary. By [C1, Theorem 38] (see [C2] for an alternative and more general approach), the set $(-1,1) \times L \subset(-1,1) \times S^{n-1} \times S^{n}$ contains a cell-like embedding relation $R^{\prime \prime}:(-1,1) \times S^{n-1} \rightarrow S^{n}$ which extends the 1LCC embedding relation $R^{\prime}=R^{\prime \prime} \mid\left(\{0\} \times S^{n-1}\right)$. By [Si] (see [C1, Theorem 55]) we may assume $R^{\prime \prime}$ is a function except on $\{0\} \times S^{n-1}$. Any of the (bicollared) embeddings $r=R_{t}^{\prime \prime}, t \neq 0$, satisfies the conclusion of the corollary.

The 1-LCC Approximation Theorem will be proved by means of the Basic Lemma stated below. The proof of the Basic Lemma will occupy the main body of the paper. First we need a definition.

Definition. Suppose $R: S^{n-1} \rightarrow S^{n}$ is a cell-like embedding relation. Then we denote by $\pi_{R}: S^{n} \rightarrow S^{n} / R$ the identification projection with nondegenerate point preimages equal to the nondegenerate point image of R. Let $f: S^{1} \rightarrow S^{n}-$ $\operatorname{Im} R$ be a loop. Let $f^{*}: B^{2} \rightarrow S^{n} / R$ be a continuous function extending $\pi_{R} \cdot f$ such that $\operatorname{Im} f^{*}$ misses one of the two complementary domains of $\operatorname{Im}\left(\pi_{R} \cdot R\right)$ in S^{n} / R. (That $S^{n} / R-\operatorname{Im}\left(\pi_{R} \cdot R\right)$ has two components is a direct consequence of [C1, Theorems 27 and 29].) Then $F=\pi_{R}^{-1} \circ f^{*}: B^{2} \rightarrow S^{n}$ is called an R-disk bounded by f. In the proof of the 1-LCC Approximation Theorem below we shall prove that every loop $f: S^{1} \rightarrow S^{n}-\operatorname{Im} R$ near a point image of R bounds a "small" R-disk F : we define the R-diameter of a set $X \subset S^{n}$ by the equation R-diam $(X)=\inf \left\{\varepsilon>0 \mid\right.$ for some $\left.s \in S^{n-1}, X \subset \varepsilon \circ R \circ \varepsilon(s)\right\}$; then we define $R-\operatorname{diam}(F)=R$-diam $(\operatorname{Im} F)$.

Basic Lemma. Suppose $R: S^{n-1} \rightarrow S^{n}(n \geqq 5)$ is a cell-like embedding relation, $F: B^{2} \rightarrow S^{n}$ is an R-disk, and L and M are neighborhoods of R and F, respectively. Then L and M contain a cell-like embedding relation $R^{\prime \prime \prime}: S^{n-1} \rightarrow S^{n}$ and a continuous function $f^{\prime}: B^{2} \rightarrow S^{n}$ with disjoint images.

Proof of the 1-LCC Approximation Theorem. Let $f_{1}, f_{2}, \cdots: S^{1} \rightarrow S^{n}$ denote a countable set of simple closed curves dense in the space of loops in S^{n}.

Let $R_{0}=R$ and let $L_{0} \subset L$ be a compact neighborhood of R_{0}. Assume inductively that cell-like embedding relations $R_{0}, \cdots, R_{i-1}: S^{n-1} \rightarrow S^{n}$, compact neighborhoods $L_{0} \supset R_{0}, \cdots, L_{i-1} \supset R_{i-1}$ in $S^{n-1} \times S^{n}$ and continuous functions $g_{1}, \cdots, g_{i-1}: B^{2} \rightarrow S^{n}$ bounded by f_{1}, \cdots, f_{i-1} have been chosen satisfying the
following four conditions for $j=0, \cdots, i-1$:
$\left(1_{j}\right) \quad R_{j} \subset \operatorname{Int} L_{j} \subset L_{j} \subset(1 / j) \circ R_{j} \circ(1 / j) ;$
(2 j_{j}) L_{j} is slice trivial in L_{j-1} (i.e., if $x \in S^{n-1}$, then $L_{j}(x)$ contracts in (Int $\left.L_{j-1}\right)(x)$; see [C1, Lemma 16]);
(3_{j}) $L_{j}^{-1} \circ L_{j} \subset(1 / j)$; and
(4) If f_{j} bounds an R_{j-1}-disk and if
$\varepsilon_{j}=\inf \left\{R_{j-1}-\operatorname{diam}(F) \mid F\right.$ is an R_{j-1}-disk bounded by $\left.f_{j}\right\}$,
then $R_{j-1}-\operatorname{diam}\left(\operatorname{Im} \mathrm{g}_{j}\right)<2 \varepsilon_{j}$ and $\operatorname{Im} L_{j} \cap \operatorname{Im} g_{j}=\varnothing$.
Choose R_{i}, L_{i}, and g_{i} as follows. If f_{i} bounds an R_{i-1}-disk and ε_{i} is defined as above, it is an easy consequence of the Basic Lemma that there exists a cell-like embedding relation ($\left.R_{i}: S^{n-1} \rightarrow S^{n}\right) \subset \operatorname{Int} L_{i-1}$ and a continuous function $g_{i}: B^{2} \rightarrow S^{n}$ bounded by f_{i} such that $\operatorname{Im} R_{i} \cap \operatorname{Im} g_{i}=\varnothing$ while $R_{i-1}-\operatorname{diam}\left(\operatorname{Im} g_{i}\right)<2 \varepsilon_{i}$. There is a compact neighborhood L_{i} of R_{i} in (Int $\left.L_{i-1}\right) \cap$ $\left[(1 / i) \circ R_{i} \circ(1 / i)\right]$ by result (5) of Appendix I on continuous relations; thus (1_{i}) may be satisfied. Condition (2_{i}) may be satisfied by [C1, Lemma 16]. Since $R_{i}^{-1} \circ R_{i}=\mathrm{id} \subset(1 / i)$, condition (3_{i}) may be satisfied by the the Composition Theorem (result (6) of Appendix I). Since $\operatorname{Im} R_{i} \cap \operatorname{Im} g_{i}=\varnothing$, condition (4_{i}) may be satisfied.

If f_{i} bounds no R_{i-1}-disk, condition (4_{i}) becomes vacuous; one may take $R_{i}=R_{i-1}, g_{i}$ arbitrary, and L_{i} satisfying (1_{i}), (2_{i}), and (3_{i}) as above. This completes the inductive step.

