
 Annals of Mathematics, 109 (1979), 61-86

 The locally flat approximation of cell-like
 embedding relations

 By F. D. ANCEL and J. W. CANNON

 Abstract

 By means of M.A. Stan'ko's clever unknotting technique we show that

 every embedding f: Mn' -> N" (n > 5) from a topological (n-l)-manif old
 Mn-l into a topological n-manifold N" can be approximated by locally flat

 embeddings. A serious technical difficulty forces us to work in the category

 of cell-like embedding relations rather than single-valued embeddings. The

 bonus of this enforced generality is that the results obtained will surely

 have application to the study of cell-like decompositions and generalized

 manifolds.

 1. Introduction

 By means of M. A. Stan'ko's unknotting technique [Si], [S2], we show

 that every embedding f: M"-' N'1 (n > 5) from a topological (n-l)-mani-
 fold M,-' into a topological n-manifold Nn can be approximated by locally

 flat embeddings. Others have reported tentative success in the same ven-

 ture [S3], [BES]; however, so far as we can determine, previous proofs

 have all run afoul of an unexpected pathology in the topology of codi-

 mension-one embeddings discovered by R. J. Daverman [D1]. (See the remark

 in Section 5.3.) We circumvent the difficulty by passing from the category

 of (single-valued) embeddings into the category of (multiple-valued) cell-like

 embedding relations (Appendix I) where the flexibility of "large points"

 allows us to destroy Daverman's pathology. (See the Embedding Theorem

 of Section 5.)

 Stan'ko's original paper [S1] and Cannon's Park City paper [Cl] (where
 cell-like relations are introduced) are the major sources of our techniques.

 Although the reader may wish to refer to Stan'ko's paper, we give a com-

 plete exposition of his technique here.

 As a trade-off for the unfamiliar demands we make of the reader, we

 shall in the main body of the paper consider only the simplest case, that of
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 62 F. D. ANCEL AND J. W. CANNON

 a cell-like embedding relation R: Sn' -> S"(n > 5). We have made every
 effort, however, to state the proofs in such a way that they generalize

 almost without change to many more situations. We discuss the basic

 generalizations in Section 6. One corollary is a one-sided 1-LCC taming

 theorem for (n - 1)-manifolds in an n-manifold. Seebeck [S] has a proof of

 a stronger one-sided result. A. V. Cernavskii [C] has also claimed a proof,

 but it apparently has not appeared in print. Daverman [D2] has used our

 main result in proving that every crumpled n-cell (n > 5) is a closed n-cell
 complement.

 2. Conventions and terminology

 (2.1) All spaces are assumed locally compact and separable metric.

 (2.2) We take Euclidean n-space En to be the space {t = (t, *.., tn) lti e R}
 of n-tuples of real numbers, with norm I t I= maxi I ti I and metric d(s, t)=
 I s - t I induced by the norm. We write S" (the n-spere) for the subspace
 {t e E "+ j tI = 1} of E "+ and B (the n-ball) for the subspace {t e En lit I I 1}=
 [-1, 1] x ... x [-1, 1] (n times) of En. We write I = [-2, 2] and In = 2B"=

 [-2, 2]x ... x[-2, 2] (n times). We think of 1k as Ikx {O cIkxImIk m c
 E k+m

 (2.3) An n-manifold is a space, each point of which has a neighborhood

 homeomorphic with Euclidean n-space En. Thus our manifolds have no

 boundary.

 (2.4) We use the (+) symbol to denote finite disjoint topological union

 so that a disk (+) is a space having finitely many components each of which

 is a disk. Similarly, a pinched-disk (+) is a space having finitely many
 components each of which is a pinched disk (defined in Section 4), etc. This

 (+) convention allows us to describe constructions essentially component by
 component and to economize with our definitions and notations. For ex-

 ample we generally use the same kind of notation to denote a disk (+) that

 we use to denote a disk.

 3. The 1-LCC Approximation Theorem

 Cell-like embedding relations are defined at the end of Appendix I. We
 define a cell-like embedding relation R: S"-> S" to be 1-LCC if for each

 x e S"~ and each neighborhood U of R(x) in Sn there is a neighborhood W

 of R(x) in SI such that each loop in W - Im R shrinks to a point in U - Im R.

 Our main result is the following.

 1-LCC APPROXIMATION THEOREM. Suppose R: So' -> S" (n > 5) is a cell-
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 LOCALLY FLAT APPROXIMATION 63

 like embedding relation and L is a neighborhood of R in S"-' x S". Then L

 contains a 1-LCC cell-like embedding relation R': S,---> S%.

 COROLLARY. The neighborhood L contains a locally flat embedding

 r: S'-' S.

