COMPLEMENTARY 1-ULC PROPERTIES FOR 3-SPHERES IN 4-SPACE

BY
Fredric D. Ancel and D. R. McMillan, Jr. ${ }^{1}$

1. Introduction

A recurring theme in geometric topology is the importance of the 1-ULC property. For example, if Σ is an $(n-1)$-sphere topologically embedded in $S^{n}(n \neq 4)$, then Σ is flat if and only if $S^{n}-\Sigma$ is 1 -ULC. (See [2], [8], and [5].) If U is a component of $S^{n}-\Sigma$, it is natural to ask: For which sets $T \subset \Sigma$ is it true that $U \cup T$ is $1-$ ULC? (Of course, $T=\Sigma$ always works.) For $n=3$, R. H. Bing has shown [3] that for some 0-dimensional $T \subset \Sigma, U \cup T$ is 1-ULC. For $n \geq 5$, Robert J. Daverman has found [6] a 1-dimensional $T \subset \Sigma$ such that $U \cup T$ is $1-$ ULC. (It is suspected that the dimension of Daverman's set cannot, in general, be lowered but no example is yet at hand.)

In Theorem 1 we extend Daverman's result to cover the case $n=4$. Moreover, as constructed our 1-dimensional set T is easily seen to have embedding dimension at most 1 relative to Σ (" $\operatorname{dem}_{\Sigma} T \leq 1$ "), in the sense of [13] and [10]. We cannot hope to strengthen Daverman's high-dimensional result to obtain $\operatorname{dem}_{\Sigma} T \leq 1$, when $n \geq 5$. For in Theorem 2 we observe that when $n \geq 6$, if T can be found with $\operatorname{dem}_{\Sigma} T \leq 1$, then T can be chosen so that $\operatorname{dem}_{\Sigma} T \leq 0$. But in [7], Daverman constructs embeddings of Σ in S^{n}, for all $n \geq 4$, for which T can never be chosen to have $\operatorname{dem}_{\Sigma} T \leq 0$. In fact, in these examples T must satisfy $\operatorname{dem}_{\Sigma} T \geq n-3$.

We account for our inability to obtain $\operatorname{dem}_{\Sigma} T \leq 1$ when $n>4$ by remarking that for a σ-compactum T in Σ, "dem $\Sigma T \leq 1$ " is a stronger statement when $\operatorname{dim} \Sigma>3$ than when $\operatorname{dim} \Sigma=3$. For when $\operatorname{dim} \Sigma>3, \operatorname{dem}_{\Sigma} T \leq 1$ implies $\Sigma-T$ is 1-ULC. No such implication holds when $\operatorname{dim} \Sigma=3$. We can appreciate the relative weakness of the statement " $\operatorname{dem}_{\Sigma} T \leq 1$ " when $\operatorname{dim} \Sigma=3$ in another way: James W. Cannon has observed that when $\operatorname{dim} \Sigma=3$, " $\operatorname{dem}_{\Sigma} T \leq 1$ " is equivalent to the existence of a 0 -dimensional subset S of T such that $(\Sigma-T) \cup S$ is 1-ULC. However when $\operatorname{dim} \Sigma>3$, any codimension 2σ-compactum T in Σ contains a 0 -dimensional subset S for which $(\Sigma-T) \cup S$ is 1-ULC.

Examples are easily constructed in all dimensions $n \geq 3$ with the property that any subset T of Σ for which $U \cup T$ is 1-ULC must be dense in Σ. Thus the subset T constructed by Daverman and the present authors is, in general, noncompact. In fact, Carl Pixley has noted that for $n \geq 5$, if T is a compact

[^0]1-dimensional subset of Σ for which $U \cup T$ is 1-ULC, then three is a (possibly noncompact) 0 -dimensional subset T^{\prime} of T for which $U \cup T^{\prime}$ is 1-ULC. A proof of Pixley's observation can be based on the last statement of the previous paragraph. The extension of this proof to the case $n=4$ seems to require the stronger hypothesis " $\operatorname{dem}_{\Sigma} T \leq 1$." This suggests that for $n=4$, " $\operatorname{dem}_{\Sigma} T \leq$ 1 " is an important part of the conclusion of Theorem 1.