Define ($R^{\prime}=\bigcap_{i=0}^{\infty} L_{i}$): $S^{n-1} \rightarrow S^{n}$. We claim that R^{\prime} is a 1 -LCC cell-like embedding relation (clearly contained in L).
(i) R^{\prime} is a proper relation; indeed R^{\prime} is an intersection of compact sets, hence compact, hence proper by result (5) of the appendix on continuous relations.
(ii) R^{\prime} is cell-like; indeed $R^{\prime}(x)\left(x \in S^{n-1}\right)$ has the basic neighborhood system $L_{0}(x) \supset L_{1}(x) \supset \cdots$ with $L_{i}(x)$ compact, nonempty, and contractible in $L_{i-1}(x)$ by condition (2_{i}); thus $R^{\prime}(x)$ is cell-like.
(iii) R^{\prime} is injective; indeed,

$$
\left(R^{\prime}\right)^{-1} \circ R^{\prime} \subset \bigcap_{i} L_{i}^{-1} \circ L_{i} \subset \bigcap_{i}(1 / i)=\mathrm{id}_{s^{n-1}} ;
$$

hence point images of R^{\prime} are disjoint.
(Conditions (i), (ii), and (iii) show R^{\prime} is a cell-like embedding relation.)
(iv) The following argument shows that R^{\prime} is 1-LCC:

Suppose a point $x \in S^{n-1}$ and a neighborhood U of $R^{\prime}(x)$ in S^{n} given. Our task is to find a neighborhood W of $R^{\prime}(x)$ in S^{n} such that each loop in $W-\operatorname{Im} R^{\prime}$ contracts in $U-\operatorname{Im} R^{\prime}$.

We first use the Composition Theorem to supply some estimates. Since $U \supset R^{\prime}(x)=\left(\mathrm{id} \circ R^{\prime} \circ \mathrm{id}\right) \circ\left(\mathrm{id} \circ R^{\prime-1} \circ \mathrm{id}\right) \circ\left(\mathrm{id} \circ R^{\prime} \circ \mathrm{id}\right)(x)$, it follows from the Composition Theorem that there is a positive number α and a positive integer I satisfying

$$
\begin{equation*}
U \supset\left(2 \alpha \circ L_{I} \circ 2 \alpha\right) \circ\left(2 \alpha \circ L_{I}^{-1} \circ 2 \alpha\right) \circ\left(\alpha \circ R^{\prime} \circ \alpha\right)(x) . \tag{1}
\end{equation*}
$$

Set $\beta=\alpha / 2$ and choose a positive integer $J>2 / \alpha$. Then $i>J$ implies

$$
\begin{align*}
\beta \circ R^{\prime} \circ \beta(x) & \subset(\alpha / 2) \circ L_{i-1} \circ(\alpha / 2)(x) \tag{2}\\
& \subset(\alpha / 2) \circ\left(\alpha / 2 \circ R_{i-1} \circ \alpha / 2\right) \circ(\alpha / 2)(x) \text { by }\left(1_{i-1}\right) \\
& =\alpha \circ R_{i-1} \circ \alpha(x) .
\end{align*}
$$

Having chosen α, β, I, and J, we may take an ($n-1$)-cell neighborhood D of x in $\beta(x)$, a compact neighborhood V of $R^{\prime}(x)$ in $\beta \circ R^{\prime} \circ \beta(x)$ intersecting Im R^{\prime} only in $R^{\prime}(\operatorname{Int} D)$, and a compact neighborhood W of $R^{\prime}(x)$ which contracts in V (recall that $R^{\prime}(x)$ is cell-like). Then we shall show that each loop $f: S^{1} \rightarrow S^{n}$ in $W-\operatorname{Im} R^{\prime}$ contracts in $U-\operatorname{Im} R^{\prime}$.

Pick $K>\operatorname{Max}\{I, J\}$ so large that if $i>K$, then

$$
\begin{gather*}
R_{i-1}(D) \subset \beta R^{\prime} \beta(x), \tag{3}\\
R_{i-1}\left(S^{n-1}-\operatorname{Int} D\right) \cap V=\varnothing, \quad \text { and } \tag{4}\\
\operatorname{Im} f \cap \operatorname{Im} R_{i-1}=\varnothing \tag{5}
\end{gather*}
$$

Pick $i>K$ such that the $\operatorname{loop} f_{i}$ is homotopic to f in $W-\operatorname{Im}\left(R^{\prime} \cup R_{i-1}\right)$ (recall (5)). We shall show that $g_{i}: B^{2} \rightarrow S^{n}$ has image in $U-\operatorname{Im} R^{\prime}$. This will complete the proof.

Since W contracts in V, there is a continuous extension $g: B^{2} \rightarrow V$ of f_{i}. Let $\pi=\pi_{R_{i-1}}: S^{n} \rightarrow S^{n} / R_{i-1}$ and identify S^{n-1} with $\operatorname{Im}\left(\pi \circ R_{i-1}\right)$ via the embedding $\pi \circ R_{i-1}$. The set $\pi \circ f_{i}\left(S^{1}\right)$ lies in one of the two components of ($S^{n} /$ $\left.R_{i-1}\right)-S^{n-1}$, and the set $\pi \circ g\left(B^{2}\right)$ intersects S^{n-1} only in the $(n-1)$-cell $\pi \circ R_{i-1}(D)$ (by (4)). By the Tietze Extension Theorem, there is a continuous function $f^{*}: B^{2} \rightarrow S^{n} / R_{i-1}$ extending $\pi \circ f_{i}$ whose image lies in $\pi \circ g\left(B^{2}\right) \cup$ $\pi \circ R_{i-1}(D)$ and misses one component of $\left(S^{n} / R_{i-1}\right)-S^{n-1}$. Set $F=\pi^{-1} \circ f^{*}$.

The relation $F: B^{2} \rightarrow S^{n}$ is an R_{i-1} disk bounded by f_{i}. Since $\operatorname{Im} f^{*} \subset$ $\pi \circ g\left(B^{2}\right) \cup \pi \circ R_{i-1}(D)$, it follows that $\operatorname{Im} F \subset g\left(B^{2}\right) \cup R_{i-1}(D) \subset \beta \circ R^{\prime} \circ \beta(x)$ (by (3) and the choice of $V \supset g\left(B^{2}\right)$). But $\beta \circ R^{\prime} \circ \beta(x) \subset \alpha \circ R_{i-1} \circ \alpha(x)$ (by (2)). Hence g_{i} is a singular disk in $S^{n}-L_{i}$ bounded by f_{i} and lying, for some $y \in S^{n-1}$, in the set $2 \alpha \circ R_{i-1} \circ 2 \alpha(y)$ (by (4_{i})). It remains only to show that $2 \alpha \circ R_{i-1}$ 。 $2 \alpha(y) \subset U$.