 For n = 3, the corollary has been proved by R. H. Bing [Bi]. The

 theorem and corollary are unresolved for n 4.

 Proof of the corollary. By [C1, Theorem 38] (see [C2] for an alternative

 and more general approach), the set (-1, 1) x L c(-1, 1) x S4' x S" contains

 a cell-like embedding relation R": (-1, 1) x S ' -* S" which extends the 1-

 LCC embedding relation R' = R"1({O} x Sj). By [Si] (see [C1, Theorem 55])
 we may assume R" is a function except on {O} x Si,`. Any of the (bicollared)

 embeddings r = R"', t : 0, satisfies the conclusion of the corollary.
 The 1-LCC Approximation Theorem will be proved by means of the

 Basic Lemma stated below. The proof of the Basic Lemma will occupy the

 main body of the paper. First we need a definition.

 Definition. Suppose R: S"-' -* Si is a cell-like embedding relation. Then

 we denote by zR: Si -* S"/R the identification projection with nondegenerate
 point preimages equal to the nondegenerate point image of R. Let f SI -Si-

 Im R be a loop. Let f*: B2 -S"/R be a continuous function extending w,-f
 such that Im f* misses one of the two complementary domains of Im(WR.-R)

 in S"/R. (That S"/R - Im (WR -R) has two components is a direct consequence

 of [C1, Theorems 27 and 29].) Then F = wi-lof*: B2 -- Si is called an R-disk
 bounded by f. In the proof of the 1-LCC Approximation Theorem below we

 shall prove that every loop f: SI S- - Im R near a point image of R bounds
 a "small" R-disk F: we define the R-diameter of a set X c S" by the equation

 R-diam(X) = inf{e > 0 1 for some s e S"-', X c 0 o R o s(s)}; then we define
 R-diam(F) = R-diam(Im F).

 BASIC LEMMA. Suppose R: S"-> S" (n ? 5) is a cell-like embedding

 relation, F: B2 -- S" is an R-disk, and L and M are neighborhoods of R and

 F, respectively. Then L and M contain a cell-like embedding relation

 R"': S"' -> S" and a continuous function f ': B2 -- S" with disjoint images.

 Proof of the 1-LCC Approximation Theorem. Let f1, f2, ***: S' > S-
 denote a countable set of simple closed curves dense in the space of loops in

 S .

 Let R, = R and let Lo c L be a compact neighborhood of R,. Assume
 inductively that cell-like embedding relations Ro,, . * * R-1: Sn-1 > S", compact
 neighborhoods Lo D R,, . . , Li-, D Ri-1 in Sn-1 x SI and continuous functions
 gl *..., gi1: B2 - SI bounded by f1, ..., fiat have been chosen satisfying the

This content downloaded from 129.89.24.43 on Sat, 29 Oct 2016 05:28:34 UTC
All use subject to http://about.jstor.org/terms



 64 F. D. ANCEL AND J. W. CANNON

 following four conditions for j = 0, *-., i - 1:

 (lj) R, c Int Li c Li c (1/j)o Rj o (1/i);
 (2j) L, is slice trivial in Li-1 (i.e., if x e S'-1, then Lj(x) contracts in

 (Int Lj-1) (x); see [C1, Lemma 16]);
 (3j) L'1 o Li c (1/j); and
 (4j) If fj bounds an Rj_--disk and if

 si = inf {Rj_,1-diam(F) I F is an Rj-1-disk bounded by fl},

 then Rj_--diam(Im gi) < 2sj and Im Li n im g =0.

 Choose Ri, Li, and gi as follows. If fi bounds an Ri-1-disk and si is
 defined as above, it is an easy consequence of the Basic Lemma that there

 exists a cell-like embedding relation (R.: SI` -> S") cInt Li- and a continu-

 ous function gi: B2 _> SI' bounded by fi such that Im R, n Im g, = 0 while
 R,-1-diam(Im gj) <2si. There is a compact neighborhood Li of Ri in (Int Lo,-) n
 [(1/i) o Ri o (1/i)] by result (5) of Appendix I on continuous relations; thus (1i)
 may be satisfied. Condition (2,) may be satisfied by [C1, Lemma 16]. Since

 R.'1 Ri = id c (1/i), condition (3i) may be satisfied by the the Composition

 Theorem (result (6) of Appendix I). Since Im Ri n Im gi = 0, condition (4D)
 may be satisfied.

 If f, bounds no Ri-,-disk, condition (4i) becomes vacuous; one may take
 Ri = Ri-1, gi arbitrary, and Li satisfying (1i), (2i), and (3i) as above. This
 completes the inductive step.

