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For ns4, every embedding of an (n-1)-manifold in an n-manifold has a S-resolution for 

each S > 0. Consequently, for n z 4, every embedding of an (n - I)-manifold in an n-manifold 

can be approximated by tame embeddings. 
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generalized manifold with boundary 

1. Introduction 

The Codimension-One Tame Approximation Theorem in dimension n states that 

every embedding of an (n - 1)-manifold in an n-manifold can be approximated by 

tame embeddings. Bing proved this theorem in dimension 3 in [4], and went on to 

exploit it to great effect in his study of 3-manifolds. The theorem was established 

in dimensions 25 by Ancel and Cannon in [3]. It is proved in the remaining 

dimension, 4, in the present paper. 

The Codimension-One Tame Approximation Theorem is contained in a more 

comprehensive proposition which is the principal result of this paper: a Resolution 

Theorem for Wild Codimension-One Embeddings. The latter theorem is founded 

on the notion of a b-resolution of a wild embedding. For 6 > 0, a &resolution of a 

wild embedding e : M + N of a manifold M in a manifold N is, roughly speaking, 

a cell-like map G : N + N which moves no point of N farther than S and to which 

is associated a tame embedding f: M + N such that G of= e. Thus, the cell-like 

relation G-’ blows up the wild embedding e : M + N to a nearby cell-like embedding 

relation which contains the tame embedding f: M + N in the sense that f~ G-’ 0 e. 

In dimension n, the essential content of the Resolution Theorem for Wild 

Codimension-One Embeddings is that each embedding of an (n - 1)-manifold in 

an n-manifold has a S-resolution for every S > 0. 

* Partially supported by the National Science Foundation, 
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14 ED. Ancell Resolving wild embeddings 

The Resolution Theorem for Wild Codimension-One Embeddings is deduced 

from two other results. One of these, as might be expected, is a resolution theorem 

for certain generalized manifolds, which was proved in dimensions 35 in [8]. The 

other is an approximation theorem for cell-like maps between manifolds established 

in dimensions 25 in [23]. Recent work of Quinn [19] has made it possible to extend 

both these results to dimension 4. Consequently, the Resolution Theorem for Wild 

Codimension-One Embeddings as well as the Codimension-One Tame Approxima- 

tion Theorem are now proved in all dimensions ~4. 

In its most elementary formulation, the Resolution Theorem for Wild 

Codimension-One Embeddings has a short and simple proof which is sketched in 

the next paragraph. This argument is given here to reveal the underlying ideas 

unobscured by technical considerations. In later sections, a variety of elaborations 

and generalizations of the theorem are considered. For instance, Section 6 deals 

with embeddings of generalized (n - 1)-manifolds in n-manifolds, and Section 7 

concerns embeddings of generalized n-manifolds with boundary in n-manifolds. 

We now sketch the proof of the Resolution Theorem for Wild Codimension-One 

Embeddings in the simplest case. Let n 2 4 and suppose M is an (n - 1) -manifold 

which is embedded as a closed subset of an n-manifold N such that M separates 

N. Choose a metric on N and let S>O. Let X,, and X, be the closures of the 

components of N-M. Form the generalized n-manifold Y from N by inflating M 

to M x [0, 11. Thus, 

Y=Xow=~x(o+~ Mx[O, 11 u(~x(l)=iv,) X,. 

Define the cell-like map f: Y+ N by setting f({x} x [0, 11) = x for each x E M and 

letting f[X, = id x0 and f]X, = idx, . The nonmanifold set of Y is contained in the 

(n - l)-manifold M x (0, l}. There is a resolution theorem in [8], which can be 

extended to dimension 4 using [ 18,191, and which applies to Y. It provides a cell-like 

map g : P + Y of an n-manifold P onto Y The Cell-like Approximation Theorem 

of [23] can also be extended to dimension 4 by using [ 18,191. This theorem enables 

us to replace g by a conservative resolution. Thus, we can assume that g : P + Y is 

a homeomorphism over the manifold set of Y. We use the Cell-like Approximation 

Theorem a second time to approximate the cell-like map j-0 g : P + N by a homeo- 

morphism h : P+ N, so that h is within S of fo g. We define the cell-like map 

K : N+ N by K = f 0 g 0 hp’. Then K moves no point of N farther than 6. We 

define the embedding j: M + N by j(x) = h 0 gp’(x, 5) for each x E M. j is tame 

because g is a homeomorphism over M x (0, l), and K oj = idM. Thus K is a 

&resolution of the inclusion of M into N. 

While still in this simple setting, we make some remarks intended to motivate the 

material in Section 7. Section 7 concerns the problem of approximating the inclusions 

of X0 and X, in N by tame embeddings. Adopting the terminology of Section 7, 

we set 



F.D. Ancell Resolving wild embeddings 15 

for i = 0, 1. We assert that the inclusions of X0 and X, in N can be approximated 

by tame embeddings if and only if int(Xz) and int(X:) are n-manifolds. First 

assume int(X,‘) and int(X:) are n-manifolds. Then Y is an n-manifold. In this 

situation, the Cell-like Approximation Theorem implies that the cell-like map 

f: Y+ N can be approximated by homeomorphisms. The restriction of such a 

homeomorphism to X, is a tame embedding which approximates the inclusion of 

X, in N. Conversely, a tame embedding of Xi in N extends to a homeomorphism 

of int(Xt) onto an open subset of N, thereby entailing that int(X’) be an n-manifold. 

Our assertion is proved. 

This assertion focuses our attention on the question of whether int(X,‘) and 

int(X:) are n-manifolds. This question has been answered affirmatively in 

dimensions ~4 by Daverman in [9, 121. The investigations in Section 7 don’t 

terminate with Daverman’s results, because Section 7 concerns a more general 

situation in which M is allowed to be a generalized (n - 1)-manifold. In this more 

general setting, the preceding question can be answered affirmatively in dimensions 

25 using the theorem of Edwards in [13]. However, in this generality, the 4- 

dimensional version of this question remains unresolved as of this writing. 

The results of this paper illustrate once more the complementary relationship 

between taming theory and cell-like decomposition space theory, two subjects 

pioneered by Bing. Our idea for the proof of the Resolution Theorem for Wild 

Codimension-One Embeddings was inspired by Quinn’s joint use of inflation and 

resolution in a different context (unpublished correspondence). 

We end this section with an outline of the contents of this paper. Section 2 displays 

definitions and statements of the main theorems of the paper as well as statements 

of the prerequisite theorems necessary for the proofs. These prerequisite theorems 

are well known in dimensions ~5. Section 3 explains how results of Quinn are used 

to establish these prerequisite theorems in dimension 4. Sections 4 and 5 present 

the proof of the main theorem of this paper: the Resolution Theorem for Wild 

Codimension-One Embeddings of (n - 1)-manifolds in n-manifolds in dimensions 

n 2 4. Sections 6 and 7 explore extensions of the Resolution Theorem for Wild 

Codimension-One Embeddings. Specifically, Section 6 deals with embeddings of 

generalized (n - 1)-manifolds in n-manifolds, and Section 7 concerns embeddings 

of generalized n-manifolds with boundary in n-manifolds. The results of Section 7 

are not definitive in dimension 4; partial results of Daverman are described there, 

and a problem is posed. 

2. Definitions and statements of theorems 

A primary use of cell-like maps in geometric topology is to blow up or resolve 

singularities. Thus, cell-like maps serve to resolve generalized manifolds into topo- 

logical manifolds. They can also be used to resolve wild embeddings into tame 

embeddings, as we now explain. 
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This paper is set in the topological category. Thus, the term manzfold means 

topological manifold (without boundary) throughout. 

An embedding e : M + N of an (n - 1)-manifold M into an n-manifold N is tame 

if for each point x of M, there is an open neighborhood U of x in M and an 

embedding Eo : U x R! + N such that e(u) = Eo (u, 0) for every u E U. 

Let e : M + N be an embedding of an (n - 1)-manifold M into an n-manifold N. 

The tame set of e, denoted r(e), is the union of all of the open subsets U of M 

such that the restriction el U : U + N is a tame embedding. The set M - r(e) is called 

the wild set of e and is denoted w(e). 

A topological space C is cell-like if C is a nonempty compact metrizable space 

such that every map from C to an absolute neighborhood retract is homotopic to 

a constant map. A map f: X + Y between topological spaces is cell-like if f is a 

closed map such that f’(y) is cell-like for every y E Y. 

Suppose f: X + Y is a map between topological spaces and V c Y. f is a homeo- 

morphism over V if flf’( V) :f’( V) + V is a homeomorphism. 

Suppose e : M -+ N is an embedding of an (n - 1)-manifold M into an n-manifold 

N, and p is a metric on N. Let 6 : N -+ [0, co) be a map. A b-resolution of e is a 

cell-like map G : N + N to which is associated a tame embedding f: M + N such 

that Gof= e, G is a homeomorphism over N- e(o(e)), and p(x, G(x)) s 6(x) for 

every x E N. 

The following theorem is the principal result of this paper. 

Theorem 2.1 (Resolution Theorem for Wild Codimension-One Embeddings). Sup 

pose e : M + N is an embedding of an (n - I)-manifold M in an n-manifold N, where 

n 2 4. Let p be a metric on N. Then for every map 6 : N + [0, a) which is strictly 

positive on e(w(e)), there is a b-resolution of e. 

As an immediate corollary, we have: 

Theorem 2.2 (Codimension-One Tame Approximation Theorem). Suppose e : M + N 

is an embedding of an (n - 1)-manifold M in an n-manifold N, where n 2 4. Let p be 

a metric on N. Then for every map 6 : M + [0, CO) which is strictly positive on o(e), 

there is a tame embeddingf:M-+N such that p(e(x),f(x))Cs(x) for each xeM. 

Proof. Given a map S : M + [0, 00) which is strictly positive on w(e), there is a map 

y : N + [0, ~0) which is strictly positive on e(w(e)) such that y 0 es 6. Moreover, 

there is a map /? : N + [0, ~0) which is strictly positive on e(w(e)) and which has 

the following property: if p(x, y) < p(y), then p(x, y) c y(x) for all x and y in N. 