Throughout the paper, Σ will denote an $(n-1)$-sphere topologically embedded in S^{n}. Let U be a component of $S^{n}-\Sigma$, and put $C=\mathrm{Cl} U .(\mathrm{Cl}$ denotes closure.) We will denote an n-simplex by Δ^{n}, with $\partial \Delta^{n+1}=S^{n}$. Suppose Y and Y^{\prime} are metric spaces, $Y \subset Y^{\prime}$. Let $k \geq 0$ be an integer. Then Y is k-ULC in Y^{\prime} if for each $\varepsilon>0$ there is a $\delta>0$ such that each mapping ($=$ continuous function) of $\partial \Delta^{k+1}$ into a subset of Y of diameter less than δ can be extended to a map of Δ^{k+1} into an ε-subset of Y^{\prime}. (Usually, $Y=U$, $Y^{\prime}=U \cup T$, and $k=0$ or 1.) Also we would say " Y is k-ULC" rather than " Y is k-ULC in Y ".

Here is a summary of some basic facts.
Proposition 1. The notation is as above.
(a) C is 0-ULC and 1-ULC. (In fact, C is a compact absolute retract and hence is uniformly locally contractible.)
(b) U is 0-ULC.
(c) If $f: \Delta^{2} \rightarrow C$ is a map, P is a closed 1-dimensional subpolyhedron of Δ^{2} and $\varepsilon>0$, then there is a map $f^{\prime}: \Delta^{2} \rightarrow C$ such that $f^{\prime}(P) \subset U$ and $d\left(f, f^{\prime}\right)<\varepsilon$.
(d) If $T \subset \Sigma$, then $U \cup T$ is 0 -ULC.
(e) If $T \subset \Sigma$ and U is 1-ULC in $U \cup T$, then $U \cup T$ is 1-ULC.
(f) If $T \subset \Sigma$ and $U \cup T$ is 1-ULC, then there is a σ-compact subset T^{\prime} of T such that $U \cup T^{\prime}$ is 1-ULC.

Reference [4] is a compendium of information on ULC properties. In particular, a proof of Proposition 1 can be extracted from the statements and proofs of Propositions 2A, 2B.1, 2C.2, 2C.2.1, 2C.3, and 2C.7(2) of [4].

Suppose G is an open subset of a $P L$ manifold Q and that there is a compact subpolyhedron X of Q of dimension at most k such that $X \subset G$, there is a compact metric space Y, and there is a continuous proper surjection $p: Y \times(0,1] \rightarrow G$ such that $p^{-1}(X)=Y \times\{1\}, p \mid Y \times(0,1)$ is injective and

$$
\operatorname{diam} p(\{y\} \times(0,1])<\varepsilon \quad \text { for every } y \in Y
$$

In this situation, we say that G is an open ε-mapping cylinder neighborhood of X in Q and that X is a k-spine of G.

Suppose X is a nonempty compact subset of the interior of a $P L$ manifold Q. For an integer $k \geq 0$, we say that the dimension of the embedding of X in Q is at most k (abbreviated $\operatorname{dem}_{Q} X \leq k$), if for each $\varepsilon>0, X$ is contained in an open ε-mapping cylinder neighborhood with a k-spine in Int Q. We say that the dimension of the embedding of X in Q is k (abbreviated $\operatorname{dem}_{Q} X=k$) if $\operatorname{dem}_{Q} X \leq k$ but not $\operatorname{dem}_{Q} X \leq k-1$. For a nonempty σ-compact subset F
of the interior of a $P L$ manifold Q, we define the dimension of the embedding of F in Q (abbreviated $\operatorname{dem}_{Q} F$) to be

$$
\max \left\{\operatorname{dem}_{Q} X: X \text { is a compact subset of } F\right\}
$$