 Define (R' = nf=, Li): S4' -> S%. We claim that R' is a 1-LCC cell-like
 embedding relation (clearly contained in L).

 (i) R' is a proper relation; indeed R' is an intersection of compact sets,

 hence compact, hence proper by result (5) of the appendix on continuous

 relations.

 (ii) R' is cell-like; indeed R'(x) (x e S4-) has the basic neighborhood

 system Lo(x) D L1(x) :D ... with Li(x) compact, nonempty, and contractible

 in Li-1(x) by condition (2D); thus R'(x) is cell-like.
 (iii) R' is injective; indeed,

 (R')->' oR' c ni Li'1 o Li c nf (1/i) =ids;

 hence point images of R' are disjoint.

 (Conditions (i), (ii), and (iii) show R' is a cell-like embedding relation.)
 (iv) The following argument shows that R' is 1-LOC:

 Suppose a point x e S,-' and a neighborhood U of R'(x) in SI given. Our

 task is to find a neighborhood W of R'(x) in SI such that each loop in

 W - Im R' contracts in U - Im R'.

This content downloaded from 129.89.24.43 on Sat, 29 Oct 2016 05:28:34 UTC
All use subject to http://about.jstor.org/terms
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 We first use the Composition Theorem to supply some estimates. Since

 U D R'(x) = (id o R' o id) o (id o R'-ao id) o (id o R'o id)(x), it follows from the

 Composition Theorem that there is a positive number a and a positive

 integer I satisfying

 ( 1 ) UD (2a oL o2a)o(2a oL7o'2a)o(a o R'oa) (x)

 Set f8 = a/2 and choose a positive integer J > 2/a. Then i > J implies

 (2) /j o R'ao(x) c (a/2) o Li-, o (a/2)(x)

 c (a/2) o (a/2 o Ria , o a/2) o (a/2)(x) by (1ij)

 = a o Ria 1 o a(x) .

 Having chosen a, fi, I, and J, we may take an (n - 1)-cell neighborhood

 D of x in f8(x), a compact neighborhood V of R'(x) in i o R' ?S(x) intersecting

 Im R' only in R'(Int D), and a compact neighborhood W of R'(x) which con-

 tracts in V (recall that R'(x) is cell-like). Then we shall show that each loop

 f: Si -> Sn in W - Im R' contracts in U - Im R'.

 Pick K > Max{I, J} so large that if i > K, then

 ( 3) Ri-,(D) c,8R',8(x) ,

 (4) R-_J(S-1-IntD) n v = 0, and

 (5) imffnImRi-=0.

 Pick i > K such that the loop fi is homotopic to f in W - Im (R' U Ri_1)
 (recall (5)). We shall show that gi: B2 -> SI has image in U - Im R'. This
 will complete the proof.

 Since W contracts in V, there is a continuous extension g: B2 -> V of fi.
 Let w = SRI_ ' -> S?/Rij and identify S"' with Im (w o Ri-,) via the em-
 bedding w a Ri1. The set ofi(Sl) lies in one of the two components of (S"/

 Rij )- S"', and the set w o g(B2) intersects S-1 only in the (n - 1)-cell
 w o Ri-1(D) (by (4)). By the Tietze Extension Theorem, there is a continuous
 function f*: B2 -> S1/Rj% extending ofi whose image lies in w o g(B2) U
 w a Ri_(D) and misses one component of (S"/Ri) - S"-'. Set F = a-1of*.

 The relation F: B2 -> SI is an R_1-disk bounded by fi. Since Im f* c

 w a g(B2) U w o Ri_1(D), it follows that Im F c g(B2) U Ri_1(D) c o R' o f(x) (by
 (3) and the choice of VD g(B2)). But /3oR'o/3(x) ca o Rilaa(x) (by (2)). Hence
 gi is a singular disk in S" - Li bounded by fi and lying, for some y e S'-1,

 in the set 2a o R aj o 2a(y) (by (4j). It remains only to show that 2a o Ria, o
 2a(y) c U.

 Since 0 # Imfi c aaoR' o a(x) n 2a o Ria1 o 2a(y), it follows that

 2a o R aj o 2a(y) ci (2a o R aj o 2a)[(2a o R.1, o 2a) o (a o R'o ac)(x)] .
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 66 F. D. ANCEL AND J. W. CANNON

 But this latter set lies in U (by (1)).

 Our proof that R' is 1-LCC is complete.