Theorem 2.1 provides a &resolution G: N + N of e. Associated with G is a tame 

embedding f: M + N such that G 0 f = e. Hence, for each x E M, since 

p(e(x),f(x>)= ~(Gof(x),f(x))~P(f(x)), 

then 
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As mentioned in the introduction, this theorem is valid not only in dimensions 

n 2 4, but in dimension n = 3 as well, due to the work of Bing [ 11. It was established 

in dimensions n 2 5 by Ancel and Cannon [3]. The remaining dimension, n = 4, 

follows from the proof given here. 

The theorems in this paper are formulated only for dimensions 24, because this 

is the dimension range in which the proofs given here are known to work. The two 

results on which the proofs rest (a resolution theorem for certain generalized 

manifolds and an approximation theorem for cell-like maps between manifolds) 

are known to be valid only in dimensions 34. (The Poincare conjecture intervenes 

in dimension 3.) 

We continue with the definitions needed to understand the statements of the two 

theorems which underlie our proofs. 

Let Y be a topological space. The manifold set of Y, denoted p( Y), is the union 

of all the open subsets of Y that are manifolds. The set Y - p( Y) is called the 

nonmanifold set of Y and is denoted V(Y). Thus, a point belongs to V(Y) if and 

only if none of its open neighborhoods is a manifold. 

A resolution of a topological space Y is a cell-like map f: M + Y whose domain 

is a manifold M and whose range is Y. A resolution f: M + Y is conservative if f 

is a homeomorphism over p( Y). 

A topological space X is a Euclidean neighborhood refract (ENR) if there is an 

embedding e : X + U of X into an open subset U of some Euclidean space [w” and 

there is a map r : U + X such that r 0 e = idx. Thus, a space is a Euclidean neighbor- 

hood retract if and only if it is an absolute neighborhood retract (ANR) which 

embeds as a closed subset of an open set in some Euclidean space. Hence, the class 

of ENRs coincides with the class of finite-dimensional locally compact separable 

ANRs. 

We shall say that a topological space X is a generalized n-manifold if it is an 

ENR such that 

H.+(X, X -{x}; Z) = H,(IW”, [w” -{O}; Z) for every x E X. 

In the early definitions of generalized manifold proposed by Wilder, Bore1 and 

others, a weaker homological condition appears in place of the ENR condition. In 

terms of this original formulation, a more appropriate name for what we have called 

a generalized manifold might be an ENR homology manifold. More recently, studies 

of cell-like decompositions of manifolds have adopted the definition given at the 

beginning of this section. For the sake of brevity, we shall conform to this more 

recent usage, acknowledging that our generalized manifolds are not as general as 

possible. There are a variety of equivalent definitions of generalized manifold in the 

literature; they are reconciled in [5] and in [6, Theorem 15.71. 

The basic fact linking cell-like decompositions of manifolds to generalized mani- 

folds is the following. If f: M + Y is a resolution of a finite-dimensional topological 

space Y, and if dim M = n, then Y is a generalized n-manifold. (Use [ 16, Corollary 

3.31 to deduce that Y is an ENR, and use [24, 251 to deduce that Y has the correct 
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local homology.) The converse of this fact is the Resolution Conjecture: every 

generalized n-manifold has a resolution. As of this writing, this conjecture remains 

open. It was supposed to have been settled affirmatively by Quinn’s argument in 

[20] for n 2 5, and then extended to n = 4 using [ 191. However, the recent discovery 

of an oversight in the argument in [20] has reopened the question. Quinn corrects 

this oversight in [21] and recovers part of the theorem of [20]. For instance, one 

of the conclusions of [21] is that for n 2 4, a connected generalized n-manifold has 

a resolution if some nonempty open subset has a resolution. Nonetheless, the 

Resolution Conjecture in its full generality remains open in dimensions ~4. In 

dimension 3, even less is known about this problem. 

We now state the two theorems we shall need for our proofs. 

Theorem 2.3 (Resolution Theorem for Certain Generalized Manifolds). For n 2 4, 

a generalized n-manifold Y has a resolution if the nonmanifold set of Y is contained 

in a closed subset of Y which is an (n - 1)-manifold. 

This resolution theorem was first established in dimension n 2 5 in [8]. It can be 

extended to dimension n = 4 by using [ 18, 191: This will be explained in Section 3. 

Theorem 2.4 (Cell-like Approximation Theorem). Suppose f: M+ N is a cell-like 

map from an n-manifold M to an n-manifold N, where n 2 4. Let p be a metric on N. 

Then for every map 6 : N + (0, co), there is a homeomorphism h : M -+ N such that 

p(f(x), h(x))<6of(x) for everyxEX. 

Theorem 2.4 was proved for dimensions n 3 5 in [23]. It can be extended to 

dimension n =4 by using [18, 191. This will be explained in Section 3. 

We record a simple but useful corollary of Theorem 2.4. 

Corollary 2.5. Suppose f: M + Y is a cell-like map from an n-manifold M to a 

topological space Y, where n 3 4; and suppose U is an open subset of p( Y). Let p be 

a metric on Y. Then for every map 8 : Y + [0, ~0) which is strictly positive on U, there 

is a cell-like map g : M + Y which maps g-‘(U) = f ‘( U) homeomorphically onto U 

and such that 

g=f ong-‘(Y-U)=fz(Y-U) 

and 

~(.f(x), g(x)) s 6 of(x) for every x E X. 

Proof. Le y : Y + [0, co) be a map such that y-‘(O) = Y - U and y s 6. Theorem 2.4 

provides a homeomorphism h :f’( U) + U such that 

o(f(x), h(x)) < 7 Of(x) for every x ~fz( U). 

Define a function g : M + Y by g = h uf/f’( Y - U). g is continuous at points of 

f’( Y- U) because y( Y- U) = 0. The other required properties of g are 

obvious. 0 
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We mention an obvious consequence of the preceding proposition. 

Corollary 2.6. If a topological space has a resolution, then it has a conservative 

resolution. 

3. 4-dimensional versions of Theorems 2.3 and 2.4 

The principal theorems of [ 18, 191 are the Controlled h-Cobordism Theorem and 

the Controlled End Theorem. The Controlled h-Cobordism Theorem applies to 

(n + 1)-dimensional controlled h-cobordisms between n-manifolds, and the Control- 

led End Theorem applies to (n + 1)-manifolds with controlled ends. In [18], these 

theorems are established for dimensions n 2 5; and [ 191 deals with the case n = 4. 

We shall indicate how these two theorems lead to proofs of the 4-dimensional 

versions of Theorems 2.3 and 2.4. 

One of the important consequences of the Controlled End Theorem is the following 

result. 

Theorem 3.1 (Destabilization Theorem). Let X be a generalized n-manifold, where 

n 2 4. If X x U% has a resolution, then so does X. 

We recall the idea of the proof of Theorem 3.1 from [18, 191. Let f: N+ X xlR 

be a resolution of X x R. Let r : X x R + X denote projection. Then N has two 

controlled ends with respect to the control map r of: N+ X. In this situation, the 

Controlled End Theorem provides a completion g : N + X of r of: N + X. It follows 

that 15 is an (n + I)-manifold with boundary, int fi = N, g(N = n of; afi has two 

components MO and M, , and both glA4, : M,, + X and g]M, : M1 -+ X are resolutions 

of x. 

We are now ready to prove Theorem 2.3 for 4-manifolds. 

Proof of Theorem 2.3 in dimension 4. Let Y be a generalized 4-manifold whose 

nonmanifold set is contained in a closed subset 2 which is a 3-manifold. Then 

Y x R is a generalized 5-manifold whose nonmanifold set is contained in the closed 

subset 2 x R, and 2 x R is a 4-manifold. Fortuitously, the 5dimensional version of 

Theorem 2.3 is proved in [8], and it provides a resolution of Y x Iw. Now Theorem 

3.1 implies that Y has a resolution. 0 

We mention an alternative proof of this resolution theorem. In [21], it is established 

that, for n a 4, a connected generalized n-manifold has a resolution if some nonempty 

open subset has a resolution. This result covers the special type of generalized 

manifolds we have been considering. So Theorem 2.3 follows from the theorem in 

[21]. Our reason for citing [8] rather than [21] as our primary source of resolution 

theorems is that [8] has historical priority, and because we believe that this paper’s 



20 F. D. Aneel/ Resolving wild embeddings 

natural audience will find the arguments in [8] more accessible. Note, however, that 

the conclusions of [21] are stronger than those of [8]. 

The rest of this section is devoted to a proof of Theorem 2.4 in dimension 4. Our 

proof uses the following terminology and lemma. 

If (p : X x [0, l] + Y is a homotopy and % is a cover of Y such that ~({x} x [0, 11) 

is contained in an element of % for each x E X, then cp is called a Whomotopy. If 

f: X + Y is a map and % is a cover of Y, we let 

j-‘%={f’(U): UE%}. 

A map f: X + Y is a fine homotopy equivalence if for every open cover % of Y, 

there is a map g : Y + X, an f ‘Oil-homotopy rp : X x [0, l] + X, and a 9%homotopy 

$ : Y x [0, l] + Y such that rpO = idx, cpr = g of, &, = id y, and $r = f 0 g. According 

to [2, 141, a cell-like map between ANRs is a fine homotopy equivalence. 

Suppose X c Z. If 021 is an open cover of 2, and rp : 2 x [0, l] + 2 is a %-homotopy 

such that cpO = id=, cpllX = id, for t E [0, 11, and p,(Z) = X, then rp is called a Q-strong 

deformation retraction of Z onto X. If rr : Z + Y is a map such that for every open 

cover % of Y, there is a r-‘Q-strong deformation retraction of Z onto X, then X 

is called a controlled strong deformation retract of Z with respect to n. 

Suppose f: X + Y is an onto map. Let Z(f) denote the mapping cylinder of J: 

We identify X and Y with the ‘ends’ of Z(f) in the usual way. Let [x, t] denote 

the image of (x, t) under the quotient map X x [0, l] + Z(f). Then for each x E X, 

x is identified with [x, 0] and f(x) is identified with [x, 11. Let m : Z( f) + Y denote 

the usual mapping cylinder retraction; thus ~[x, t] = f(x) for every [x, t] E Z(f). 