Since $\varnothing \neq \operatorname{Im} f_{i} \subset \alpha \circ R^{\prime} \circ \alpha(x) \cap 2 \alpha \circ R_{i-1} \circ 2 \alpha(y)$, it follows that

$$
2 \alpha \circ R_{i-1} \circ 2 \alpha(y) \subset\left(2 \alpha \circ R_{i-1} \circ 2 \alpha\right)\left[\left(2 \alpha \circ R_{i-1}^{-1} \circ 2 \alpha\right) \circ\left(\alpha \circ R^{\prime} \circ \alpha\right)(x)\right] .
$$

But this latter set lies in U (by (1)).
Our proof that R^{\prime} is 1 -LCC is complete.

4. Štan'ko's unknotting technique

We shall eventually prove the Basic Lemma by Štan'ko's unknotting technique. Linked 1-handles in Euclidean 3 -space E^{3} can be unlinked simply by pulling one through the other. Stan'ko's basic move is the product extension to high dimensions of this simple unlinking procedure. In high dimensions, however, the basic move may introduce singularities in the space being unknotted. Stan'ko's beautiful accomplishment was the realization that the singularities can often be removed by a meshed sequence of basic moves, each succeeding move removing the singularities introduced by its predecessor, all singularities disappearing in the limit.

In this section we first describe the basic Stan'ko move abstractly without direct reference to the Basic Lemma in order to highlight the simplicity of the technique and to clarify the manner in which singularities arise in high dimensions. We then describe the structures (pinched disks, Štan'ko complexes) which guide Štan'ko moves. Finally, in Section 5 we put everything together in a proof of the Basic Lemma.
4.1. The basic Štan'ko move. The basic move is described in terms of a special homeomorphism of the n-cube I^{n} :

Certain subsets of I^{2} are of particular importance to us (Figure 1).

Figure 1

$$
\begin{aligned}
& A=[-2,2] \times[-2,2]-\left(-\frac{1}{2},-1\right) \times\left(-\frac{1}{2}, \frac{1}{2}\right) \subset I^{2} \\
& B=\left[-\frac{1}{2}, \frac{1}{2}\right] \times\left[-\frac{1}{2}, \frac{1}{2}\right] \subset I^{2}
\end{aligned}
$$

$$
\begin{aligned}
C & =[5 / 4,7 / 4] \times[-2,2] \subset I^{2} ; \\
D & =[-1,1] \times[-1,1] \subset I^{2} ; \\
e & =\left[\frac{1}{2} \times\{0\}\right] \subset I^{2} .
\end{aligned}
$$

Now let $n \geqq 3$ and consider the sets $\mathfrak{Q}=A \times I^{n-2}, \mathcal{B}=B \times I^{n-2}, \mathcal{C}=$ $C \times[-1,1] \times I^{n-3}, \mathscr{D}=D \times\{0\} \subset I^{n}$, and $e \times I=e \times I \times\{0\} \subset I^{n}$. These five sets will play special roles in our constructions. In the case $n=3, \mathfrak{B}$ and \mathfrak{C} may be viewed as disjoint 1 -handles cutting through I^{3} perpendicular to each other. The basic Stan'ko move restricted to I^{3} will simply pull $C \times[-1,1]=\mathcal{C} \cap I^{3}$ through $B \times I=\mathscr{B} \cap I^{3}$.

We now describe the special homeomorphism ($\Phi=\Phi_{n}$): $I^{n} \rightarrow I^{n}$, fixed on $\mathrm{Bd} I^{n}$, alluded to above; it shifts the set \mathcal{C} relative to the set \mathscr{B} in the following manner. Let $\Phi: I \times[0,1] \rightarrow I$ be the isotopy of I which, for fixed $t \in[0,1]$, fixes -2 and 2 , shifts the segment $[5 / 4,7 / 4] 3 t$ units to the left, and is linear on the segments $[-2,5 / 4]$ and $[7 / 4,2]$. Then, for $s \in I, t \in I^{n-1}$, $(s, t) \in I^{n}$, we define

$$
\Phi_{n}(s, t)=\left\{\begin{array}{lll}
(\phi(s, 1), t) & \text { if } & |t| \in[0,1] \\
(\phi(s, 2-|t|), t) & \text { if } & |t| \in[1,2] .
\end{array}\right.
$$

The case $n=2$ is pictured in Figure 2. We note the following facts.

Figure 2

$$
\begin{equation*}
\Phi_{n}\left(C \times[-1,1] \times[-1,1]^{n-3}\right) \subset \Phi_{2}(C) \times[-1,1] \times I^{n-3} \subset I^{n}-\mathcal{B} \text { if } n \geqq 2 . \tag{4.1.1}
\end{equation*}
$$

$$
\begin{equation*}
\Phi_{n}(\mathcal{C}) \cap \mathscr{B} \neq \varnothing \quad \text { if } \quad n>3 . \tag{4.1.2}
\end{equation*}
$$

We describe the basic move in terms of Φ_{n} as follows. Suppose that Y is an n-manifold, X is a closed subset of $Y, f: I^{n-3} \rightarrow Y$ is an embedding, and $f^{-1}(X) \subset \mathfrak{B} \cup \mathcal{C}$. Then the continuous function $f^{*}: X \rightarrow Y$ defined by

$$
f^{*}(x)= \begin{cases}f \circ \Phi_{n} \circ f^{-1}(x) & \text { if } \quad x \in f(\mathcal{C}) \\ x & \text { otherwise }\end{cases}
$$

is a basic Stan'ko move. If $n \leqq 3$, then f^{*} is a re-embedding of X in Y because of (4.1.1). For $n>3$, the map f^{*} will, in general, not be injective because of (4.1.2). Nevertheless, in both cases the move may undo some selflinking in X.

Summarize the above information in a symbol (A, B, C, D, e) called a template and generalize all of the above via the (+) convention of (2.4) to obtain templates (+) and homeomorphisms $\Phi=\Phi_{n}: \mathfrak{Q} \cup \mathscr{B} \rightarrow \mathfrak{Q} \cup \mathscr{B}$ acting on each component of $\mathfrak{Q} \cup \mathscr{B}$ just as described above.