We put $\operatorname{dem}_{Q} \emptyset=-\infty$.
Proposition 2. Suppose F is a σ-compact subset of the interior of a $P L$ manifold $Q(\operatorname{dim} Q=q)$. Then:
(a) $\operatorname{dim} F \leq \operatorname{dem}_{Q} F$,
(b) Suppose $k \geq 0$ is an integer. Then $\operatorname{dem}_{Q} F \leq k$ if and only if for each closed subpolyhedron P of Q of dimension at most $q-k-1$, there is an ambient isotopy of Q which pushes P off F, is arbitrarily close to the identity on Q and is fixed outside an arbitrarily tight neighborhood of $P \cap F$.
(c) Suppose $F=\bigcup_{i=1}^{\infty} X_{i}$ where each X_{i} is compact for $i=1,2,3, \ldots$ Then

$$
\operatorname{dem}_{Q} F=\max \left\{\operatorname{dem}_{Q} X_{i}: i=1,2,3, \ldots\right\}
$$

Reference [10] is a comprehensive source about the dimension of an embedding. The proof of Proposition 2 follows from Propositions 1.1(1), 1.1(4), $1.2\left(2^{\prime}\right)$, and $2.2\left(2^{\prime}\right)$ of [10].

We end this section by establishing some notation and recalling a wellknown method of obtaining an open ε-mapping cylinder neighborhood with a k-spine in the interior of a $P L$ manifold. First suppose K is a simplicial complex: then for $i=0,1,2, \ldots$, let $K^{i}=\{\alpha \in K$: $\operatorname{dim} \alpha \leq i\}$, the i-skeleton of K. Let $|K|$ denote the union of all the simplices of K; and let K^{\prime} stand for some first derived subdivision of K. Second, suppose Q^{q} is a $P L q$-manifold, $\varepsilon>0$ and k is one of the integers $0,1, \ldots, q-1$. Let K be a simplicial complex of mesh less than ε which triangulates Q^{q}. If L is a subcomplex such that

$$
\partial Q^{q} \cup\left|K^{q-k-1}\right| \subset|L|
$$

and if we let

$$
L_{*}=\left\{\alpha \in K^{\prime}: \alpha \cap|L|=\emptyset\right\}
$$

(the subcomplex of K^{\prime} which is dual to L), then $L_{*} \subset\left(K^{\prime}\right)^{k},\left|L_{*}\right| \cap \partial Q^{q}=\emptyset$, and $Q^{q}-|L|$ is an open ε-mapping cylinder neighborhood with a k-spine $\left|L_{*}\right|$ in Int Q^{q}.

2. Topologically planar subsets of 3-manifolds

Theorem 3 of [12] is the foundation of the results of this section. Before describing this theorem, we define a topological space to be topologically planar if it can be embedded in the Euclidean plane, R^{2}. Furthermore, let us observe that Proposition 2(b) implies that a compact subset X of Euclidean 3 -space R^{3} has the "strong arc pushing property" as defined in [12] if and only if $\operatorname{dem}_{R^{3}} X \leq 1$. Consequently, Theorem 3 of [12], when restricted to compacta, translates into the following proposition: If X is a compact, topologically
planar subset of R^{3} and $\operatorname{dim} X \leq 1$, then $\operatorname{dem}_{R^{3}} X \leq 1$. We extend this proposition slightly to a form which is more convenient for our purposes.

Proposition 3. If X is a compact, topologically planar subset of the interior of a PL 3-manifold Q^{3} and $\operatorname{dim} X \leq 1$, then $\operatorname{dem}_{Q^{3}} X \leq 1$.

Proof. Let $X=\bigcup_{i=1}^{k} X_{i}$ so that for each $i=1,2, \ldots, k, X_{i}$ is a compactum, R_{i} is an open subset of Int Q^{3} which is $P L$ homeomorphic to R^{3}, and $X_{i} \subset R_{i}$. Thus $\operatorname{dem}_{R_{i}} X_{i} \leq 1$; so since $R_{i} \subset Q^{3}$ implies dem $Q_{Q^{3}} X_{i} \leq \operatorname{dem}_{R_{i}} X_{i}$, we have $\operatorname{dem}_{Q^{3}} X_{i} \leq 1$, for $i=1,2, \ldots, k$. Now Proposition 2(c) implies $\operatorname{dem}_{Q^{3}} X \leq 1$.

We combine the next proposition with the preceding one to produce the corollary which is the goal of this section. Although this result is needed mainly for the case $Q^{3}=S^{3}$, the proof does not seem to simplify much in the special case.