Consequently, r[X = f and 7~1 Y = idy. 

Lemma 3.2. Suppose f: X + Y is a cell-like map between ANRs. Then X and Y are 

both controlled strong deformation retracts of Z(f) with respect to n : Z( f) + Y 

Proof. It is easy to see that Y is a controlled strong deformation retract of Z(j) 

with respect to rr. Define the homotopy K : Z(f) x [0, l] + Z(f) by 

K([X, t],U)=[X,(l-U)t+U] fOr[X, t]EZ(f), uE[O,l]. 

Then K is a strong deformation retraction of Z(f) onto Y such that r 0 K({Z} x 

[0, 11) = rr(z) for each z E Z(f). So K is a 6’ Q-strong deformation retraction of 

Z(j) onto Y for each open cover % of Y. Also K1 = r. 

The method of producing controlled strong deformation retractions of Z(f) onto 

X is more involved, and occupies the remainder of the proof. 

Let % be an open cover of Y. For each open cover 7f of Y and each positive 

integer k let 

k”lr={V,u-. *uVk: V,Evforl<i6kand VinVi+,#O forl<i<k}. 

There is an open cover v of Y such that 47f refines %. We now invoke the fact 

that f: X + Y is a fine homotopy equivalence to obtain a map g : Y+ X, an 
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f’ y-homotopy cp :X x [0, l] + X, and a “Ir-homotopy $: Y x [0, l] + Y such that 

‘pO = idx, ‘pr = g of, ILo = idy and $, =fo g. 

The homotopy cp : X x [0, l] + X is used to define a retraction r : Z(j) + X; simply 

set r[x, t] = cp(x, t) for [x, t] E Z(f). r is a retraction because r[x, 0] = cp(x, 0) = x = 

[x, 0] for each x E X. Also rl Y = g, because r[x, l] = cp(x, 1) = g of(x) = g[x, l] for 

each xeX. Hence, rorr=goo. 

Next, we produce a K’2’%‘-homotopy x : Z(f) x [0, l] + Z(f) such x0 = idzcrj and 

x1 = r. x breaks naturally into four distinct stages. 

I 

K4r for t E [0, f], 

xt= r;x:I,“O?i ;: =;q 
234, 

r” K4-41 for tE[$l]. 

x is well defined because K,=TT=$~oT, ~,O~=fOgO~=~Ogorr=K,“go~, 

and KoOgOr= gOn=rOn=roK,. So x0 = K~= idzcn and x, = r 0 ~~ = r. During 

each of the time periods [0, i] and [$, i], v maps each track of x to a point in Y; 

while during each of the time periods [a, +] and [i, 11, rr maps each track of x into 

an element of W: Thus, x is a 6’2V-homotopy from idzcr, to the retraction 

r:Z(f)+X. 

Unfortunately, x is not a strong deformation retraction because it fails to fix the 

points of X. The following proposition remedies this failure. 

Proposition 3.3. Suppose r : Z + A is a retraction map from an ANR Z onto a closed 

subset A (rlA = idA), W is an open cover ofZ, and x : Z x [0, l] + Z is a W-homotopy 

such that x0 = id, and x, = r. Then there is a 2 W-homotopy o : Z x [0, l] + Z such that 

o. = idz, w, = r, and w,]A = id, for t E [0, 11. 

The uncontrolled version of this proposition (with no mention of an open cover 

W) appears as [15, Theorem 2.11. The proof given there also yields a proof of the 

proposition stated here, if one pays attention to the tracks of homotopies and uses 

the following controlled version of Borsuk’s Homotopy Extension Principle at the 

appropriate point. 

Propositiuz 3.4 (Controlled Borsuk Homotopy Extension Principle). Suppose C is a 

closed subset of a metrizable space T, Z is an ANR, x : (T x (0)) u (C x [0, 11) + Z is 

a map, and W is an open cover of Z such that x[C x [0, l] is a W-homotopy. Then x 

extends to a W-homotopy X : T x [0, l] + Z. 

With a little care, the usual proof of the Borsuk Homotopy Extension Principle 

[ 15, Theorem 2.21 can be modified to a proof of the controlled version. 

Z(f) is an ANR because f is a proper map between ANRs [15, Theorem 1.21. 

Given the 6’2”lr-homotopy x: Z(f) x [0, l] + Z(j) from idzcn to the retraction 
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r : Z(f) + X, the above proposition provides a K’4’tr-homotopy w : Z(f) x [0, l] + 

Z(f) from id=(f) to r such that q/X = idx for all t E [0, 11. Thus, w is a K’ Q-strong 

deformation retraction of Z(f) onto X. This completes the proof that X is a 

controlled strong deformation retract of Z(f) with respect to n. q 

Proof of Theorem 2.4 in dimension 4. Suppose f: M + N is a cell-like map between 

4-manifolds. Our proof has three steps. First, we prove that Z(f) is a manifold. 

Then we argue that Z(f) is a controlled h-cobordism with respect to the map 

rr: Z(f) + N. Last, we invoke the Controlled h-Cobordism Theorem to obtain a 

homeomorphism from M to N approximating J: 

Let p be a metric on N. Define the metric u on N x [0, l] by 

a((.~,, ri), (y2, fJ) = maxMy,, ~4, I4 - 41. 

Consider the cell-like map between 5-manifolds 

fx id,,,, :Mx(O, l)+ Nx(0, 1). 

By virtue of [23], Theorem 2.4 holds in dimensions ~5. Hence, there is a homeo- 

morphism G: M x (0,l) + N x (0,l) such that 

a((f(x), t), G(x, t)) < 1 - t for all (x, t) E M x (0, 1). 

It follows that G extends to a map G: M x (0, l] + N x (0, l] such that 6(x, 1) = 

(f(x), 1) for all x E M. Let Z = M x [0, 1) uG N x (0, 11. Clearly, Z is a 5-manifold 

with boundary, and aZ is homeomorphic to the disjoint union of M and N. 

Apparently, Z is homeomorphic to M x [0, l] ud N x (0, 11, and the latter space is 

clearly homeomorphic to the mapping cylinder Z(f). Thus, Z(f) is a 5-manifold 

with boundary, and aZ(f) is the union of the two ends, M and N, of Z(f). 

To prove that Z(f) is a controlled h-cobordism with respect to the map rr : Z(f) + 

N, we must produce, for each map y : N + (0, a), strong deformation retractions 

of Z(f) onto M and N with track-size bounded by y in the following sense. Under 

each deformation, the track of every point z E Z(f) is mapped by 7~ to a set of 

diameter < y 0 V(Z). Suppose we are given a map y : N + (0, M). There is an open 

cover Ou of N such that for each U E 011, diam U < y(y) for every y E U. Lemma 3.2 

provides K’%!-strong deformation retractions of Z(f) onto M and N. Clearly, 

these deformations have track-size bounded by y in the sense just mentioned. 

Let S : N + (0, 00) be a map. Since Z(f) is a S-dimensional controlled h-cobordism 

with respect to the control map rr : Z(f) + N, then the Controlled h-Cobordism 

Theorem of [19] provides a homeomorphism H : M x [0, l] + Z(f) such that 

H(x, 0) = [x, 0] and p(rr 0 H(x, t), .TT[X, 01) < 6 0 ~[x, 0] 

for all x E M, t E [0, 11. 

Thus, H maps M x (1) homeomorphically onto N. Since TIN = idN, then a homeo- 

morphism h : M + N is defined by h(x) = rr 0 H(x, 1) for x E M. Recall that ~[x, 0] = 

f(x) for each x E M. Therefore 

p(h(x),f(x)) < 6 of(x) for each XE M. 0 
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4. The proof of Theorem 2.1 in a special case 

Our proof requires the following definition and lemma. A space X is a generalized 

n-manifold with boundary if X is an ENR which has a closed subset, denoted ax, 

such that 8X is a generalized (n - 1)-manifold, int(X) = X - aX is a generalized 

n-manifold, and H,(X, X -{x}) =0 for each XE 3X. c?X is called the boundary of 

X, and int(X) is called the interior of X. 

Lemma 4.1. Suppose that X,,, X, and Z are closed subsets of a topological space Y 

such that X0 u X, = Y and X,, n X, = 2. Then, Y is a generalized n-manifold and Z 

is a generalized (n - 1)-manifold if and only if X0 and X, are both generalized 

n-manifolds with boundary equal to 2. 

Proof. First, assume that Y is a generalized n-manifold and Z is a generalized 

(n - I)-manifold. Hu [15, Proposition 9.11 implies that X0 and X, are ENRs, and 

Raymond [22, Theorem 21 reveals that X0 and X1 have the correct local homology 

to be generalized n-manifolds with boundary equal to Z. 

Second, assume that X0 and X1 are generalized n-manifolds with boundary equal 

to Z. Hu [15, Proposition 10.11 implies that Y is an ENR, and Raymond [22, 

Theorem 41 reveals that Y has the correct local homology to be a generalized 

n-manifold. Cl 

Now suppose e: M + N is an embedding of an (n - 1)-manifold M in an n- 

manifold N, where n 3 4. In this section we make the following simplifying assump- 

tion: e(M) is a closed subset of N which separates N into exactly two components, 

and e(M) is the frontier of each component of N - e(M). 

Brown [7] provides a bicollar on e(r(e)) in N. By restricting this bicollar and 

tapering it near e(w(e)), we obtain a closed map c: M x [0, l]+ N such that 

c(x,~) = e(x) for each XE M, clr(e)x[O, l] is an embedding, and c-‘(e(x))= 

{x} x [0, l] for every x E w(e). Then c(M x [0, 11) separates N into exactly two 

components. Let X,, and X, be the closures of the two components of N - 

c(Mx[O,l]) such that c(Mx{O})cX, and c(Mx{l})cX,. Lemma 4.1 reveals 

that X0 and X, are generalized n-manifolds with boundary, and that ax,, = c( M x (0)) 

and ax, = c( M x { 1)). 

Set 

Y = X, (CIM~IO))U M x [O, 11 ucci~x~l)) X,. 