We now turn to the structures that will guide basic moves in a manifold Y.
4.2. Pinched disks and Štan'ko complexes. Let D denote an oriented PL disk; let $L_{1}, \cdots, L_{k}, R_{1}, \cdots, R_{k}(k \geqq 0)$ denote compatibly oriented disjoint PL subdisks of Int D irreducibly joined in pairs by disjoint PL ares J_{1}, \cdots, J_{k} in Int D, Bd $J_{j} \subset L_{j} \cup R_{j}$; let $f: L_{1} \cup \cdots \cup L_{k} \rightarrow R_{1} \cup \cdots \cup R_{k}$ denote an orientation reversing homeomorphism which takes $L_{j} \cap J_{j}$ to $R_{j} \cap J_{j}$. The identification space $D^{*}=D / f$ is called a pinched disk. Set $E=L_{1} \cup \cdots \cup$ $L_{k} \cup R_{1} \cup \cdots \cup R_{k}$ and $J=J_{1} \cup \cdots \cup J_{k}$. Compile the above information into a delta symbol $\Delta=(D, E, J)$ with identification map (*): $D \rightarrow D^{*}$ understood (Figure 3).

Figure 3
Generalize via the (+) convention to obtain pinched disks $(+) D^{*}$ and delta symbols $(+) \Delta=(D, E, J)$ (projection (*): $D \rightarrow D^{*}$ understood).

A branching system is a system $(\Delta, g): \Delta_{0} \xrightarrow{g_{0}} \Delta_{1} \xrightarrow{g_{1}} \Delta_{2} \rightarrow \cdots$ where each Δ_{i} is a delta symbol (+) $\Delta_{i}=\left(D_{i}, E_{i}, J_{i}\right)$ and each g_{i} is a PL homeomorphism $g_{i}: J_{i}^{*} \rightarrow \operatorname{Bd} D_{i+1}^{*}$. The identification space $C(\Delta, g)=D_{0}^{*} \cup_{g_{0}} D_{1}^{*} \cup_{g_{1}} D_{2}^{*} \cup \cdots$ is called a Stan'ko complex. We generally identify each D_{i}^{*} with its image in $C(\Delta, g)$. Then we may take $J_{i}^{*}=\operatorname{Bd} D_{i+1}^{*}$ and suppress the maps g_{i}. Thus we write $\Delta=(\Delta, g)$ and $C(\Delta)=C(\Delta, g)$. We combine the identifications $\left.{ }^{*}\right): D_{i} \rightarrow D_{i}^{*}$ into a single map

$$
\left(^{*}\right): D_{0} \cup D_{1} \cup \cdots \text { (disjoint union) } \longrightarrow D_{0}^{*} \cup D_{1}^{*} \cup \cdots(=C(\Delta)) .
$$

Figure 4. Branching system.

Figure 5. Štan'ko complex.

5. Proof of the Basic Lemma

5.1. Setting. We assume throughout Section 5 the hypotheses of the Basic Lemma and related notations as follows (Figure 6):

Figure 6. Setting for the Basic Lemma.
$R: S^{n-1} \rightarrow S^{n}$, a cell-like embedding relation with associated projection $\operatorname{map} \pi=\pi_{R}: S^{n} \rightarrow S^{n} / R$;
($F=\pi^{-1} \circ f^{*}$): $B^{2} \rightarrow S^{n}$, an R-disk with $f^{*}: B^{2} \rightarrow S^{n} / R$ a continuous function and with $F \mid \operatorname{Bd} B^{2}$ a PL embedding;
L, a neighborhood of R in $S^{n-1} \times S^{n}$;
M, a neighborhood of F in $B^{2} \times S^{n}$.
We identify S^{n-1} with $\operatorname{Im}(\pi \circ R)$ via the homeomorphism $\pi \circ R: S^{n-1} \rightarrow$ $\operatorname{Im}(\pi \circ R)$ so that $R=\pi^{-1} \mid S^{n-1}$ and fix the notation
W, the component of $\left(S^{n} / R\right)-S^{n-1}$ containing $f^{*}\left(S^{1}\right)$;
L_{0}, a neighborhood of π^{-1} in $\left(S^{n} / R\right) \times S^{n}$ whose restriction to S^{n-1} is L.
Looking ahead to calculations which will be made at the end of the proof, we take care of certain essential estimates at once by the Composition Theorem: since

$$
\left(\mathrm{id}_{S^{n}} \circ \mathrm{id}_{S^{n}} \circ \pi^{-1} \circ \mathrm{id}_{S^{n} / R^{\circ}} \pi \circ \mathrm{id}_{S^{n}} \circ \mathrm{id}_{S^{n}}\right) \circ \mathrm{id}_{S^{n}} \circ \pi^{-1}=\pi^{-1} \subset L_{0}
$$

and $\mathrm{id}_{S^{n}} \circ \pi^{-1} \circ \mathrm{id}_{S^{n} / R} \circ f^{*}=F \subset M$, there is an $\varepsilon>0$ such that

$$
\begin{equation*}
\left(\varepsilon \circ \varepsilon \circ \pi^{-1} \circ 2 \varepsilon \circ \pi \circ \varepsilon \circ \varepsilon\right) \circ \varepsilon \circ \pi^{-1} \subset L_{0} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon \circ \pi^{-1} \circ \varepsilon \circ f^{*} \subset M \tag{2}
\end{equation*}
$$

We prove the Basic Lemma in three major steps outlined as follows.
Step 1. We associate with the above setting a Štan'ko complex $C(\Delta)$ and a special continuous function $h: C(\Delta) \rightarrow S^{n} / R$ covered by a PL injective function $h^{\prime}: C(\Delta) \rightarrow S^{n}$ (Mapping Theorem and its Addendum).

Step 2. We adjust R so that the map h^{\prime} of Step 1 may be replaced by a PL embedding $h^{\prime \prime}: C(\Delta) \rightarrow S^{n}$ (Embedding Theorem).

Step 3. We use the embedded Štan'ko complex $h^{\prime \prime} C(\Delta)$ to guide an infinite Štan'ko move which proves the Basic Lemma.
5.2. Mapping Theorem. There exist a branching system $\Delta: \Delta_{0} \rightarrow \Delta_{1} \rightarrow$ $\Delta_{2} \rightarrow \cdots$, with D_{0} of $\Delta_{\mathrm{c}}=\left(D_{0}, E_{0}, J_{0}\right)$ equal to B^{2}, and a continuous function $h: C(\Delta) \rightarrow S^{n} / R$ satisfying the follows conditions:

$$
\begin{equation*}
h\left[C(\Delta)-\operatorname{Int}\left(E_{0}^{*} \cup E_{1}^{*} \cup \cdots\right)\right] \subset W \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
d\left(h \circ\left(^{*}\right) \mid D_{0}, f^{*}\right)<\varepsilon \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
h\left[D_{i}^{*} \cup D_{i+1}^{*} \cup D_{i+2}^{*} \cup \cdots\right] \subset(\varepsilon / i)\left(S^{n-1}\right) . \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
h \circ(*)\left|\operatorname{Bd} D_{0}=f^{*}\right|\left(\operatorname{Bd} D_{0}=\operatorname{Bd} B^{2}\right) . \tag{4}
\end{equation*}
$$

Diam $h\left(P_{i}\right)<\varepsilon / i$ for each component P_{i} of $D_{i}^{*} \cup E_{i-1}^{*}$.
AdDendum. The map $h: C(\Delta) \rightarrow S^{n} / R$ may be chosen so that there is a

PL injective map $h^{\prime}: C(\Delta) \rightarrow S^{n}$ with $\pi \circ h^{\prime}=h$.
The Mapping Theorem is the iterative consequence of the following simple lemma.