Proposition 4. Suppose Q^{3} is a compact PL 3-manifold with fixed metric. Then, for each $\varepsilon>0$, there is $a \delta>0$ such that if $X_{1}, X_{2}, \ldots, X_{r}$ are disjoint compact subpolyhedra of Int Q^{3} each of dimension at most one and each of diameter less than δ, then there is a connected open ε-mapping cylinder neighborhood G with a 1 -spine in Int Q^{3} such that $\bigcup X_{i} \subset G$ and each X_{i} contracts to a point in a subset of G of diameter less than ε.

The idea of the proof is to take a triangulation T of Q^{3} of small mesh, and to choose δ so small that each X_{i} lies in the interior of a small PL 3-cell C_{i} in Q^{3}. In each C_{i} we judiciously form a "singular cone" over X_{i} so that distinct singular cones intersect nicely. We then put T^{1} in general position with respect to the collection of singular cones. Finally we pipe $\left|T^{1}\right|$ entirely off the collection of singular cones. In removing an intersection point of $\left|T^{1}\right|$ with one singular cone, it may be necessary to push other singular cones out of the way keeping their bases fixed. G is chosen to be the complement of $\left|T^{1}\right| \cup \partial Q$. Then G is an open ε-mapping cylinder neighborhood of an appropriate subcomplex of the 1 -skeleton of a first derived subdivision of T, and G contains all the singular cones.

Proof. Let T be a triangulation of Q^{3} of mesh less than $\varepsilon / 3$. Let $\delta>0$ be so that any subset of Int Q^{3} of diameter less than δ lies in the interior of a $P L$ 3-cell in Q^{3} of diameter less than $\varepsilon / 3$.

Suppose $X_{1}, X_{2}, \ldots, X_{r}$ are disjoint compact subpolyhedra of Int Q^{3} each of dimension at most 1 and each of diameter less than δ. For each $i=1,2, \ldots, r$, there is a $P L 3$-cell C_{i} in Q^{3} of diameter less than $\varepsilon / 3$ such that $X_{i} \subset \operatorname{Int} C_{i}$. If $v \in C_{i}$, let $v * X_{i}$ denote the set obtained by joining v to the points of X_{i} by straight line segments in the linear structure of C_{i}. For each $i=1,2, \ldots, r$ we
can successively choose a point $v_{i} \in \operatorname{Int} C_{i}$ and a triangulation K_{i} of X_{i} which is linear in the linear structure of C_{i} such that:
(i) If α and β are distinct 1 -simplices of K_{i}, then

$$
\left(v_{i} * \operatorname{Int} \alpha\right) \cap\left(v_{i} * \operatorname{Int} \beta\right)=\left\{v_{i}\right\} ;
$$

(ii) $\left(v_{i} * X_{i}\right) \cap X_{j}$ is a finite set of points for $1 \leq j \leq r, j \neq i$;
(iii) $\left(v_{i} * X_{i}\right) \cap\left(v_{j} * X_{j}\right)$ is a subpolyhedron of $v_{i} * X_{i}$ of dimension at most 1 for $1 \leq j \leq i-1$.

General position techniques provide a small $P L$ homeomorphism h_{1} of Q^{3} such that:
(i) $h_{1}\left(\left|T^{1}\right|\right) \cap \bigcup_{i=1}^{r}\left[X_{i} \cup\left(v_{i} *\left|K_{i}^{0}\right|\right) \cup \bigcup_{j=1}^{i-1}\left(v_{i} * X_{i}\right) \cap\left(v_{j} * X_{j}\right)\right]=\emptyset$;
(ii) $h_{1}\left(\left|T^{0}\right|\right) \cap \bigcup_{i=1}^{r}\left(v_{i} * X_{i}\right)=\emptyset$;
(iii) $h_{1}\left(\left|T^{1}\right|\right) \cap \bigcup_{i=1}^{r}\left(v_{i} * X_{i}\right)$ is a finite set of points, at each of which $h_{1}\left(\left|T^{1}\right|\right)$ pierces $\bigcup_{i=1}^{r}\left(v_{i} * X_{i}\right)$;
(iv) $h_{1}(T)=\left\{h_{1}(\alpha): \alpha \in T\right\}$ is a triangulation of Q^{3} of mesh less than $\varepsilon / 3$;
(v) $h_{1}=$ identity on ∂Q^{3}.