In other words, to obtain Y, remove c( M x [0, 11) from N and sew in M x [0, 11, 

using clM x (0) to attach M x (0) to ax,, and using clM x(1) to attach M x (1) to 

aXi. Lemma 4.1 implies that Y is a generalized n-manifold. 

Define the map f: Y + N by f(x, t) = c(x, t) for each (x, t) E M x [0, 11, fix, = id, 

and AX, = idx, . f is a cell-like map, because f’(x) is an arc for each x E e(w(e)), 

and f’(x) is a point for each XE N - e(o(e)). 
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Observe that the nonmanifold set of Y, V( Y), lies in w(e) x (0, 1). Hence V( Y) 

is contained in the (n - 1)-manifold M x (0, 1) which is a closed subset of Y. 

Consequently, the Theorem 2.3 provides a cell-like map g : P + Y from an n-manifold 

P onto Y Moreover, Corollary 2.6 allows us to assume that g : P + Y is a conservative 

resolution. 

Since the composition of cell-like maps is cell-like (an immediate consequence 

of [ 16, Theorem 1.4]), then fo g : P+ N is a cell-like map. Since g : P+ Y is 

conservative, it is a homeomorphism over Y - (w(e) x (0, 1)) =f’( N - e(w(e))). 

Alsofis a homeomorphism over N - e(w( e)). Consequently,fo g is a homeomorph- 

ism over N- e(w(e)). 

Suppose p is a metric on N, and 6 : N + [0, 00) is a map which is strictly positive 

on e( o( e)). There is a map y : N + [0, 00) which is strictly positive on e( w (e)) and 

which has the following property: if p(x, y) < y(y), then p(x, y) G S(x) for all x and 

y in N. Set U = ~~‘(0, CD). Since e(w(e)) = U, then j-0 g is a homeomorphism over 

N-U. 

Now, we invoke Theorem 2.4 to obtain a homeomorphism hU : (fo g)-‘(U) + U 

such that 

p(fo g(x), h,(x)) < Y of0 g(x) for every x E (fo g)-‘( W. 

Define the function h : P + N by 

h = h, uf0 g](fo g)-‘( N - U). 

Since y = 0 on N - U, then h is continuous. Since f 0 g is a homeomorphism over 

N - U, then h : P+ N is a homeomorphism such that 

p(fog(x),h(x))syofog(x) foreveryxEP. 

Define the cell-like map K : N + N by K = f 0 g 0 h-l. We shall prove that K is. 

a d-resolution of e : M + N. First, we define the mapj : M + N by j(x) = h 0 g-‘(x, +) 
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for each x E M. Since g-’ embeds M x (0,l) in P and h : P + N is a homeomorphism, 

then j : M + N is a tame embedding. K 0 j = e because 

K 0 j(x) =fo g 0 h-’ 0 h 0 g-‘(3 4) 

=f(x, 4) = c(x, 3) = e(x) for each x E M. 

Since fo g is a homeomorphism over N - e(w(e)), and since h : P+ N is a homeo- 

morphism, then K is a homeomorphism over N - e(o(e)). Finally, for each x E N, 

Ax, K(x)) =dh o h-‘(xLf” go h-‘(x)) 
c y of0 g 0 h-‘(x) = y 0 K(x). 

Hence, p(x, K(x))G 6(x) for each x E N. Cl 

5. The proof of Theorem 2.1 in the general case 

The proof in this section is a rather technical convergence argument. We make 

repeated local applications of the special case of Theorem 2.1 established in the 

previous section. We thereby obtain a sequence of cell-like maps whose limit is the 

sought-after &resolution. 

We begin with some useful general information. Recall that a map f: X + Y is 

proper if f’(C) is compact for every compact subset C of Y. A map f: X+ Y 

between metrizable spaces is proper if and only iff is a closed map such that f’(y) 

is compact for each y E Y. A metric u on a space Y is proper if it has the property 

that a closed subset of Y is compact if and only if its a-diameter is finite. The follow- 

ing two facts establish a connection between proper metrics and proper maps. 

(1) If p is a metric on a locally compact and a-compact space Y then there is 

a proper metric u on Y such that p < (T. Simply set 

where cp : Y + [0, co) is a proper map. 

(2) If u is a proper metric on a space Y, f: Y+ Y is a map, and r is a constant 

such that a(y, f(y)) s r for each y E Y, then f is a proper map. Indeed, if C is a 

compact subset of Y, then f’(C) is compact b.ecause 

cT-diam(f’( C)) s a-diam( C) +2r. 

Finally, we observe that a proper metric is complete. 

Suppose e : M + N is an embedding of an (n - I)-manifold M in an n-manifold 

N, where n 2 4. Suppose p is a metric on N. Let 6 : N + [0, CO) be a map which is 

strictly positive on e(w(e)). 

We can assume that p is a proper metric on N. Indeed, there is a proper metric 

u on N such that p =G (+. Clearly, a b-resolution of e with respect to the metric u is 

also a &resolution of e with respect to the metric p. So p can be replaced by a, if 
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necessary. Also, we can assume 6 s 1; because otherwise 6 can be replaced by 

min{S, 1). 

A connected open subset W of M is called an absolute separator if it has the 

following property. If f: M + N is any embedding and V is any connected open 

subset of W, then there is a connected open subset U of N such that f(M) n U = 

f( V), f( V) is a (relatively) closed subset of U which separates U into exactly two 

components, and f ( V) is the (relative) frontier in U of each component of U -f ( V). 

Observe that any connected open subset of an absolute separator is itself an absolute 

separator. It is a fact that M is covered by absolute separators. Indeed, if W and 

W* are connected open subsets of M with compact closures such that cl(W) 

contracts to a point in W* and cl( W*) contracts to a point in M, then W is an 

absolute separator. (See [l, Theorem VI.4 and Proposition XV.121.) 

Let V, = M - w(e). There is a locally finite open cover {v/i: i 2 0) of M such that 

for each i> 1, Vi is an absolute separator lying in e-‘(6-‘(O, OO)). For each i30, 

set Di = M - (iJj,i y). Then each Di is a closed subset of M, l&c V,, Di c II-, u Vi 
for each is 1, and {int(D,): iSO} covers M. 

Set 6, = 6, G,, = idN and f. = e. We shall construct three sequences: a sequence of 

maps &: N + [0, CO), a sequence of cell-like maps Gi: N + N, and a sequence of 

embeddings f; : M + N with the following properties. 

(1) 6i c 22’6. Furthermore, for 0 < <i-l and for all x, YE N,‘if p(x,y)c&(x), j 

then 

p( Gj 0 . . . 0 G,_,(x), G, 0 . . . 0 Gi_,(y)) < 2-%(x). 

(2) p(x, G,(X))< 6i(x) for each XE N. 

(3) G, of; =f;_, . 

(4) Gi is a homeomorphism over N -J;-,(w(J;-i)). 

(5) hIDi- =LllDi-l. 

(6) W(A) c O(.L,)-Di. 

The construction of {6,}, { Gi} and {f;} proceeds by induction. Suppose i 2 1, and 

assume we have S,, G,, and A for Osj < i satisfying properties (1) through (6). 

Since V, is an absolute separator, there is a connected open subset U of N such 

thatJ;-,(M) n CJ =f;-i( V,), J;-i( K/i) . IS a closed subset of U which separates U into 

exactly two components, andJ;_,( Vi) is the (relative) frontier in U of each component 

of U -Jpl( Vi). We shall apply the special case of Theorem 2.1 established in Section 

4 to the embedding f;_1l V, : V, + U. The secret to achieving the desired outcome is 

in choosing & correctly. 

First we observe thatJ;_r( K/i) c K’(O, 00). We argue that, in fact, vi nfi'(s-'(0)) = 

0 for O< j < i. This is clear for j = 0. For 1 cj < i, if x ~fi’(K~(0)), then 

p(J(x),f;-I(X)) = p(f;(x), Gjoh(X)) s 6,(4(x)) G 2-‘6(A(x)) =O, making &r(x) = 
f;(x). Consequently,fi’(K1(0)) cf;_,(K’(0)) for 1 s j < i. Thus, V, nfi?,(K’(O)) = 

0 implies that & nfi’(K’(0)) = 0 for 1 sj < i. 

Our second step is to produce an open subset I? of U n 6-‘(0, ~0) such that 

J_i(~(f;-~] V,)) c i and f,--‘,(cl(i))c (V, uw(J-,))-Di-r. Set Z=w(f;_,)- &. 2 
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is a closed subset of M. (6) implies that Di_1 n w(J_,) = 0. Hence, ((A4 - vi) u 

DiPi) n ~(f;_~) = Z. Consequently, in the subspace A4 -Z, ((M - &) u Di_1) -Z 

and @(J-r) -Z are disjoint (relatively) closed sets. So there are disjoint open subsets 

Q and R of M-Z such that ((M- &)uDiP1)-Zc Q and w(J;_~)-Z= R. Since 

DiPi n Z = 0, it follows that Di_r c Q; also we note that {V;, Q, Z} covers M, and 

that R n (Q u Z) = 0. From these three facts, we deduce that A4 - Q c 

(vi u w(J;_,)) - Di_, and that R c vi. Since J_,(Q) and f;-,(R) are disjoint (rela- 

tively) open subsets of f;_,(M), and since J;_,(R) cJ_~( Vi) c U n S-‘(0, a), then 

there are disjoint open subsets Q and R of N such that J-,(Q) =&-i(M) n 0, 

f;-,(R) =J_,(M) n I? and R c Un F’(O, co). It follows that JPl(o(J;-,l vi)) c I?, 

because w(J_,l vi) = o~(J_~)n V, = ~(f;:-~) -Zc R =fi?,(I?). Since Qncl(I?) = 0, 

then Qnf;_‘l(cl(R)) = 0. Consequenty, fi?,(cl(d))c M- Qc (vu o(J;_,))- 

Oi-, . Thus, I? has the desired properties. 

We now choose the map Fi: N+ [0, ~0) so that 6;‘(0,00) = I? and Si(X)s 

($)p(x, N - d) for each x E N, and so that ai satisfies property (1). This is possible 

because I? c X1(0, CO) and because 6 and G, 0 . . * 0 Gi_l are continuous for 

OSjSi-1. 