 4. ;tan'ko's unknotting technique

 We shall eventually prove the Basic Lemma by Stan'ko's unknotting

 technique. Linked 1-handles in Euclidean 3-space E3 can be unlinked simply

 by pulling one through the other. Stan'ko's basic move is the product ex-

 tension to high dimensions of this simple unlinking procedure. In high

 dimensions, however, the basic move may introduce singularities in the

 space being unknotted. Stan'ko's beautiful accomplishment was the real-

 ization that the singularities can often be removed by a meshed sequence of

 basic moves, each succeeding move removing the singularities introduced

 by its predecessor, all singularities disappearing in the limit.

 In this section we first describe the basic Stan'ko move abstractly

 without direct reference to the Basic Lemma in order to highlight the

 simplicity of the technique and to clarify the manner in which singularities

 arise in high dimensions. We then describe the structures (pinched disks,
 v Iv

 Stan'ko complexes) which guide Stan'ko moves. Finally, in Section 5 we

 put everything together in a proof of the Basic Lemma.

 4.1. The basic Stan'ko move. The basic move is described in terms of

 a special homeomorphism of the n-cube I":

 Certain subsets of 12 are of particular importance to us (Figure 1).

 A

 D

 B

 FIGURE 1

 A [-2, 2] x [-2, 2]-(--k,!) x (-1,1)012;

 B -1 1lXL 0 1cI2;
 . 2 2 2
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 C [5/4, 7/4]x [-2, 21C12;

 D- [-1, 1] x [-1, 1] c2;

 e-= x {O}]c12 .
 2

 Now let n > 3 and consider the sets d = A x In-2, 3 = B x In-2, e

 Cx[-1,t1]xI"-3,=Dxx{O} cInsandexI=exIx {O}cI5. Thesefive

 sets will play special roles in our constructions. In the case n = 3, 3 and C

 may be viewed as disjoint 1-handles cutting through IP perpendicular to

 each other. The basic Stan'ko move restricted to IP will simply pull

 Cx[-1,1] = en I3 through B x I =@ n I3.
 We now describe the special homeomorphism (q) <n In: P - P, fixed

 on Bd I", alluded to above; it shifts the set C relative to the set 3 in the

 following manner. Let $): I x [0, 1] -+ I be the isotopy of I which, for fixed

 t e [0, 1], fixes -2 and 2, shifts the segment [5/4, 7/4] 3t units to the left,
 and is linear on the segments [-2, 5/4] and [7/4, 2]. Then, for s e I, t e I"-,

 (s, t) e P, we define

 (0(s,2 - jt|),t) if itje[1,2]

 The case n = 2 is pictured in Figure 2. We note the following facts.

 A

 D

 B

 (P2C)

 FIGURE 2

 (4.1.1) ID,(Cx [-1, 1] x [-1, 1] 3)ce$2(C) x [-1, 1] x I c I if n?2.

 (4.1.2) qIr(C) n i - 0 if n > 3.

 We describe the basic move in terms of O), as follows. Suppose that Y

 is an n-manifold, X is a closed subset of Y, f: I -3_ Y is an embedding,
 and f-'(X) c 3 U C. Then the continuous function f*: X--> Y defined by
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 68 F. D. ANCEL AND J. W. CANNON

 (f o (D O f'-(x) if x ef(C)

 x otherwise

 is a basic Stan'ko move. If n ? 3, then f * is a re-embedding of X in Y be-

 cause of (4.1.1). For n > 3, the map f * will, in general, not be injective be-
 cause of (4.1.2). Nevertheless, in both cases the move may undo some self-

 linking in X.

 Summarize the above information in a symbol (A, B, C, D, e) called a

 template and generalize all of the above via the (-+) convention of (2.4) to

 obtain templates (+) and homeomorphisms 1 = a>n CC U $ -> C U $ acting

 on each component of d U 93 just as described above.
 We now turn to the structures that will guide basic moves in a manifold

 Y.

 4.2. Pinched disks and Stan'ko complexes. Let D denote an oriented

 PL disk; let L1, ***, Lk, R1, ***, Rk(k > 0) denote compatibly oriented dis-
 joint PL subdisks of Int D irreducibly joined in pairs by disjoint PL arcs

 JI, * * *, Jkin Int D, Bd Jj cZ L U Rj; let f: Ll U ... U Lk -> R U ... U Rk denote
 an orientation reversing homeomorphism which takes Li n J, to R3 n Jj. The
 identification space D* D/f is called a pinched disk. Set E = L1 U ... U

 Lk U R1 U ... U Rk and J J1 U ... U Jk. Compile the above information into
 a delta symbol A (D, E, J) with identification map (*): D -- D* under-

 stood (Figure 3).

 D D

 ~Jk

 FIGURE 3

 Generalize via the (+) convention to obtain pinched disks (+) D* and

 delta symbols (+) A (D, E, J) (projection (*): D > D* understood).