For $i=1,2, \ldots, r$, let

$$
h_{1}\left(\left|T^{1}\right|\right) \cap\left(v_{i} * X_{i}\right)=\left\{p_{i 1}, \ldots, p_{i s(i)}\right\}
$$

Then for $1 \leq k \leq s(i)$, there is a 1 -simplex $\alpha_{i k} \in K_{i}$ such that

$$
p_{i k} \in \operatorname{Int}\left(v_{i} * \alpha_{i k}\right) .
$$

Now we can find a disjoint collection

$$
\left\{\lambda_{i k}: 1 \leq i \leq r, 1 \leq k \leq s(i)\right\}
$$

of $P L$ arcs in Q^{3} satisfying:
(i) Int $\lambda_{i k} \subset \operatorname{Int}\left(v_{i} * \alpha_{i k}\right) ; p_{i k}$ is one endpoint of $\lambda_{i k}$; and the other endpoint lies in Int $\alpha_{i k}$,
(ii) $\lambda_{i k} \cap h_{1}\left(\left|T^{1}\right|\right)=\left\{p_{i k}\right\}$;
(iii) $\lambda_{i k} \cap X_{j}=\emptyset$ for $1 \leq j \leq r, j \neq i$;
(iv) $\lambda_{i k} \cap\left(v_{j} * X_{j}\right)$ is a finite set of points not containing $p_{i k}$ for $1 \leq j \leq r$, $j \neq i$.

Each $\lambda_{i k}$ serves as the core of a pipe $P_{i k}$. Indeed, we can construct a disjoint collection

$$
\left\{P_{i k}: 1 \leq i \leq r ; 1 \leq k \leq s(i)\right\}
$$

of PL 3-cells in Q^{3} such that:
(i) $\lambda_{i k} \subset \operatorname{Int} P_{i k}$;
(ii) $P_{i k} \subset \operatorname{Int} C_{i}$;
(iii) $P_{i k} \cap\left(v_{i} * X_{i}\right) \subset\left(v_{i} * \alpha_{i k}\right)-\left(v_{i} * \partial \alpha_{i k}\right)$;
(iv) $P_{i k} \cap X_{j}=\emptyset$ for $1 \leq j \leq r, j \neq i$;
(v) there is a $P L$ homeomorphism of quintuples from

$$
\left(P_{i k}, \lambda_{i k}, P_{i k} \cap\left(v_{i} * X_{i}\right), P_{i k} \cap \alpha_{i k}, P_{i k} \cap h_{1}\left(\left|T^{1}\right|\right)\right)
$$

to

$$
\begin{array}{r}
([0,3] \times[-1,1] \times[-1,1],[1,2] \times\{0\} \times\{0\},[0,2] \times[-1,1] \times\{0\} \\
\{2\} \times[-1,1] \times\{0\},\{1\} \times\{0\} \times[-1,1])
\end{array}
$$

Consequently there is a $P L$ homeomorphism $g_{i k}$ of $P_{i k}$ such that
(vi) $g_{i k}\left(P_{i k} \cap h_{1}\left(\left|T^{1}\right|\right) \cap\left(v_{i} * X_{i}\right)=\emptyset\right.$ and
(vii) $g_{i k}=$ identity on $\partial P_{i k}$.

Define the $P L$ homeomorphism h_{2} of Q^{3} by

$$
h_{2}= \begin{cases}g_{i k} & \text { on } P_{i k} \text { for } 1 \leq i \leq r, 1 \leq k \leq s(i) \\ \text { identity } & \text { on } Q^{3}-\bigcup\left\{\operatorname{Int} P_{i k}: 1 \leq i \leq r, 1 \leq k \leq s(i)\right\}\end{cases}
$$

For each $i=1,2, \ldots, r$, define the $P L$ homeomorphism g_{i} of Q^{3} by

$$
g_{i}= \begin{cases}g_{j k} & \text { on } P_{j k} \text { for } 1 \leq j \leq r, j \neq i, 1 \leq k \leq s(j) \\ \text { identity } & \text { on } Q^{3}-\bigcup\left\{\operatorname{Int} P_{j k}: 1 \leq j \leq r, j \neq i, 1 \leq k \leq s(j)\right\}\end{cases}
$$