Lemma. Suppose D is a disk, $f:(D, \operatorname{Bd} D) \rightarrow(\mathrm{Cl} W, W)$ is a map of pairs, and δ is a positive number. Then there exist a delta symbol $\Delta=$ (D, E, J) and a continuous function $h: D^{*} \rightarrow \mathrm{Cl} W$ satisfying the following conditions:

$$
\begin{gather*}
h\left[D^{*}-\operatorname{Int} E^{*}\right] \subset W . \\
h\left(E^{*}\right) \subset \delta\left(S^{n-1}\right) . \\
d\left(h \circ\left(^{*}\right)|D, \quad f| D\right)<\delta . \\
h \circ(*)|\operatorname{Bd} D=f| \operatorname{Bd} D .
\end{gather*}
$$

Diam $h(P)<\delta \quad$ for each component P of E^{*} or J^{*}.
Proof of lemma. The set W is $0-\mathrm{lc}$ and $1-\mathrm{lc}$ [C1, Theorem 34]; the set $\mathrm{Cl} W=S \cup W$ is 1 -ULC (see the proof that R^{\prime} is 1-LCC in the proof of the 1-LCC Approximation Theorem, Section 3). Hence we may choose positive numbers $\alpha<\beta<\gamma<\delta / 4$ such that
(i) γ loops in $\mathrm{Cl} W$ bound singular $\delta / 4$-disks in $\mathrm{Cl} W$ (Cl W is 1-ULC);
(ii) β loops in W bound orientable, singular γ-disks-with-handles in W (W is 1 -ulc);
(iii) two points within α of one another in W are joined by $\beta / 2$-arcs in W (W is 0 -ule).

Triangulate D with mesh so small that the image under f of each simplex has diameter less than α. Let $D^{(0)}, D^{(1)}$, and $D^{(2)}$ denote the skeletons of the triangulation.

Since $\operatorname{Im} f \subset \mathrm{Cl} W$, we may define $h\left|\left|D^{(0)}\right|:\left|D^{(0)}\right| \rightarrow W\right.$ equal to f on $\left|D^{0}\right| \cap \operatorname{Bd} D$ and so near $f\left|\left|D^{0}\right|\right.$ that vertices of the same simplex have images in W within α of one another and within α of their image under f.

By (iii), we may extend $h\left|\left|D^{\circ}\right|\right.$ to $\left.h\right|\left|D^{(1)}\right|:\left|D^{(1)}\right| \rightarrow W$ equal to f on $\operatorname{Bd} D$ in such a manner that the image of each 1 -simplex has diameter less than $\beta / 2$.

By (ii), for each $\sigma \in D^{(2)}$ there exist an orientable disk-with-handles H_{σ} bounded by Bd σ and a continuous extension $h \mid H_{\sigma}: H_{\sigma} \rightarrow W$ of $h \mid \operatorname{Bd} \sigma$ mapping H_{σ} to a set of diameter less than γ.

In the interior of each H_{σ} identify complete sets J_{σ} and K_{σ} of handle curves: J_{o} (resp., K_{o}) is a finite disjoint union of simple closed curves, each meeting K_{σ} (resp., J_{σ}) transversely in a single point, J_{σ} and K_{σ} maximal.

By (i), there exist for each $\sigma \in D^{(2)}$ a finite disjoint union E_{σ} of disks having boundary K_{σ} and a continuous extension $h \mid E_{\sigma}: E_{\sigma} \rightarrow \mathrm{Cl} W$ of $h \mid K_{\sigma}$ taking each component of E_{σ} to a set of diameter less than δ.

Define

$$
D^{*}=\left|D^{1}\right| \cup \bigcup_{o}\left(H_{o} \cup E_{o}\right), \quad E^{*}=\bigcup_{o} E_{o}, \quad J^{*}=\bigcup_{o} J_{\sigma} .
$$

Then D^{*} is the pinched disk of a delta symbol $\Delta=(D, E, J),\left(^{*}\right)| | D^{(1)} \mid=\mathrm{id}$, $\left(^{*}\right): \sigma \rightarrow H_{\sigma} \cup E_{\sigma}$. Then h clearly satisfies (1^{\prime}), $\left(3^{\prime}\right),\left(4^{\prime}\right)$, and ($\left.5^{\prime}\right)$. If (2^{\prime}) is not already satisfied, it can only be because some component of $E^{*} \cup J^{*}$ has image missing $S^{n-1}=\mathrm{Bd} W$. The preimage of this component in $E \cup J$ may simply be deleted from E and J.

Proof of the Mapping Theorem. Choose a sequence $\delta_{0}>\delta_{1}>\delta_{2}>\cdots$ of positive numbers such that
(i) $4 \delta_{2}<\varepsilon / i$ for $i \geqq 0$.
(ii) δ_{i+1} loops in $\mathrm{Cl} W$ bound singular δ_{i} disks in $\mathrm{Cl} W$ ($\mathrm{Cl} W$ is 1-ULC) for $i \geqq 0$.

By the lemma, there exist a delta symbol $\Delta_{0}=\left(D_{0}, E_{0}, J_{0}\right), D_{0}=B^{2}$, and a continuous function $h \mid D_{0}^{*}: D_{0}^{*} \rightarrow \mathrm{Cl} W$ satisfying, for $j=0$ and $f_{j}=f \mid D_{0}$, the conditions
(1_{j}) $h\left[D_{j}^{*}-\operatorname{Int} E_{j}^{*}\right] \subset W$,
$\left(2_{j}\right) h\left(E_{j}^{*}\right) \subset \delta_{j+1}\left(S^{n-1}\right)$,
($\left.\left.3_{j}\right) d\left[h \circ{ }^{*}\right) \mid D_{j}, f_{j}\right]<\delta_{j+1}$,
$\left(4_{j}\right) h \circ\left({ }^{*}\right)\left|\operatorname{Bd} D_{j}=f_{j}\right| \operatorname{Bd} D_{j}$, and
(5_{j}) $\operatorname{Diam} h(P)<\delta_{j+2}$ for each component P of E_{j}^{*} or J_{j}^{*}.
Assume inductively that $\Delta_{0} \rightarrow \cdots \rightarrow \Delta_{i-1}, f_{j}: D_{j} \rightarrow \mathrm{Cl} W$, and $h \mid D_{0}^{*} \cup \cdots \cup D_{i-1}^{*}$ have been chosen satisfying $\left(1_{j}\right)-\left(5_{j}\right)$ for each $j \in\{0, \cdots$, $i-1\}$.