 A branching system is a system (A, g): A - A1 Al A2 -* ... where each
 Ai is a delta symbol (+) Ai (Di, E%, Jo) and each gi is a PL homeomorphism
 g,: J* -* Bd D* 1. The identification space C(A, g) = D* UgQD* Ug1D* U ... is
 called a Stan'ko complex. We generally identify each Do' with its image in

 C(A, g). Then we may take Jo* Bd D*1 and suppress the maps gi. Thus
 we write A (A, g) and C(A) C(A, g). We combine the identifications

 (*): D -> Do* into a single map

 (*): Do U D1 U (disjoint union) > D* U D* U ... (=C(A)).
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 FIGURE 4. Branching system.

 FIGURE 5. Stan'ko complex.

 5. Proof of the Basic Lemma

 5.1. Setting. We assume throughout Section 5 the hypotheses of the
 Basic Lemma and related notations as follows (Figure 6):

 n In R C St

 Im F

 J32

 -1 r U U

 I 1~C z-|[R=-ir IS L1] C L
 \Vs S4-1=irR(S'l) C S/IR

 fIGURE 6. Setting fortf L

 FIGURE 6. Setting for the Basic Lemma.
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 R: S?'-* So, a cell-like embedding relation with associated projection
 map X-r =7C:S"S / - R;

 (F =-1 o f *): B2 -> S", an R-disk with f *: B2 -* S1/R a continuous func-
 tion and with F I Bd B2 a PL embedding;

 L, a neighborhood of R in S"-1 x Sn;

 M, a neighborhood of F in B2 x S".

 We identify S"-' with Im (r o R) via the homeomorphism w o R: Sn-1 7'

 Im (7r o R) so that R = -1 I S,-' and fix the notation
 W, the component of (S"/R) - S` containing f*(Sl);

 Lo, a neighborhood of i-1 in (S?/R) x So whose restriction to S,-' is L.
 Looking ahead to calculations which will be made at the end of the

 proof, we take care of certain essential estimates at once by the Composition

 Theorem: since

 (ids" ? ids, o a-1 o idsn/,Ro z a idsn a ids,) o idsn a = 4L

 and ids, o -1 o ides81 o f* = F c M, there is an s > 0 such that

 (1) (s O 0 7r-l o 2Zs o 7 o s o s) o o z-1 C Lo

 and

 (2) s;0 7rE O'f* c M.

 We prove the Basic Lemma in three major steps outlined as follows.

 Step 1. We associate with the above setting a Stan'ko complex C(^)

 and a special continuous function h: C(A) -> Sn/R covered by a PL injective

 function h': C(^) -* S" (Mapping Theorem and its Addendum).

 Step 2. We adjust R so that the map h' of Step 1 may be replaced by

 a PL embedding h": C(A) -* SI (Embedding Theorem).

 Step 3. We use the embedded Stan'ko complex h" C(^) to guide an in-

 finite Stan'ko move which proves the Basic Lemma.

 5.2. MAPPING THEOREM. There exist a branching system A: AO ->
 *2 * with Do of A, = (Dog Eo, JO) equal to B2, and a continuous function
 h: C(^) S1/R satisfying the follows conditions:

 ( 1) h[C(A) -Int(Eo* U El* U ... )] c W .
 (2) h[D* U D* 1 U D* 2 U * ] c (./i)(S.) .

 ( 3) d(ho (*)IDo f *) <.
 (4) ho(*)IBdDo-=f*I(BdDo =BdB2).

 (5) Diam h(Pi) <is/i for each component Pi of D* U E* 1.

 ADDENDUM. The map h: C(A) -> S"/R may be chosen so that there is a
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 PL injective map h': C(A) -> SI with w o h' = h.

 The Mapping Theorem is the iterative consequence of the following
 simple lemma.

 LEMMA. Suppose D is a disk, f: (D, Bd D) -- (Cl W, W) is a map of
 pairs, and a is a positive number. Then there exist a delta symbol A =

 (D, E, J) and a continuous function h: D* Cl W satisfying the following
 conditions:

 ( 1') h[D* - Int E*] c W.

 (2') h(E*) c a(Sn-l)

 ( 3') d(ho(*) |D, f lD) <a .

 (4') ho(*)IBd D = f LBdD.

 (5') Diam h(P) < a for each component P of E* or J*.