Then:
(i) h_{2} and each $g_{i}(1 \leq i \leq r)$ are $P L \varepsilon / 3$-homeomorphisms of Q^{3} which are the identity on ∂Q^{3}. Hence $h_{2} h_{1}(T)=\left\{h_{2} h_{1}(\alpha): \alpha \in T\right\}$ is a triangulation of Q^{3} of mesh less than ε.
(ii) For $1 \leq i \leq r, g_{i}\left(X_{i}\right)=X_{i}$; thus X_{i} contracts to a point in $g_{i}\left(v_{i} * X_{i}\right)$ and $\operatorname{diam} g_{i}\left(v_{i} * X_{i}\right)<\varepsilon$.
(iii) For $1 \leq i \leq r, g_{i}\left(v_{i} * X_{i}\right) \cap\left(\partial Q^{3} \cup h_{2} h_{1}\left(\left|T^{1}\right|\right)\right)=\emptyset$.

Observe that we need to shift $v_{i} * X_{i}$ to $g_{i}\left(v_{i} * X_{i}\right)$. For if $j \neq i$ and $1 \leq k \leq$ $s(j)$, then even though $h_{1}\left(\left|T^{1}\right|\right)$ misses $v_{i} * X_{i}$ inside $P_{j k}$, nevertheless $h_{2} \mid P_{j k}$ may push $h_{1}\left(\left|T^{1}\right|\right)$ onto $v_{i} * X_{i}$. However $h_{2} h_{1}\left(\left|T^{1}\right|\right)$ misses $g_{i}\left(v_{i} * X_{i}\right)$ inside $P_{j k}$ because $h_{2}\left|P_{j k}=g_{i}\right| P_{j k}$.

Let $T^{*}=\left\{\alpha \in T\right.$: either $\operatorname{dim} \alpha \leq 1$ or $\left.\alpha \subset \partial Q^{3}\right\}$. Then

$$
g_{i}\left(v_{i} * X_{i}\right) \cap h_{2} h_{1}\left(\left|T^{*}\right|\right)=\emptyset \quad \text { for } 1 \leq i \leq r
$$

If T^{\prime} is a first derived subdivision of T and

$$
T_{*}=\left\{\alpha \in T^{\prime}: \alpha \cap\left|T^{*}\right|=\emptyset\right\}
$$

-the subcomplex of T^{\prime} which is dual to T^{*}-then $G=Q^{3}-h_{2} h_{1}\left(\left|T^{*}\right|\right)$ is an open ε-mapping cylinder neighborhood with a 1 -spine $h_{2} h_{1}\left(\left|T_{*}\right|\right)$ in Int Q^{3}. Moreover, for $1 \leq i \leq r, X_{i} \subset g_{i}\left(v_{i} * X_{i}\right) \subset G, X_{i}$ contracts to a point in $g_{i}\left(v_{i} * X_{i}\right)$ and $\operatorname{diam} g_{i}\left(v_{i} * X_{i}\right)<\varepsilon$.

Finally we combine the previous two propositions to produce the main result of this section.

Piping along $\lambda_{i k}$

Corollary 5. Suppose Q^{3} is a compact PL 3-manifold with fixed metric. Then, for each $\varepsilon>0$, there is $a \delta>0$ such that if $X_{1}, X_{2}, \ldots, X_{r}$ are disjoint compact topologically planar subsets of $\operatorname{Int} Q^{3}$ each of dimension at most 1 and each of diameter less than δ, then there is an open ε-mapping cylinder neighborhood G with a 1 -spine in Int Q^{3} such that $\bigcup X_{i} \subset G$ and X_{i} contracts to a point in a subset of G of diameter less than ε.