For each component J of J_{i-1}^{*}, let $D(J)$ be a disk with boundary J. By $\left(5_{i-1}\right)$, $\operatorname{Diam} h J<\delta_{i+1}$. By (ii), there is a continuous extension $f_{i} \mid D(J): D(J) \rightarrow$ $\mathrm{Cl} W$ having image of diameter less than δ_{i}. Let $D_{i}=\mathrm{U}_{J} D(J)$ and $\left[f_{i}=\bigcup_{J} f_{i} \mid D(J)\right]: D_{i} \rightarrow \mathrm{Cl} W$. By the lemma, there exist a delta symbol $(+) \Delta_{i}=\left(D_{i}, E_{i}, J_{i}\right)$ and a continuous function $h \mid D_{i}^{*}: D_{i}^{*} \rightarrow \mathrm{Cl} W$ satisfying $\left(1_{i}\right)-\left(5_{i}\right)$. This completes the inductive construction of

$$
\Delta: \Delta_{0} \longrightarrow \Delta_{1} \longrightarrow \Delta_{2} \longrightarrow \cdots \quad \text { and } \quad h: C(\Delta) \longrightarrow S^{n} / R .
$$

Conditions (1), (3), and (4) of the Mapping Theorem are obviously satisfied. For each component $P \cup Q$ of $D_{i}^{*} \cup E_{i-1}^{*}(i \geqq 1), P \subset D_{i}^{*}, Q \subset E_{i-1}^{*}$, we have
$\operatorname{Diam} h P \leqq 2 d\left(h \circ\left(^{*}\right)\left|P, f_{i}\right| P\right)+\operatorname{Diam} f_{i}(P)<3 \delta_{i} \quad$ and $\operatorname{Diam} h Q<\delta_{i+1} ;$
thus (5) is satisfied. Also, for $i \geqq 1$,

$$
d\left(h(P), S^{n-1}\right) \leqq d\left(h(P), h\left(E_{i-1}^{*}\right)\right)+\delta_{i}\left(\text { by }\left(2_{i-1}\right)\right)=\delta_{i}
$$

since $h(P) \cap h\left(E_{i-1}^{*}\right) \neq \varnothing$. Thus $h(P) \subset 4 \delta_{i}\left(S^{n-1}\right) \subset(\varepsilon / i)\left(S^{n-1}\right)$ and (2) is satisfied.
Proof of the addendum. Suppose we have Δ and h satisfying the five conclusions of the Mapping Theorem with $\pi^{-1} \circ h\left|\mathrm{Bd} B^{2}=F\right| \mathrm{Bd} B^{2}$ a PL embedding. We now show how to adjust h so as to satisfy the Addendum.

There is a closed neighborhood N of h in $C(\Delta) \times S^{n} / R$ such that if $h^{\prime \prime}: C(\Delta) \rightarrow S^{n} / R$ lies in N, is continuous, and equals h on $\operatorname{Bd} D_{0}$, then $h^{\prime \prime}$ satisfies the same five conclusions.

Since $\pi \circ\left(\pi^{-1} \circ h\right)=h \subset N$, it follows from the corollary to the Composition Theorem (result (7) of the appendix on continuous relations) that there is a neighborhood N^{\prime} of $\pi^{-1} \circ h$ in $C(\Delta) \times S^{n}$ such that $\pi \circ N^{\prime} \subset N$. Since $\pi^{-1} \circ h$ is cell-like, the Continuous Approximation Theorem (result (8) of the same appendix) implies the existence of a continuous function ($\left.h^{\prime}: C(\Delta) \rightarrow S^{n}\right) \subset N^{\prime}$ with $\pi \circ h^{\prime}\left|\operatorname{Bd} B^{2}=h\right| \operatorname{Bd} B^{2}$. We may adjust h^{\prime} in N^{\prime} so as to be PL and in general position. Since $n \geqq 5, h^{\prime}$ is injective. We replace h by $\pi \circ h^{\prime}$.
5.3. Embedding Theorem. Let Δ, h, and h^{\prime} be as in the conclusion of the Mapping Theorem and its addendum. Then the ε neighborhood of $\mathrm{id}_{S^{n}}$ contains a cell-like embedding relation $R^{\prime}: S^{n} \rightarrow S^{n}$ such that there is a PL embedding $h^{\prime \prime}: C(\Delta) \rightarrow S^{n}$ with $R^{\prime-1} \circ h^{\prime \prime}=h^{\prime}$. (Thus $\pi \circ R^{\prime-1} \circ h^{\prime \prime}=h$.)

Remark. R. J. Daverman [D1, Example 13.3] has described crumpled n-cells C in S^{n} (all $n \geqq 4$) and disjoint PL simple closed curves J_{1} and J_{2} in Int C such that if D is a singular disk in C bounded by J_{1} and E is a singular disk in S^{n} bounded by J_{2}, then $D \cap E \neq \varnothing$. Let $F \mid \operatorname{Bd} B^{2}: \operatorname{Bd} B^{2} \rightarrow J_{1}$, and let $R: S^{n-1} \rightarrow S^{n}$ take S^{n-1} homeomorphically only Bd C. Construct Δ, h, and h^{\prime} as in the Mapping Theorem and its addendum with J_{2} bounding a component of $h^{\prime}\left(E_{i}^{*}\right)$ for some i. Then it is easy to see that h^{\prime} cannot be an embedding. This is the technical difficulty that forced consideration of cell-like relations in this paper. It is not inconceivable that the difficulties can be overcome by other means in this special case where R is a function. However, if S^{n-1} is replaced by a generalized ($n-1$)-manifold or if R is not a function but only a cell-like embedding relation, the difficulties multiply and a technique like the Embedding Theorem is almost certainly necessary.