 Proof of lemma. The set W is 0 - Ic and 1 - Ic [C1, Theorem 34]; the

 set Cl W = S U W is 1-ULC (see the proof that R' is 1-LCC in the proof of
 the 1-LCC Approximation Theorem, Section 3). Hence we may choose posi-
 tive numbers a < f8 < Y < a/4 such that

 (i) y loops in Cl W bound singular 3/4-disks in Cl W (Cl W is 1-ULC);
 (ii) fi loops in W bound orientable, singular -disks-with-handles in W

 ('W is 1-ulc);

 (iii) two points within a of one another in W are joined by ,8/2-arcs in
 W (W is 0-ulc).

 Triangulate D with mesh so small that the image under f of each

 simplex has diameter less than a. Let D(?', D'l), and D'2' denote the skele-
 tons of the triangulation.

 Since ImfcCl W, we may define hID(O)HI D(o)I>W equal to f on
 DI fl Bd D and so near f I D0 that vertices of the same simplex have
 images in W within a of one another and within a of their image under f.

 By (iii), we may extend hi IDO1 to hi ID('1 1: ID(') I Wequal to f on Bd D
 in such a manner that the image of each 1-simplex has diameter less than
 ,f/2.

 By (ii), for each a e D(2' there exist an orientable disk-with-handles Ho

 bounded by Bd a and a continuous extension h I Ho: Ho -> W of h I Bd a map-
 ping Ho to a set of diameter less than v.

 In the interior of each Ho identify complete sets J, and K, of handle
 curves: J, (resp., K0) is a finite disjoint union of simple closed curves, each

 meeting K, (resp., J0) transversely in a single point, JO and K, maximal.
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 By (i), there exist for each a e D"2' a finite disjoint union E, of disks
 having boundary K0 and a continuous extension h IE: E, -> Cl W of h I K0
 taking each component of E, to a set of diameter less than a.

 Define

 D* = IDlI U U0(HUE0), E* =UE0, J* = UL1J,

 Then D* is the pinched disk of a delta symbol A = (D, E, J), (*)I I D'( id,
 (*): a -> Ha U Ea. Then h clearly satisfies (1'), (3'), (4'), and (5'). If (2') is not
 already satisfied, it can only be because some component of E* U J* has

 image missing S"-' = Bd W. The preimage of this component in E U J may

 simply be deleted from E and J.

 Proof of the Mapping Theorem. Choose a sequence aO > &, > a, > ... of
 positive numbers such that

 (i) 4(3 < s/i for i > 0.

 (ii) ai, loops in Cl W bound singular (i disks in Cl W (Cl W is 1-ULC)
 for i > 0.

 By the lemma, there exist a delta symbol A, = (Do, EO, JO), Do = B2, and

 a continuous function h I D*: D* -> Cl W satisfying, for j = 0 and fj = f I Do,
 the conditions

 ( 1j) h[D*- Int E* ] c W.y
 ( 2j) h(Ej*) C aj+,(Sn-')y
 ( 3j) d[h ? (*) IDjy fj] < aj-,S
 ( 4j) ho(*) IBd Dj = fj I Bd Dj, and
 ( 5j) Diam h(P) < aj,2 for each component P of Ed or Jjb.
 Assume inductively that A0 -*- .- > Ai-1, fj: Dj -* Cl W, and

 h1D* U ... U D: l have been chosen satisfying (lj)-(5j) for each j G {0,
 i -'1}.

 For each component J of JiLl, let D(J) be a disk with boundary J. By

 (5-,), Diam hJ < (i3, By (ii), there is a continuous extension fi I D(J): D(J)
 Cl W having image of diameter less than ai. Let Di = U, D(J) and
 [f Uj fi I D(J)]: Di -> Cl W. By the lemma, there exist a delta symbol

 (?) Ai = (Di, Ei, Ji) and a continuous function hlD W: DW - Cl W satisfying
 (i)-(5i). This completes the inductive construction of

 :A 0A > A > A2 > .* *. and h: C(A) > S%/R.

 Conditions (1), (3), and (4) of the Mapping Theorem are obviously

 satisfied. For each component P U Q of DW U Ei, (i > 1), PC D2*, Q ci Ei* ,
 we have

 Diam hP < 2d(h o (*)IPfiIP) + Diamfi(P) < 3(i and DiamhQ <(ial,;
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 thus (5) is satisfied. Also, for i 2 1,

 d(h(P), SI-') 5 d(h(P), h(E*l)) + 8i (by (2i-)) = at

 since h(P) n h(Ei* l) = 0. Thus h(P) c48i(S"-1) c (6/i)(S'-1) and (2) is satisfied.

 Proof of the addendum. Suppose we have A and h satisfying the five

 conclusions of the Mapping Theorem with 7r-'o h Bd B2 = F Bd B2 a PL

 embedding. We now show how to adjust h so as to satisfy the Addendum.