Proof. Given $\varepsilon>0$, Proposition 4 supplies a $0<\delta<\varepsilon / 4$ such that if $Y_{1}, Y_{2}, \ldots, Y_{s}$ are disjoint compact subpolyhedra of Int Q^{3} each of dimension at most 1 and each of diameter less than δ, then there is an open $\varepsilon / 4$-mapping cylinder neighborhood H with a 1 -spine in Int Q^{3} such that for $i=1,2, \ldots, s$, $Y_{i} \subset H$ and Y_{i} contracts to a point in a subset of H of diameter less than $\varepsilon / 4$. Suppose $X_{1}, X_{2}, \ldots, X_{r}$ are disjoint compact topologically planar subsets of Int Q^{3} each of dimension at most 1 and each of diameter less than δ. Then there are compact $P L$ 3-manifolds $Q_{1}^{3}, Q_{2}^{3}, \ldots, Q_{r}^{3}$ embedded disjointly as $P L$ submanifolds of Q^{3} such that for $i=1,2, \ldots, r, X_{i} \subset \operatorname{Int} Q_{i}^{3}$ and diam $Q_{i}^{3}<\delta$. Proposition 3 implies $\operatorname{dem}_{Q_{i}{ }^{3}} X_{i} \leq 1$ for $i=1,2, \ldots, r$. Thus for each $i=$ $1,2, \ldots, r, X_{i}$ is contained in an open δ-mapping cylinder neighborhood G_{i} with a 1 -spine Y_{i} in Int Q_{i}^{3}. Then $Y_{1}, Y_{2}, \ldots, Y_{r}$ are disjoint compact subpolyhedra of Int Q^{3} each of dimension at most 1 and each of diameter less than δ. It follows that there is an open $\varepsilon / 4$-mapping cylinder neighborhood H with a 1-spine Z in Int Q^{3} such that for $i=1,2, \ldots, r, Y_{i} \subset H$ and Y_{i} contracts to a point in a subset \widetilde{Y}_{i} of H of diameter less than $\varepsilon / 4$.

For each $i=1,2, \ldots, r$, if T_{i} denotes the track of the homotopy pulling X_{i} down the fibers of G_{i} into Y_{i}, then there is a fiber-preserving homeomorphism g_{i} of G_{i} which is fixed on Y_{i} and outside a compact neighborhood of Y_{i} in G_{i} such that $T_{i} \subset g_{i}\left(G_{i} \cap H\right)$. Define the homeomorphism g of Q^{3} by

$$
g= \begin{cases}g_{i} & \text { on } G_{i} \text { for } i=1,2, \ldots, r \\ \text { identity } & \text { on } Q^{3}-\bigcup_{i=1}^{r} G_{i}\end{cases}
$$

Then g is an $\varepsilon / 4$-homeomorphism of Q^{3} which fixes

$$
Y_{1} \cup Y_{2} \cup \cdots \cup Y_{r} \cup \partial Q^{3}
$$

Thus $g(H)$ is an open $3 \varepsilon / 4$-mapping cylinder neighborhood of $g(Z)$ in Int Q^{3} such that for $i=1,2, \ldots, r, X_{i} \subset T_{i} \cup g\left(\tilde{Y}_{i}\right), X_{i}$ contracts to a point in $T_{i} \cup g\left(\tilde{Y}_{i}\right)$ and

$$
\operatorname{diam}\left(T_{i} \cup g\left(\tilde{Y}_{i}\right)\right)<\varepsilon
$$

Unfortunately, $g(Z)$ may not be a subpolyhedron of Q^{3}. We remedy this by invoking Theorem 3 of [1] to obtain a $P L$ homeomorphism $g^{\prime}: H \rightarrow g(H)$ such that $d\left(g \mid H, g^{\prime}\right)<\varepsilon / 8$. Then $g^{\prime}(Z)$ is a subpolyhedron of Q^{3}. It follows that $g^{\prime}(H)$ is an open ε-mapping cylinder neighborhood with a 1 -spine $g^{\prime}(Z)$ in Int Q^{3}, and for each $i=1,2, \ldots, r, X_{i} \subset g^{\prime}(H)$ and X_{i} contracts to a point in the subset $T_{i} \cup g\left(\tilde{Y}_{i}\right)$ of $g^{\prime}(H)$ of diameter less than ε.

3. Proof of theorem 1

We return to the situation and notation of the introduction, with $n=4$. Our goal is to establish:

Theorem 1. Let Σ be a 3-sphere topologically embedded in S^{4}. Let U be a complementary domain of Σ, with closure C. Then there is a σ-compact $T \subset \Sigma$ such that $\operatorname{dem}_{\Sigma} T \leq 1$ and $U \cup T$ is $1-$ ULC.