Proof of the Embedding Theorem. Because of conditions (1) and (2) of the Mapping Theorem, $\left(h^{\prime}\right)^{-1} \mid h^{\prime}[C(\Delta)]$ is already continuous except possibly at points of $h^{\prime}\left[\operatorname{Int}\left(E_{0}^{*} \cup E_{1}^{*} \cup \cdots\right)\right]$. We plan simply to split S^{n} apart near $h^{\prime}\left(\operatorname{Int} E_{0}^{*}\right)$ by a cell-like relation so as to provide enough room to isolate
$h^{\prime \prime}\left(\right.$ Int $\left.E_{0}^{*}\right)$ from $h^{\prime \prime}\left[C(\Delta)-\operatorname{Int} E_{0}^{*}\right]$. This will make $\left(h^{\prime \prime}\right)^{-1} \mid h^{\prime \prime}[C(\Delta)]$ continuous at points of $h^{\prime \prime}\left(\operatorname{Int} E_{0}^{*}\right)$. An iteration of the splitting will serve the same purpose for $E_{1}^{*}, E_{2}^{*}, \cdots$ and complete the proof of the Embedding Theorem.

We first describe the basic splitting move as the inverse of a simple collapsing map. Define $r: I^{2} \rightarrow[0,1]$ by the formula $r(x)=1 / 4 d\left(x, \operatorname{Bd} I^{2}\right) \in$ [0, 1/2]. Define

$$
I^{2} \times_{r} I^{n-2}=\bigcup\left\{x \times\left[r(x) \cdot I^{n-2}\right] \mid x \in I^{2}\right\} \subset I^{2} \times I^{n-2}=I^{n} .
$$

Let $\psi: I^{2} \times{ }_{r} I^{n-2} \rightarrow\left(I^{2} \times 0=I^{2}\right)$ denote projection onto the first factor. If Q is any neighborhood of $\left(\psi^{-1} \circ \psi\right) \cup \mathrm{id}_{I^{n}}$ in $I^{n} \times I^{n}$, then Q contains a PL map $\Psi: I^{n} \rightarrow I^{n}$ fixed on $\operatorname{Bd} I^{n}$, extending ψ, and having as nondegenerate point preimages precisely the nondegenerate point preimages of ψ. The relation Ψ^{-1} is called a basic splitting relation.

For each component E of $h^{\prime}\left(E_{0}^{*}\right)$ there is a PL embedding $P_{E}: I^{2} \times I^{n-2} \rightarrow$ S^{n} taking $I^{2} \times\{0\}$ onto E and taking each fiber $x \times I^{n-2}$ onto a very small set. The embeddings $\left\{P_{E} \mid E \subset h^{\prime}\left(E_{0}^{*}\right)\right\}$ may be chosen with disjoint images. Define $R_{0}: S^{n} \rightarrow S^{n}$ splitting S^{n} along $h^{\prime}\left(E_{0}^{*}\right)$ by the formula

$$
R_{0}(x)=\left\{\begin{array}{lll}
P_{E} \Psi^{-1} P_{E}^{-1}(x) & \text { if } & x \in \operatorname{Im} P_{E} \\
x & \text { if } & x \notin \bigcup_{E} \operatorname{Im} P_{E} .
\end{array}\right.
$$

Clearly R_{0} may be chosen in the neighborhood $N_{-1}=\varepsilon$ of id: $S^{n} \rightarrow S^{n}$. Define $h_{0}: C(\Delta) \rightarrow S^{n}$ by the formula

$$
h_{0}(x)=\left\{\begin{array}{lll}
h^{\prime}(x) & \text { if } & x \in E_{0}^{*} \\
R_{0} \circ h^{\prime}(x) & \text { if } & x \notin E_{0}^{*}
\end{array}\right.
$$

Then h_{0} is PL and injective, $R_{0}^{-1} \circ h_{0}=h^{\prime}$, and $h_{0}^{-1} \mid h_{0}[C(\Delta)]$ is continuous at the points of $h_{0}\left(E_{0}^{*}\right)$. Choose a compact neighborhood N_{0} of R_{0} in Int N_{-1}, slice trivial in Int $N_{-1}, N_{0}^{-1} \circ N_{0} \subset(1)$ (Composition Theorem and [C1, Lemma 16]).

In the same manner choose $R_{1}: S^{n} \rightarrow S^{n}$ splitting S^{n} along $h_{0}\left(E_{1}^{*}\right)$, fixing $R_{0} \circ h^{\prime}\left(D_{0}^{*}\right)$, and satisfying $R_{1} \circ R_{0} \subset$ Int N_{0}. Define $h_{1}: C(\Delta) \rightarrow S^{n}$ by

$$
h_{1}(x)=\left\{\begin{array}{lll}
h_{0}(x) & \text { if } & x \in E_{1}^{*} \\
R_{1} \circ h_{0}(x) & \text { if } & x \notin E_{1}^{*}
\end{array}\right.
$$

Choose a compact neighborhood N_{1} of $R_{1} \circ R_{0}$ in Int N_{0}, slice trivial in Int N_{0}, $N_{1}^{-1} \circ N_{1} \subset(1 / 2)$.

In general, let R_{i} split S^{n} along $h_{i-1}\left(E_{i}^{*}\right)$, fixing $R_{i-1} \circ \cdots \circ R_{0} \circ h^{\prime}\left(D_{i-1}^{*}\right)$, and satisfying $R_{i} \circ R_{i-1} \circ \cdots \circ R_{0} \subset$ Int N_{i-1}. Define $h_{i}: C(\Delta) \rightarrow S^{n}$ by

$$
h_{i}(x)=\left\{\begin{array}{lll}
h_{i-1}(x) & \text { if } & x \in E_{i}^{*} \\
R_{i} \circ h_{i-1}(x) & \text { if } & x \notin E_{i}^{*} .
\end{array}\right.
$$

Choose a compact neighborhood N_{i} of $R_{i} \circ \cdots \circ R_{0}$ in Int N_{i-1}, slice trivial in Int $N_{i-1}, N_{i}^{-1} \circ N_{i} \subset 1 /(i+1)$.

Define [$R^{\prime}=\bigcap N_{i}$]: $S^{n} \rightarrow S^{n}$. As in the proof of the 1-LCC Approximation Theorem (Section 3) $R^{\prime}: S^{n} \rightarrow S^{n}$ is a cell-like embedding relation in ε. Define $h^{\prime \prime}=\mathbf{U}_{i}\left(h_{i} \mid D_{i}^{*}\right): C(\Delta) \rightarrow S^{n}$. That $h^{\prime \prime}$ is the embedding required by the Embedding Theorem is easily checked.
5.4. The infinite Štan'ko move. We consider Δ, h, and h^{\prime} as in the conclusion of the Mapping Theorem and its addendum. We take the relation R^{\prime} and the embedding $h^{\prime \prime}$ from the conclusion of the Embedding Theorem.