Since J;_,(o(f;P,l V,)) c S;‘(O, cc , we can apply the special case of the Theorem ) 

2.1 to the embedding J_,l V,: V, + U. In this way, we obtain a ($1 U)-resolution 

r: U+ U ofJ_,lK: V-+ U. Let cp: 6 -+ U be the tame embedding associated with 

r; thus r 0 cp =f;p,l vi. 

Since p(x, T(x)) s &(x) for each XE U, and since si = 0 on N- U, then a map 

Gi:N+N is defined by Gi=ruidN-“. Clearly, G, : N + N is a cell-like map 

satisfying p(x, Gi( x)) < &(x) for each x E N. Define the function fi : M + N by 

JI: = cp u (~_,IM - y/i). Then clearly G, of; =APl. 

We shall now prove that J; is continuous. It suffices to consider a sequence {x,} 

in V, which converges to a point x E M - &, and to prove that {A(xj)} converges 

to J;(x). Since {J_,(xj)} converges to J-r(x), and J;-,(x) =f;(x), then it clearly 

suffices to show that {p(J(xj),JP,(xj))} converges to 0. Note first that 

P(A(Xj),A-l(Xj)) =~(J;(xj), Gi O.A(Xj)) s si(A(Xj)) 

c (i)P(f;(Xj), N-R) c ($)P(J;(Xj), N- U). 

Hence, 

p(J;(x,), N- U) s P(J;(Xj),f;Pl(Xj)) +p(A-i(Xj), N- U) 

6 (t)P(A(xj), N- U)+p(f;-1(X,), N- U). 

So, 

(i)P(J(Xj), N- U) G p(Al(Xj), N- U). 

Combining the first and third of these inequalities, we have 

P(A(Xj),h-l(Xj)) =Z p(J;-l(xj), N- U). 
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Now J-r(x) E N - U, because x E A4 - vi. Since {fi_i(xj)} converges to h-i(x), then 

the sequence {p(f;_,(x,), N- u)} converges to 0. We conclude that the sequence 

{P(f;(xj),.Ll(xj))) converges to 0. 
NOW that we know that f; : M + N is continuous, we easily deduce that it is an 

embedding from the equation Gi of; =J;_, and the fact that &l: M + N is an 

embedding. 

Since r: U+ U is a homeomorphism over U-~;-,(W($-~[~)), then Gi is a 

homeomorphism over ( U -f;_l(w(J_ll K/i))) u (N - U). Thus, Gi is a homeomorph- 

ism over N -f;-,(w(f;_r)). 

Now we shall prove that A =J;_, on M-f;_‘,(a). Let x E M-L?,(E). Then 

J-i(x) E N - R. So 

s 6,(&(X)) s (;)P(~;(x), N-i). 

Since p(f;(x), N-d) = 0. It follows that f;(x) E N-I? and that S,(f;(x)) = 0. Since 

p(f;(~),f;~l(x)) s Si(h(X)), we conclude that A(X) =5_,(x). 

Since fz,(i) n Di_1 = 0, then the result of the previous paragraph implies that 

AIDi-I =f;-llDi-l. 
.J V, is tame because f;)Vi=Cp. Since J =J;_1 on M -f;_‘,(cl(i)), then f; is 

also tame on M -(f;?,(cl(i)) u ~(f;_~)). Consequently, w(J) c (fl_‘,(cl(l?)) u 

W(J;_l)) - Vi. Since_Ql(cl(d)) C V z u o(J_,), we conclude that w(J) c w(J-~) - V,. 

~(f;_l) - V, c w(J;-l)-Di, because Di c Di-1 u Vi and Dip, n ~(fi_~) = 0. There- 

fore, w(J) C W(f;_,) - Di. 

We have now completed the verification that Si, Gi and 1; satisfy properties (1) 

through (6). Hence, the sequences {S,}, { Gi} and {f;} can be constructed as desired. 

We now argue that for each i 2 0, the sequence {G, 0 G,+, 0 * * .o G,: j 2 i} con- 

verges to a cell-like map Hi : N + N such that 

p(Gi o Gi+i o. . * 0 G,(x), H,(x)) < 2-‘6(x) for each x E N. 

Indeed, properties (1) and (2) imply that 

p(Gi 0. . .o Gj_l(x), Gi 0. . .O G,p, 0 G,(x))c2-‘6(x+2-’ 

for each x E N. Hence, the map Hi: N + N exists as asserted. Furthermore, 

p(x, H,(x)) s 2-‘+I for each XE N; indeed, p(x, Hi(X))sp(x, G,(x))+p(G,(x), 

H,(x)) < &(x) +2-‘6(x) s 2 . 22’S(x) c 2-‘+I for each x E N. Since p is a proper 

metric, then Hi is a proper map. Thus, Hi is a closed map which is the uniform 

limit of surjections; this forces Hi to be a surjection. Each composition 

Gi 0 G,+, 0 . . . 0 G, is cell-like as a consequence of [ 16, Theorem 1.41. So Hi is a 

proper surjection which is the limit of cell-like maps. Now [17, Theorem 3.11 implies 

that Hi is a cell-like map. We note that for isj, since the sequence 

{ Gi 0 Git, 0 . . .o Gk: k 2 j} converges to both Hi and Gi 0 . . .o G,_, 0 H,, then Hi = 
Gi o . . . 0 G,_, 0 Hi. We are most interested in the cell-like map Ho: N + N. So we 
set H = Ho. Then, p(x, H(x)) = p(G,(x), H,(x)) s 6(x) for each x E N. 
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Next we observe that {A} converges uniformly to a map f: M+ N. Indeed, 

properties (l), (2) and (3) imply that p(A(x),J-r(x)) = p(_A(x), Gi ~A(x))s 
S,(J(x)) ~2~‘6(A(x)) < 2-’ for each XE M. From property (5), we deduce that 

filDi =JIDi for each j 3 i. Hence, ADi =J[Q for each is 1. Property (3) implies 

that Go~...OGioJ;=e for each izl. Consequently, for each i> 1, 
Goa... oG~o~~Q=G,,o.. . 0 Gi oJIDi = elD,. Thus, H of[Di = elDi for each i 2 1. 

Since u ia r Q = M, we have H of = e. Since e is an embedding, it follows immediately 

that f is an embedding. Property (6) implies that each filint(Di) is tame. Hence, 

each flint(Q) is tame. Since {int(Di): i 2 0) covers M, we conclude that f is tame. 

Our final task is to prove that H is a homeomorphism over N -e(w(e)). We 

begin this task by establishing that Go 0 * . .o G, is a homeomorphism over N - 

e(w( e)). This is clear for i = 0. Let i 2 1 and inductively assume that Go 0 . . . 0 G,_, 

is a homeomorphism over N - e(o(e)). Properties (3) and (6) imply that 

Gj o&(w(A)) ~fj_,(w(fj_~)) for each ja 1. Hence, G,o . . .o Gi-r oA_,(o(J-r)) c 

e(w( e)). Consequently, (G,, 0 * * * 0 G,_r)-‘(N-e(w(e)))c N-j_,(w(f;_,)). It now 

follows from property (4) that Gi is a homeomorphism over (G,o * * * 0 Gi_,)-‘( N - 

e(w(e))). With the help of the inductive hypothesis, we now conclude that 

G,,o.. * 0 Gi is a homeomorphism over N - e(o(e)). 

Next we show that H is injective over N - e(w(e)). To this end let x1 and x2 be 

distinct points of H-‘( N - e(w(e))). Choose i 3 1 so that p(x,, x2) > 2-‘+‘. Then 

2-it’<p(xr,x,)~p(x,, H,+r(Xi))+p(H,+r(xr), H,+l(X*))+P(H,+,(X,),X,) 

s2pi+p(Hi+,(x,)y Hi+I(xz))+2-i=p(Hi+l(~1)y Hi+l(x2))+2-‘+‘. 

Hence, p(Hi+,(x,)p HitI( > 0. SO Hi+,(x,) it Hi+,(x,). For j= 1, 2, since 

Go”... 0 G, 0 Hi+,(xj) = H(xj) E N - e(ti(e)), 

then 

H,+l(xj)E (Go0 * . .oG,))‘(N-e(w(e))). 

Since Go 0 * * * 0 G, is a homeomorphism over (Go 0 . . * 0 Gi)-‘( N - e(w(e))), we 

conclude that G,o . . .o Gi 0 Hi+,(x,) # G,,o * * * 0 G, 0 Hi+l(xz). Therefore, H(x,) # 

H(xJ. We have established that H is injective over N - e(w(e)). 

Since H is a proper map, so is HIH-‘( N - e(w(e))). Thus, over N - e(w(e)), H 

is a closed injective map and, hence, a homeomorphism. Cl 

6. Resolving wild embeddings of a generalized (n - l)-manifold in an n-manifold 

With only simple modifications, the preceding proof generalizes to the case of 

an embedding e : A4 + N of a generalized (n - I)-manifold A4 in an n-manifold N. 

We describe these modifications in this section. 

Let e: M+ N be an embedding of a generalized (n-1)-manifold in an n- 

manifold. The definitions of e being tame, the tame set T(e) of e,‘the wild set w(e) 

of e, and a &resolution of e are verbatim the same as those given in Section 2. 
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Before stating the appropriate resolution theorem for wild embeddings of general- 

ized (n - 1)-manifolds in n-manifolds, we make a relevant observation. If an embed- 

ding of a generalized (n - 1)-manifold M in an n-manifold N is tame, then M x Iw 

is an n-manifold. The reason is that M is covered by open subsets U such that 

U xR embeds in N. Since each U XR is a generalized n-manifold, and since 

generalized n-manifolds obey invariance of domain [l, Theorem VI.101, then each 

U x [w embeds as an open subset of N. Thus, each U x R is an n-manifold. So M x R 

is an n-manifold. Consequently, in the following theorem, the hypothesis that M x R 

be an n-manifold is no real restriction. 