 There is a closed neighborhood N of h in C(A) x S"/R such that if

 h": C(A) -* S"/R lies in N, is continuous, and equals h on Bd Do, then h"
 satisfies the same five conclusions.

 Since ic a (7r- a h) = h c N, it follows from the corollary to the Composi-
 tion Theorem (result (7) of the appendix on continuous relations) that there

 is a neighborhood N' of 7r-' h in C(A) x SI such that 7C o N' c N. Since 7r- a h

 is cell-like, the Continuous Approximation Theorem (result (8) of the same

 appendix) implies the existence of a continuous function (h': C(A) -* SI) cN'
 with 7r o h' Bd B2 = h I Bd B2. We may adjust h' in N' so as to be PL and in
 general position. Since n > 5, h' is injective. We replace h by ir o h'.

 5.3. EMBEDDING THEOREM. Let A, h, and h' be as in the conclusion of

 the Mapping Theorem and its addendum. Then the s neighborhood of idsit
 contains a cell-like embedding relation R': S" -* S" such that there is a PL

 embedding h": C(^) -* S" with R'' a h" = h'. (Thus zr o R'- ao h = h.)

 Remark. R. J. Daverman [D1, Example 13.3] has described crumpled

 n-cells C in SI (all n > 4) and disjoint PL simple closed curves J, and J2 in
 Int C such that if D is a singular disk in C bounded by J, and E is a singular
 disk in S" bounded by J2, then D n E = 0. Let Fl Bd B2: Bd B2 -, J1, and let
 R: SI`' -* SI take SI-' homeomorphically only Bd C. Construct A, h, and h'

 as in the Mapping Theorem and its addendum with J2 bounding a component

 of h'(E*) for some i. Then it is easy to see that h' cannot be an embedding.
 This is the technical difficulty that forced consideration of cell-like relations

 in this paper. It is not inconceivable that the difficulties can be overcome

 by other means in this special case where R is a function. However, if SI`'

 is replaced by a generalized (n - 1)-manifold or if R is not a function but

 only a cell-like embedding relation, the difficulties multiply and a technique

 like the Embedding Theorem is almost certainly necessary.

 Proof of the Embedding Theorem. Because of conditions (1) and (2) of

 the Mapping Theorem, (h')-' I h'[C(A)] is already continuous except possibly
 at points of h'[Int(E* U El* U ... )]. We plan simply to split SI apart near
 h'(Int Ed*) by a cell-like relation so as to provide enough room to isolate
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 h"(Jnt Eo*) from h"[C(A) - Int E*]. This will make (h")-'l I h"[C(A)] continu-

 ous at points of h"(Int E*). An iteration of the splitting will serve the
 same purpose for E*, E,*, and complete the proof of the Embedding
 Theorem.

 We first describe the basic splitting move as the inverse of a simple

 collapsing map. Define r: 12 [0, 1] by the formula r(x) = 1/4 d(x, Bd I2) e

 [0, 1/2]. Define

 I2 x r n-2 = U{x x[r(x).In-2]Ix 6 I2} c I2Ix In-2 = P.

 Let *: I2 X r I-2 (_> 2 x 0 = I2) denote projection onto the first factor. If Q

 is any neighborhood of (*-' o *) U id., in P x P, then Q contains a PL map
 T: P -> P fixed on Bd IP, extending *, and having as nondegenerate point
 preimages precisely the nondegenerate point preimages of *. The relation
 T-' is called a basic splitting relation.

 For each component E of h'(Eo*) there is a PL embedding PE: I2 x In-2
 SI taking 12 x {0} onto E and taking each fiber x x I-2 onto a very small set.

 The embeddings {PE I Ec h'(Eo*)} may be chosen with disjoint images. Define

 RO: SI -> SI splitting Sn along h'(Eo*) by the formula

 R P()'PjPE(X) if x e Im PE

 R x if x(CUEImPE-

 Clearly RO may be chosen in the neighborhood N,1 = of id: Sn -> Sn. Define
 ho: C(A) -> S' by the formula

 ho(x) {h'(x) if x e Eo*
 n RO h'(x) if x 1 Eo*.

 Then ho is PL and injective, RO'O ho = h', and ho- I hJ[C(A)] is continuous at
 the points of ho(Eo*). Choose a compact neighborhood No of RO in Int N_,
 slice trivial in Int N-,, No- o No c (1) (Composition Theorem and [C1, Lemma
 16]).

 In the same manner choose R,: St -> SI splitting S" along ho(E*), fixing
 RO ? h'(D*), and satisfying R, o ROC Int No. Define h,: C(A) -> Sn by

 h1(x) { ho(x) if xeE*

 R1 o ho(x) if x 1 El*-

 Choose a compact neighborhood N1 of R, o RO in Int No, slice trivial in Int N0,
 Np' o N, c (1/2).