We identify $C(\Delta)$ with $h^{\prime \prime} C(\Delta)$ via the homeomorphism $h^{\prime \prime}$. We recall the combined identification map $\left(^{*}\right):\left[D_{0} \cup D_{1} \cup \cdots\right.$ (disjoint union) $] \rightarrow\left[D_{0}^{*} \cup\right.$ $\left.D_{1}^{*} \cup \cdots=C(\Delta)\right] \subset S^{n}$.

For each $i>0$ we identify D_{i} from the delta symbol (+) $\Delta_{i}=\left(D_{i}, E_{i}\right.$, J_{i}) with D_{i} from a template $(+)\left(A_{i}, B_{i}, C_{i}, D_{i}, e_{i}\right)$ in such a manner that

Figure 7. $\quad N_{i} \subset Y_{i} \times\{0\}$.
$E_{i} \cup J_{i} \subset \operatorname{Int} B_{i}$ and $\left(D_{i} \cap e_{i}\right)^{*}=D_{i}^{*} \cap E_{i-1}^{*} \subset C(\Delta) \subset S^{n}$. We suggest that the reader review Section 4.1 and in particular the sets $\mathscr{Q}_{i}, \mathscr{B}_{i}, \mathcal{C}_{i}, D_{i} \times\{0\}$, and $e_{i} \times I$ and the homeomorphism $\Phi_{n}: \mathbb{Q}_{i} \cup \mathfrak{B}_{i} \rightarrow \mathbb{Q}_{i} \cup \mathscr{B}_{i}$. (Figure 7.)

By the unknotting lemma of Sections 5,6 , there exist a regular neighborhood N_{i} of $D_{i}^{*} \cup E_{i-1}^{*}$ in $C(\Delta)$, a PL 3 -manifold Y_{i}, and a PL product $Y_{i} \times I^{n-3}$ in S^{n} such that $N_{i} \subset Y_{i} \subset Y_{i} \times\{0\} \subset Y_{i} \times I^{n-3} \subset S^{n}$. For each i we use the sets $D_{i}^{*} \cup E_{i-1}^{*} \subset N_{i}$ and the product structure $Y_{i} \times I^{n-3}$ to construct an embedding $\alpha_{i}:\left(Q_{i} \cup \mathscr{B}_{i}\right) \rightarrow S^{n}$ suitable for use in a basic Štan'ko move. The embedding is constructed in three steps.

Step 1. Constructing $\alpha_{i} \mid\left(A_{i} \times\{0\}\right) \cup\left(e_{i} \times I\right)$. Define $\alpha_{i} \mid\left(A_{i} \cap D_{i}\right) \times\{0\}=$ $\left.{ }^{*}\right) \mid\left(A_{i} \cap D_{i}\right) \times\{0\}$. Since $\left(D_{i} \cap e_{i}\right)^{*}=D_{i}^{*} \cap E_{i-1}^{*}$, we may extend α_{i} to take $e_{i} \times I$ onto E_{i-1}^{*} with

$$
\operatorname{Im}\left(R^{\prime} \circ R\right) \cap E_{i-1}^{*} \subset \alpha_{i}[(5 / 4,7 / 4) \times(-1,1)] \subset \alpha_{i}\left(e_{i} \times I\right)
$$

This embedding may in turn be extended to the remainder of $A_{i} \times\{0\}$ so as to take $A_{i}-\left(D_{i} \cup e_{i}\right)$ into the ε / i-neighborhood (component by component) of $D_{i}^{*} \cup E_{i-1}^{*}$ in $Y_{i}-C(\Delta)$ with

$$
\alpha_{i}\left(A_{i} \times\{0\}\right) \cap \operatorname{Im}\left(R^{\prime} \circ R\right) \subset \alpha_{i}[(5 / 4,7 / 4) \times I] \subset \alpha_{i}\left(C_{i} \times\{0\}\right) .
$$

We may require that all of the sets $\alpha_{i}\left[\left(A_{i} \times\{0\}\right) \cup\left(e_{i} \times I\right)\right]$ be disjoint. (Figure 7.)

Remark. In Steps 2 and 3 we extend our definition of α_{i} to \mathbb{Q}_{i} and to \mathscr{B}_{i}, respectively. In both steps some basic precautions can be taken. We list these precautions here.
(1) $\operatorname{Im}\left(\mathbb{Q}_{i} \cup \mathscr{B}_{i}\right) \subset(\varepsilon / i)\left(D_{i}^{*} \cup E_{i-1}^{*}\right)$ (component by component).
(2) Of the sets in the list $\left[D_{0}^{*}\right],\left[\operatorname{Im} A_{1}, \operatorname{Im} \mathfrak{Q}_{1}\right],\left[B_{1}^{*}, \operatorname{Im} \mathscr{B}_{1}\right],\left[\operatorname{Im} A_{2}, \operatorname{Im}\right.$ $\left.\mathfrak{Q}_{2}^{*}\right],\left[B_{2}^{*}, \operatorname{Im} \mathscr{B}_{2}^{*}\right], \cdots$ only sets in the same or adjacent square brackets can intersect.

Step 2. Constructing $\alpha_{i} \mid \mathbb{Q}_{i}$. Then set \mathbb{Q}_{i} equals $A_{i} \times I \times I^{n-3}$. Since $\alpha_{i}\left(A_{i} \times\{0\}\right)$ is bicollared in $Y_{i} \times\{0\}$, it is clearly possible to extend α_{i} to $A_{i} \times I$, taking each fiber $\{x\} \times I$ to a bicollar fiber $\left\{\alpha_{i} x\right\} \times I$ in $Y_{i} \times\{0\}$. In turn one may extend α_{i} to $A_{i} \times I \times I^{n-3}$ by taking $(x, t) \times I^{n-3}$ to $\alpha_{i}(x, t) \times I^{n-3}$ in the natural way. By shortening the bicollar fibers and the I^{n-3} fibers of $Y_{i} \times I^{n-3}$ if necessary, we may protect conditions (1) and (2) of the preceding remark and obtain the following additional conditions.

$$
\begin{equation*}
\alpha_{i}\left(\mathbb{Q}_{i}\right) \cap \operatorname{Im}\left(R^{\prime} \circ R\right) \subset \alpha_{i}\left(\mathcal{C}_{i}\right) ; \tag{3}
\end{equation*}
$$

$$
\alpha_{i}\left(\mathbb{Q}_{i} \cap \Phi_{n} \mathcal{C}_{i}\right) \subset S^{n}-C(\Delta) .
$$

(Condition (4) can be satisfied because of the fact that not only $D_{i}^{*} \cup E_{i-1}^{*}$ but

[^0]: 0003-486X/79/0109-0001 \$01.30
 (C) 1979 by Princeton University Mathematics Department For copying information, see inside back cover.