Theorem 6.1 (Resolution Theorem for Wild Embeddings of Generalized (n - 

1)-Manifolds in n-Manifolds). Suppose e : M + N is an embedding of a generalized 

(n - I)-manzfold M in an n-manifold N, where n 2 4, and suppose M x R is an 

n-manifold. Let p be a metric on N. Then for every map S : N + [0, ~0) which is strictly 

positive on e(w(e)), there is a &resolution of e. 

As in Section 2, Theorem 6.1 has the following tame approximation theorem as 

an immediate consequence. 

Theorem 6.2 (Tame Approximation Theorem for Embeddings of Generalized (n - 

1)-Manifolds in n-Manifolds). Suppose e : M + N is an embedding of a generalized 

(n - 1)-manifold M in an n-manifold N, where n 2 4, and suppose M x (w is an 

n-manifold. Let p be a metric on N. Then for every map 6 : M + [0, CO) which is strictly 

positiveonw(e), there isa tameembeddingf:M+ Nsuch thatp(e(x),f(x))s6(x) 

for each x E M. 

The proof of Theorem 2.2 applies here without change. 

To obtain a proof of Theorem 6.1, one can quote verbatim the proof of Theorem 

2.1 given in Sections 4 and 5, except at one point. This point occurs in Section 4. 

We define the space Y as in Section 4. Again, Y is a generalized n-manifold for 

the reasons given in Section 4. However, Theorem 2.3, which was invoked in Section 

4 to obtain the resolution g : P+ Y, is inadequate here. The reason is that in the 

present case, the nonmanifold set of Y lies in the set M x (0, 1); and M x (0, 1) is 

a generalized (n - 1)-manifold, but not necessarily an (n - 1)-manifold. We over- 

come this obstacle by appealing to a slightly stronger resolution theorem, stated 

immediately below, which covers the present situation. This is the only alteration 

needed to make the proof given in Sections 4 and 5 work here. 

Theorem 6.3 (A Second Resolution Theorem for Certain Generalized Mani- 

folds). For n 2 4, a generalized n-manifold Y has a resolution if the nonmanifold set 

of Y is contained in a closed subset X of Y such that X is a generalized (n - 1) -manifold 

which has a resolution. 
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Proof. Y x R2 is a generalized (n +2)-manifold whose nonmanifold set is contained 

in the closed subset X x Iw’. Since X has a resolution, so does X x [w2. As dim(X x 

[w2) = n + 12 5, it follows from [ll, Corollary 2.131 and [ 131 that X x R2 is an 

(n + 1) -manifold. Now, since n + 2 2 5, [ 81 provides a resolution of Y x R2. Finally, 

two applications of Theorem 3.1 yield a resolution of Y. 0 

We wish to apply this resolution theorem to the generalized n-manifold Y 

mentioned earlier in this section. The nonmanifold set of Y is contained in the 

generalized (n - 1)-manifold M x (0, 1). Thus, it suffices to show that M x (0, 1) has 

a resolution. We are given that M x R is an n-manifold; so idMxIW is a resolution of 

M x Lit. Since n 2 4, Theorem 3.1 implies that M has a resolution. Hence, M x (0, 1) 

has a resolution. 

We conclude this section by showing how the preceding resolution theorem can 

be used in conjunction with the Cell-like Approximation Theorem and the Controlled 

h-Cobordism Theorem to give a quick proof of the following result. 

Theorem 6.4 (Resolution Uniqueness Theorem). Suppose thatf: M + Yandg : N + Y 

are cell-like maps from n-manifolds M and N to a generalized n-manifold Y, where 

n 2 4. Let p be a metric on Y. Then for every map 6 : Y + (0, CO), there is a homeomorph- 

ism h : M + N such that p(f(x), g 0 h(x)) < 6 0 f(x) for every XE M. 

This theorem was originally proved for n 2 5 in [18, Proposition 3.2.31. Also see 

the proof of [19, Theorem 2.6.11. 

Observe that the Cell-like Approximation Theorem follows from this theorem 

simply by setting Y = N and g = idN. 

Proof. Let TV: Z(f) + Y and rrg: Z(g)+ Y denote the usual mapping cylinder 

retractions. Consider the double mapping cylinder Q = Z(f) u yZ(g), and define 

rr:Q+ Y by ~=rr~urr~. 

Set Qo= Q-(M u N). We argue that Q0 is a generalized (n + 1)-manifold. First 

note that (Z(f) - M) u ye vX{,) ( Y x [ 1,2)) is a generalized (n + 1)-man~fold because 

it is the cell-like image of the (n + l)-manifold M x (0,2). Then note that Z(f) -M 

is the closure of a component of [(Z(f)- M) uy=yX(,I (Y x[l, 2))]- Y At this 

point, we conclude that Z(f) - M is a generalized (n + 1)-manifold with boundary 

equal to Y, by invoking Lemma 4.1. Similarly, Z(g) - N is a generalized (n + 

I)-manifold with boundary equal to Y Since Q. = (Z(f) - M) u ,, (Z(g) - N), then 

Lemma 4.1 implies that Q. is a generalized (n + 1)-manifold. 

The nonmanifold set of Q. lies in the resolvable generalized n-manifold Y. Hence, 

Theorem 6.3 together with Corollary 2.6 provide a conservative resolution F,,: P, + 

Qo. F0 extends to a cell-like map F : P + Q where P is an (n + I)-manifold with 

boundary such that int(P) = PO and ?IP can be identified with the disjoint union of 

M and N in such a way that FlaP=id,,,. 
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M and N are controlled strong deformation retracts of Q with respect to the 

map rr: Q+ Y. Indeed, Lemma 3.2 provides controlled strong deformation retrac- 

tions of Z(f) and Z(g) onto their ends. By stacking these deformations, one obtains 

controlled strong deformation retractions of Q onto M and onto N. 

The cell-like map F: P+ Q is a fine homotopy equivalence. One can use the 

controlled homotopy inverses of F to lzft the controlled strong deformation retrac- 

tions of Q onto M and N. This yields controlled strong deformation retractions of 

P onto M and N. Thus, P is a controlled h-cobordism with respect to the control 

map rro F:P+ Y. 

Given a map 6 : Y+ (0, oo), the Controlled h-Cobordism Theorem of [19] 

provides a homeomorphism H: M x [0, l]+ P such that H(x, 0) =x and 

p(r 0 F(x), T 0 F 0 H(x, t)) < 6 0 T 0 F(x) for each (x, t) E M x [0, 11. Define the 

homeomorphism h : M + N by h(x) = H(x, 1) for x E M. Then p(f(x), g 0 h(x)) < 

S 0 f(x) for every x E M. 0 

7. Resolving wild embeddings of a generalized n-manifold with boundary in an n- 

manifold 

Recall from Section 4 that a space X is a generalized n-manifold with boundary 

if X is an ENR which has a closed subset, denoted ax, such that aX is a generalized 

(n - 1)-manifold, int(X) = X -8X is a generalized n-manifold, and H,(X, X - 

{x}) = 0 for each x E 8X. 8X is called the boundary of X, and int(X) is called the 

interior of X. 

In this section, we shall consider only those generalized n-manifolds with boun- 

dary that embed in n-manifolds. If a generalized n-manifold with boundary X 

embeds in an n-manifold N, then int(X) must be an n-manifold. For since general- 

ized n-manifolds obey invariance of domain [l, Theorem VI.101, then int(X) must 

embed as an open subset of N. So the generalized n-manifolds with boundary 

arising here all have manifold interior. 

Suppose X is a generalized n-manifold with boundary. Notice that even if 8X 

and int( X) are manifolds, X need not be an n-manifold with boundary. This occurs 

precisely if 8X is not collared in X. The simplest instance of this phenomenon is a 

crumpled n-cube. A crumpled n-cube is a compact generalized n-manifold with 

boundary which embeds in the n-sphere and whose boundary is an (n - 1)-sphere. 

To obtain a crumpled n-cube which is not an n-manifold with boundary, one takes 

the closure of a bad complementary domain of a wildly embedded (n - 1)-sphere 

in an n-sphere. 

Suppose e : X + N is an embedding of a generalized n-manifold with boundary 

X into an n-manifold N. A point x of 8X is a tame point of e if there is an open 

neighborhood U of x in aX and an embedding EU : U x [0, CO)-, N such that 

e(u) = E,( u, 0) for every u E U and e(X) n E,( U x (0, CO)) = 0. The set of tame 

points of e is called the tame set of e and is denoted r(e). Clearly r(e) is an open 
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subset of ax. The set aX - r(e) is called the wild set of e and is denoted w(e). Thus, 

w(e) is a closed subset of ~JX. 

Suppose e: X + N is an embedding of a generalized n-manifold with boundary 

X into an n-manifold N. e is a fame embedding if every point of 8X is a tame 

point of e. Observe that if e is tame, then 3X x Iw is an n-manifold. The reason is 

that aX is covered by open subsets U such that U x (0, co) embeds in N. Since 

lJ x (0, co) is a generalized n-manifold, invariance of domain [l, Theorem VI.101 

implies that U x (0, co) embeds as an open subset of N. Thus, each U x (0, CO) is an 

n-manifold. So 8Xx (0, CO) is an n-manifold. The theorems stated below produce 

tame embeddings of X in N; consequently, in these theorems, the hypothesis that 

8X x R! be an n-manifold is no real restriction. 

Suppose e: X + N is an embedding of a generalized n-manifold with boundary 

X in an n-manifold N, and suppose aX x Iw is an n-manifold. We establish the 

following notation: 

X+ = X U(ax=axx{o)) 8X x [O, 11 

From Lemma 4.1, one deduces that X+ is a generalized n-manifold with boundary 

equal to 8X x (1). So 

int(X+) =X u (ax=axx{o}) ax x [O, 1) 

is a generalized n-manifold. Observe that if f’ : Xf + N is an embedding, then 

TlX : X + N is a tame embedding. 

Suppose e : X + N is an embedding of a generalized n-manifold with boundary 

X into an n-manifold N such that 3X x [w is an n-manifold, and suppose p is a 

metric on N. Let S : N + [0, ~0) be a map. A S-resolution of e is a cell-like map 

G : N + N to which is associated a tame embedding f: X -+ N such that G Q f = e, 

G is a homeomorphism over N - e(w(e)), and p(x, G(x)) < 6(x) for every x E N. 