 In general, let Ri split Sn along hi-1(E2*), fixing R,1 o ... o Ro o h'(R'1),
 and satisfying Ri o Ri-1 o ... o ROC Int Ni,. Define hi: C(A) -- SI' by
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 hi(x) ={Roh. (x) if x EE*

 Choose a compact neighborhood Ni of Ri o ... o R0 in Int Ni~, slice trivial in
 Int Ni~, Nil o NQ c 1/(i + 1).

 Define [R' = n Ns]: SI -> S. As in the proof of the 1-LCC Approxima-
 tion Theorem (Section 3) R': S" -> S" is a cell-like embedding relation in S.

 Define h" = Ui (hi I Dr*): C(^) -> S". That h" is the embedding required by
 the Embedding Theorem is easily checked.

 5.4. The infinite Stan'ko move. We consider A, h, and h' as in the

 conclusion of the Mapping Theorem and its addendum. We take the rela-

 tion R' and the embedding h" from the conclusion of the Embedding

 Theorem.

 We identify C(A) with h"C(A) via the homeomorphism h". We recall

 the combined identification map (*): [Do U D1 U ... (disjoint union)] -* [D* U
 D U.. = C(A)]czS%

 For each i > 0 we identify D, from the delta symbol (+) Ai = (Di, Ei,
 Jo) with Di from a template (+)(Ai, Bi, Ci, Di, ei) in such a manner that

 Di~~~~~~~c

 Bi

 FIGURE 7. N C Yj x {O}.
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 Ei U Ji cint Bi and (Di n ei)* = D* nf Ei cQ C(A) C S". We suggest that the
 reader review Section 4.1 and in particular the sets (&i, _i, Ci, Di x {O}, and

 ei x I and the homeomorphism (,: &3i U -i3> -3 i U %.i (Figure 7.)
 By the unknotting lemma of Sections 5, 6, there exist a regular neigh-

 borhood Ni of D* U Et, in C(A), a PL 3-manifold Yi, and a PL product
 Yi x I` in S" such that Ni c Yi c Yi x {O} c Yi x I'l3 c S. For each i we

 use the sets D* U E*i Q Ni and the product structure Yi x I` to construct

 an embedding a,: ((&i U 93f) -> Si suitable for use in a basic Stan'ko move.
 The embedding is constructed in three steps.

 Step 1. Constructing ai I (Ai x {O}) U (ei x I). Define ai i (Ai r Di) x {O}=
 (*) j (Ai n Di) x {O}. Since (Di n ei)* = D* nl E1, we may extend Xi to take
 ei x I onto Ei* with

 Im (R' o R) n Ei*1 c ai[(5/4, 7/4) x (-1, 1)] c ai(ei x I)

 This embedding may in turn be extended to the remainder of Ai x {O} so as
 to take Ai - (Di U ei) into the s/i-neighborhood (component by component)
 of D* U Ei* l in Yi - C(A) with

 ai(Ai x {O}) n Im (R' o R) c ai[(5/4, 7/4) x I] c ai(Ci x {O}) .

 We may require that all of the sets ai[(Ai x {O}) U (ei x I)1 be disjoint.
 (Figure 7.)

 Remark. In Steps 2 and 3 we extend our definition of ai to (&i and to
 63B, respectively. In both steps some basic precautions can be taken. We

 list these precautions here.

 (1 ) Im (Li U 93_) c (s/i)(D* U Ei*L) (component by component).

 ( 2 ) Of the sets in the list [Do*], [Im A,, Im dTJ, [B*, Im i3J, [Im A,, Im
 f*], [B*, Im $2*], ... only sets in the same or adjacent square brackets can
 intersect.

 Step 2. Constructing ai, C&. Then set (&i equals Ai x I x I'. Since

 ai(Aix {O}) is bicollared in Yi x {O}, it is clearly possible to extend ai to
 Ai x I, taking each fiber {x} x I to a bicollar fiber {aix} x I in Yi x {O}. In
 turn one may extend ai to Ai x I x II` by taking (x, t) x In-3 to ai(x, t) x In
 in the natural way. By shortening the bicollar fibers and the In-' fibers of

 Yi x In-3 if necessary, we may protect conditions (1) and (2) of the preced-
 ing remark and obtain the following additional conditions.

 (C3n) ai(4i) n Im (Rs o R) ct tai(ti) ;

 (4) aiwai n oxn(i) C- s? - C(A) A

 (Condition (4) can be satisfied because of the f act that not only Di* U Eie , but
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