We say that this &resolution is collared if the tame embedding f: X + N extends 

to an embeddingF : Xf + N such that G-‘(e(x)) =p({x} x [0, 11) for each x E w(e). 

Thus, when G is collared, we have more precise information about the point inverses 

of G: each point inverse of G is either a point or an arc fiber of r(aX x [0, 11) 

over a point of w(e). Collared &resolutions are the sort of &resolutions which 

arise naturally when considering embeddings of generalized n-manifolds with boun- 

dary in n-manifolds. 

The versions of the Resolution Theorem for Wild Codimension-One Embeddings 

and the Codimension-One Tame Approximation Theorem occurring in previous 

sections can be reformuhted for embeddings of generalized n-manifolds with 

boundary in n-manifolds. This leads to the following three conjectures. 

Conjecture 7.1. Suppose e : X -+ N is an embedding of a generalized n-manifold with 

boundary X in an n-manifold N, where n 2 4, and suppose aX x R is an n-manifold. 
Let p be a metric on N. Then for every map S : N + [0, CO) which is strictly positive on 

e(w(e)), there is a collared &resolution of e. 
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Conjecture 7.2. Suppose e : X + N is an embedding of a generalized n-manifold with 

boundary X in an n-manifold IV, where n *4, and suppose dX XR is an n-manifold. 

Let p be a metric on N. Then for every map S : X + [0,03) which is strictly positive on 

w(e), there isa tameembeddingf: X-+ Nsuch thatp(e(x), f(x)) s S(x) foreachxc X. 

Conjecture 7.3. Suppose X is a generalized n-manifold with boundary, where n 2 4, 

such that X embeds in an n-manifold and 8X x R is an n-manifold. Then int(X+) is 

an n-manifold. 

In this section, we shall prove that these three conjectures are equivalent, and 

that they are true in dimensions n 2 5. We shall also describe the results of Daverman 

[ 121 which establish a special case of these conjectures in dimension n = 4. 

Theorem 7.4. Conjectures 7.1, 7.2 and 7.3 are equivalent. 

Proof. A proof that Conjecture 7.1 implies Conjecture 7.2 can be adapted from the 

proof in Section 2 that Theorem 2.1 implies Theorem 2.2. Simply change M to X. 

Assume Conjecture 7.2. Begin by observing that Lemma 4.1 implies that int(X+) 

is a generalized n-manifold. Conjecture 7.2 provides a tame embedding f: X + N 

of X in an n-manifold N. From [7], we conclude that f extends to an embedding 

f’: X++ N. Now, invariance of domain [l, Theorem VI.101 implies thatp(int(X+)) 

is an open subset of N. So int(X’) is an n-manifold. 

The proof that Conjecture 7.3 implies Conjecture 7.1 is a simplified version of 

the proof in Section 4. The simplification results from the fact that Conjecture 7.3 

implies that the space Y, defined in Section 4, is actually an n-manifold. 

Assume Conjecture 7.3. Suppose e :X + N is an embedding of a generalized 

n-manifold with boundary X in an n-manifold N, where n 2 4, and suppose aX x R 

is an n-manifold. 

Since e(X) is locally compact, there is an open subset No of N such that e(X) 

is a closed subset of No. Brown [7] provides a collar on e(r(e)) in No- e(int(X)). 

By restricting this collar and tapering it near e(w(e)), we obtain a closed map 

c:(aXx[O, l])+(N,-e(int(X))) such that c(x,O)=e(x) for each XE~X, clr(e)x 

[0, l] is an embedding, and c-‘(e(x))={x}x[O, l] for every x~w(e). 

Set 

Z=cl,,[N,-(e(X)uc(aXx[O, l]))] 

=[N,-(e(X)uc(~X~[O,1]))]uc(~Xx{l}). 

Lemma 4.1 implies that 2 is a generalized n-manifold with boundary equal to 

c(aX x (1)). Also, 2 c N, and 82 x R is an n-manifold because a2 is a homeomorphic 

to ax. Hence, Conjecture 3 implies that int(X’) and int(2’) are n-manifolds. 

Set 

Y = X(claxx(o))u ax x [O, 11 u(claxx{l)) 2. 

In other words, to obtain Y, remove c(aX x [0, 11) from N and sew in aX x [0, 11, 
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using c[aX x (0) to attach 8X x (0) to ax, and using claX x (1) to attach dX x (1) 

to LZ. We identify X+ and Z+ with the two subsets 

X(r~aXxIO}~u aX x [O, 11 and XC x LO, 11 u(,laxxtl~) 2 

of Y. This identifies int(X’) and int(2’) with the two open subsets 

X~rl,xxlo)~u aX x LO, 1) and aX x (0, 11 u(,~,~~{~)) Z 

of Y. Since the union of these two open sets is Y, and since int(X’) and int(Z’) 

are n-manifolds, then Y is an n-manifold. 

Define the map g: Y + No by g(x, t) = c(x, t) for each (x, t) E 8X x [0, 11, g]X = e 

and g\Z = id,. Then g-‘(e(x)) =(x)x [0, l] if XE w(e), and g-‘(x) is a point if 

x E No - e( w (e)). Therefore, g is a cell-like map and a homeomorphism over N,, - 

e(w(e)). 
Suppose p is a metric on N, and 8 : N + [0,03) is a map which is strictly positive 

on e(w( e)). There is a map 6,: N + [0, 00) such that 6,~ 6, &, is strictly positive on 

e(w(e)), and &,=O on N-N,,. Next, there is a map y:N+[O,cc) such that y is 

strictly positive on e(w( e)), y = 0 on N - N,,, and y has the following property: if 

p(x, y) < y(y), then p(x, y) < S,(x) for all x and y in N. Set U = yP1(O,oo). Then 

U is an open subset of N,, which contains e(w( e)). Hence, g is a homeomorphism 

over N,,- U, 

Theorem 2.4 provides a homeomorphism hU :g-‘( U)+ U such that 

p(g(x), h,(x)) < y 0 g(x) for every XE g-‘( U). Define the function h : Y+ N, by 

h = hU u &‘( No - U). 

Since y = 0 on No- U and g is a homeomorphism over No- U, then h is a 

homeomorphism. Clearly, p(g(x), h(x)) s yo g(x) for every XE Y 

Define the function G: N + N by setting G = g 0 h-’ u id,_,. Note that for each 

x~ No, since p(x,go hp’(x))=p(h 0 h-‘(x),go h-‘(x))< yoga h-‘(x), then 

p(x, g 0 h-‘(x)) s 6,(x). Hence, p(x, G(x)) s 6,(x) s 6(x) for each x E N. As &,= 0 

on N - N,, we conclude that G is continuous. 

G : N + N is a cell-like map because the map g 0 h-’ : N,, + No is cell-like. Since 

g is a homeomorphism over N,- e(w(e)), so is g 0 h-‘; consequently G is a 

homeomorphism over N - e(o( e)). On the other hand, if x E w(e), then G-‘( e(x)) = 

h(g-‘(e(x))) = h({x] x [O, 11). 
Define the embeddingsf: X + N andy :X++ N by f = hlX andy = hlX+. Then 

f is tame, _/-+ is an extension off, and G 0 f = (g 0 h-l) 0 (hlX) = glX = e. Also, if 

XE w(e), then G-‘(e(x)) = h({x} x [0, 11) =fi({x} x [0, 11). We conclude that G is 

a collared &resolution of e. 0 

Theorem 7.5. Conjectures 7.1, 7.2 and 7.3 are true in dimensions n 3 5. 

Proof. Since the three conjectures are equivalent, it suffices to verify Conjecture 7.3. 

Suppose n 2 5, X is a generalized n-manifold with boundary that embeds in an 

n-manifold N, and (3X x IL! is an n-manifold. We regard X as a subset of N. We 
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can assume that X is a closed subset of N. This is because there is an open subset 

N, of N such that X is a closed subset of N,, and we can replace N by N,, if 

necessary. 

Let p be a metric on N. We define a metric m on X+ by the following formulas. 

o(x, y) = p(x, y) for x and y in X 

~((x, s), (Y, r)) = P(X, Y) + 1s - tl for (x, s) and (v, r) in 8X x [O, 11 

a(x,(y, t))=p(x,y)+ltl for XEX and (y, t)~aXx[O, l] 

int(X+) is a generalized n-manifold. Moreover its nonmanifold set lies in aX = 

8X x {O}, because int(X) and 8X x (0,l) are n-manifolds. Since aX is a generalized 

(n --I)-manifold and a closed subset of int(X’), then Theorem 6.3 provides a 

resolution of int(X+). Therefore, according to [ 131, in order to prove that int(X+) 

is an n-manifold, it suffices to show that int(X’) has the disjoint disks property. To 

this end, supposef, : D + int(X’) andf* : D + int(X’) are maps of a two-dimensional 

disk D into int(X+), and let E > 0. We must find maps k, : D + int(X’) and k2: D + 

int(X’) such that k,(D) n k,(D) = 0 and a($(~), k,(x)) < E for each. XE 0, for 

i= 1, 2. 

We shall need the following auxiliary maps. Define the map rr: X+-+ X by 

r[X = idx and ~(x, t) = x for (x, t) E aX x [0, 11. Define the map A : Xf+ [0, l] by 

A(X) = 0 and A (x, t) = t for (x, t) E CYX x [0, 11. Since aX is an absolute neighborhood 

retract, there is an open neighborhood U of aX in N and a map r : U + aX such 

that r)aX = id,, and p(x, r(x))<+& for each XE U. 

Step 1. Set Ai =fil(X) and Bi =fi-‘(8Xx [f~, 1)). Ai and Bi are disjoint closed 

subsets of D. Hence, there is a compact 2-manifold with boundary Ei in D such 

that Ai c int(Ei) and Ei n Bi = 0. For i = 1, 2, we shall construct maps gi: D+ 

(Xu U) such that g,(aE,)c U-X, gi(D-Ei)C U, p(noJ;(x), gi(x))<$e for each 

x E 0, and gl(0) n g2(D) = 0. 

The construction of gi relies on the fact that the inclusion of aX in U is locally 

homologically 0 co-connected in U - X [ 1, Theorem VI.61. This means that nearby 

points in U - X can be joined by small arcs in U -X. We use this fact to approximate 

r of;laEi : 8Ei + aX by a map yi : aEi --f U-X. To obtain yi, we triangulate JEi very 

finely, and we let yi map each vertex u of aEi into U-X very near r oh(v). We 

then invoke the local homological 0 co-connectivity in U-X to define yi on each 

edge e of ?IE, so that yi( e) has very small diameter. This results in a map yi : aEi + 

(U-X) which is very close to r of;laEi : aE, + ax. 

Since U is an absolute neighborhood retract, there is a homotopy between r Of;laEi 

and yi in U of track diameter <:E (assuming that yi is sufficiently close to v OJfaEi). 

The Controlled Borsuk Homotopy Extension Principle (Theorem 3.4) extends this 

homotopy to a homotopy in U of track diameter <:E from the map r oJlcl( D - 

Ai) : cl(D - Ai) + ax to a map ri : cl(D - Ai) + U such that ri = yi on aEi and 

ri = r 0JI: on the frontier of A,. Then, ri u r oJ;lA, : D+ (X u U) is a map that sends 

aEi into U-X, sends D - Ei into U, and is within a& of rr of;. 
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Since dim(N) = n 2 5, then slight general position perturbations of the maps 

ri u rr oJ( A, (i = 1,2) will produce maps gi : D + (X u U) with disjoint images as 

well as the other desired properties. 

Step 2. Let Ci = g:‘(X) n Ei. Ci is a closed subset of D. Moreover, Cj c int(Ei) 

because gi(aEi) c U-X. Define the map s: (X u U) + X by s = id, u r[cl( U-X). 

Since gi maps Ei into X u U, dE, into U-X, and D- Ei into U, then a map 

h,:D~Xisdefinedbytheformulahi=(s~giIE,)u(r~giID-int(Ei)).ThenhilCi= 

g,ICi, hi(cl(D-C,))caX, and p(g,(x), h,(x)) <a& for each XE D. 

Step 3. Next with the aid of the Tietze Extension Theorem, we obtain a map 

cpi:D+[O,l) such that cp,(C,)=O, cpilB,=Aof;lBi, and cpi(D-(CiuB,))c(O,i~). 

Then cpi(D-B,)c[O,a.z) and I+~~(x)-Aof;( )I 1 f x < 4~ or every x E D. Define the map 

j, :D+int(X+) by setting jilCi= hi/C, and letting ji(x)=(hi(X), P,(X)) for each 

x~cl(D-CC,). Then jilCi=gilC,:Ci+X and ji(D-Ci)caXx(O,l). 

We assert that a(f;(x), ii(x)) < E for every x E D. First, we consider the case in 

which x E D - Bi. Then 

a(f;(x), j,(x)) s a(fi(x), rr OJ;(x))+ u(v Of;(x), hi(x)) + o(hi(x),ji(x)). 

Observe that a(A(x), 7r oJ;(x)) = A of;(x) <a& because x E D - Bi, 

a(r o.A(x)~ hi(x)) = P(r of;(x)~ hi(x)) 

and a(hi(x), j,(x)) = q,(x) <a& because x E D - Bi. Hence, cr(J;(x), j,(x)) < E. 

Second, suppose that XE Bi. Then f;(x) = (rr “J(x), A oJ;(x)), and j,(x) = 

(hi(x), p,(x)) = (hi(x), A O&(X)). Hence, 

G(x),j,(x)) =P(r OJ;(x), hi(x)) 

This proves the assertion. 

Step 4. Observe that ji( Ci) = gi( Ci) C X, ji( D - Ci) c dX x (0, l), and j,( C,) n 

j,(G) = g,(C,) n g2(C2) = 0. Since aX x (0, 1) is a manifold of dimension 25, we 

can perform a slight general position perturbation on j,l D - C,, damping out this 

perturbation as we near j, 1 C,, to obtain maps ki : D + int( X’) such that k,( D - C,) n 

k,(D-C,)=0, ki(D-Ci)caXX(O,l), kilC,=jilCi, and (T(~;(x), ki(X))<& for 

every x E D. It follows that k,(D) n k2( D) = 0. 0 

We shall say that a generalized n-manifold with boundary X is a-nice if X embeds 

in an n-manifold and aX is an (n - l)-manifold (not merely a generalized (n - 

I)-manifold). In dimension n = 4, Conjectures 7.1-7.3 in their full generality have 

not yet been resolved. However, Daverman has proved these conjectures in 

dimension n =4 (as well as in dimensions n 2 5) for the class of embeddings of all 

a-nice generalized n-manifolds with boundary in n-manifolds. We shall review the 

outline of Daverman’s work. However, we shall first discuss the equivalence of 

Conjectures 7.1-7.3 when restricted to special classes of embeddings such as the 

one just mentioned. 
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Conjectures 7.1-7.3 are as strong as possible in the sense that each applies to the 

class of all embeddings of generalized n-manifolds with boundary in n-manifolds 

that could conceivably have tame approximations. Specifically, these three conjec- 

tures apply to: 

(1) The class of all embeddings of generalized n-manifolds with boundary X in 

n-manifolds such that aX x [w is an n-manifold. 

We proved above that the three conjectures (as they apply to this widest possible 

class of embeddings) are equivalent. We assert that the proof of equivalence given 

above remains valid if the three conjectures are restricted to either of the two 

following narrower classes of embeddings. 

(2) The class of all embeddings of &nice generalized n-manifolds with boundary 

in n-manifolds. 

(3) The class of all embeddings of crumpled n-cubes in the n-sphere. 

In checking that the proof of the equivalence of Conjectures 7.1-7.3 adapts to 

the case in which the conjectures have been restricted one of the special classes of 

embeddings (2) or (3), there is only one delicate point. This occurs in the proof 

that Conjecture 7.3 implies Conjecture 7.1, where Conjecture 7.3 must be applied 

to the inclusion 2~ N as well as to the original embedding e: X + N. For the 

argument to be valid, it must be shown that if the embedding e:X+ N belongs to 

the class under consideration ((2) or (3)), then so does the inclusion 2 c N. In the 

case of class (2), we are given that 8X is an (n - 1)-manifold, and we must establish 

that 8Z is an (n - 1)-manifold; but this is immediate because aZ is homeomorphic 

to ax. In the case of class (3), we are given that X is a crumpled n-cube and N = S”, 

and we must establish that Z is a crumpled n-cube; but this follows easily because 

Z is a closed and, hence, compact subset of N = S” and aZ is homeomorphic to 

the (n -1)-sphere 8X. This proves our assertion that Conjectures 7.1-7.3 remain 

equivalent when restricted to either of the special classes of embeddings (2) or (3). 

We now resume our discussion of Daverman’s results. Daverman first established 

Conjectures 7.1-7.3 in dimensions 24 for the class (3) of all embeddings of crumpled 

n-cubes in the n-sphere. Specifically, in [9], he proved Conjecture 2 for embeddings 

of crumpled n-cubes in the n-sphere in dimensions n 35, using the Resolution 

Theorem for Wild Codimension-One Embeddings of (n - 1)-manifolds in n-mani- 

folds which at that time had just been established in dimensions n 3 5 in [3]. In the 

recent preprint [ 121, Daverman proved Conjecture 7.2 for embeddings of crumpled 

4-cubes in the cl-sphere, using the Resolution Theorem for Wild Codimension-One 

Embeddings of 3-manifolds in 4-manifolds which appears for the first time in this 

paper. Since Conjectures 7.1-7.3 are equivalent for embeddings of crumpled n-cubes 

in the n-sphere, then Daverman’s work establishes Conjecture 7.3 in dimensions 

a4 for all crumpled cubes. 

Daverman found a clever argument (the proof of [lo, Theorem 5B.101) which 

enabled him to promote his proof of Conjectures 7.1-7.3 from the class (3) of 

crumpled cubes to the class (2) of all a-nice generalized n-manifolds with boundary. 

Here is the outline. Suppose X is a a-nice generalized n-manifold with boundary. 
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We shall indicate why int(X+) is an n-manifold, thereby verifying Conjecture 7.3. 

Since int(X) and aX x (0, 1) are n-manifolds, it suffices to prove that each 

point of 8X=8X x(0) has an open n-manifold neighborhood in int(X+). Let 

XE 8X = aX x(0). Daverman [lo, Theorem SB.101 implies that there is an open 

neighborhood U of x in X, a crumpled n-cube C, and an embedding f: U + C 

such that f(U) naC =f(dU). (Note that U is itself a generalized n-manifold 

with boundary such that a U = U n ax.) Clearly, f extends to a homeomorphism 

of U u~~,u=~,ux~o~~ aU x [0, 1) onto an open subset of int(C+). int( C’) is an n- 

manifold, since Daverman has verified Conjecture 7.3 for crumpled cubes. Hence, 

U u(,U=aux~ol) aU x [0, 1) is an open n-manifold neighborhood of x in int(X’). 

This establishes Conjecture 7.3 in dimensions n 2 4 for class (2). Since Conjectures 

7.1, 7.2 and 7.3 are equivalent for this class of embeddings, we conclude that 

Conjectures 7.1, 7.2 and 7.3 are all valid in dimensions n 2 4 for the class (2) of all 

embeddings of a-nice generalized n-manifolds with boundary in n-manifolds. 

The theorems in this section together with Daverman’s results leave unresolved 

only the most general case of Conjectures 7.1-7.3 in dimension 4. 

Problem. Prove Conjectures 7.1, 7.2 and 7.3 in dimension n = 4 for all embeddings 

of generalized 4-manifolds with boundary X in 4-manifolds, where aX XR is a 

4-manifold, but aX is not necessarily a 3-manifold. 

Recall that Edwards in [13] established the disjoint disks property as the basic 

criterion for detecting manifolds in dimension 25. Also recall that the disjoint disks 

property played a crucial role in our proof of Conjectures 7.1-7.3 in dimensions 

25. Informed by these observations, we speculate that a solution to the preceding 

problem will come with the discovery of a criterion for detecting 4-manifolds 

analogous to the disjoint disks property. 
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