Let \mathscr{C} denote the separable metric space of all maps

$$
f:\left(\Delta^{2}, \partial \Delta^{2}\right) \rightarrow(C, U)
$$

with the supremum metric. Let

$$
\mathscr{D}=\left\{f \in \mathscr{C}: \operatorname{dem}_{\Sigma}\left(f\left(\Delta^{2}\right) \cap \Sigma\right) \leq 1\right\} .
$$

The following lemma implies that \mathscr{D} is a dense subset of \mathscr{C}. So we may select a countable subset $\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}$ of \mathscr{D} which is dense in \mathscr{C}. Let $T=$ $\bigcup_{i=1}^{\infty}\left(f_{i}\left(\Delta^{2}\right) \cap \Sigma\right)$. Then U is 1-ULC in $U \cup T$. Hence Proposition 1(e) implies $U \cup T$ is 1-ULC, while Proposition 2(c) implies $\operatorname{dem}_{\Sigma} T \leq 1$. The proof of Theorem 1 is complete modulo a few lemmas.

The Density Lemma. \mathscr{D} is a dense G_{δ} subset of \mathscr{C}.
If for $i=1,2,3, \ldots, \mathscr{U}_{i}$ denotes the set of all $f \in \mathscr{C}$ such that $f\left(\Delta^{\dot{2}}\right) \cap \Sigma$ lies in an open $1 / i$-mapping cylinder neighborhood with a 1 -spine in Σ, then \mathscr{U}_{i} is an open subset of \mathscr{C}, and $\mathscr{D}=\bigcap_{i=1}^{\infty} \mathscr{U}_{i}$.

Let f be a map in \mathscr{C} and let $\varepsilon>0$. We must construct a map f^{\prime} in \mathscr{C} such that $d\left(f, f^{\prime}\right)<\varepsilon$ and $\operatorname{dem}_{\Sigma}\left(f^{\prime}\left(\Delta^{2}\right) \cap \Sigma\right) \leq 1$. To obtain f^{\prime}, we construct three sequences: $f_{0}, f_{1}, f_{2}, \ldots$, where each f_{i} is a map in $\mathscr{C} ; \varepsilon_{0}, \varepsilon_{1}, \varepsilon_{2}, \ldots$, where each $\varepsilon_{i}>0$; and $G_{0}, G_{1}, G_{2}, \ldots$, where each $G_{i}(i \neq 0)$ is an open ε_{i}-mapping cylinder neighborhood with a 1 -spine in Σ. The sequences $\left\{f_{i}\right\},\left\{\varepsilon_{i}\right\}$, and $\left\{G_{i}\right\}$ satisfy
(i) $f_{0}=f$;
(ii) $G_{0}=\Sigma$;
(iii) $\varepsilon_{0}=\varepsilon$;
and for $i=1,2,3, \ldots$
(iv) $\varepsilon_{i}=\frac{1}{2} \min \left\{\varepsilon_{i-1}, d\left(f_{i-1}\left(\Delta^{2}\right), \Sigma-G_{i-1}\right)\right\}$;
(v) $d\left(f_{i-1}, f_{i}\right)<\varepsilon_{i}$; and
(vi) $f_{i}\left(\Delta^{2}\right) \cap \Sigma \subset G_{i}$.

Once we have these sequences, (i) through (vi) imply that there is a map f^{\prime} in \mathscr{C} defined by $f^{\prime}=\lim _{i \rightarrow \infty} f_{i}$ such that $d\left(f, f^{\prime}\right)<\varepsilon$ and $f^{\prime}\left(\Delta^{2}\right) \cap \Sigma \subset G_{i}$ for $i=1,2,3, \ldots$ Thus, $\operatorname{dem}_{\Sigma}\left(f^{\prime}\left(\Delta^{2}\right) \cap \Sigma\right) \leq 1$.

Clearly the following lemma is exactly the tool needed to perform the construction of the sequences $\left\{G_{i}\right\},\left\{f_{i}\right\}$, and $\left\{\varepsilon_{i}\right\}$ inductively.

The Approximation Lemma. If f is a map in \mathscr{C} and $\varepsilon>0$, then there is a map f^{\prime} in \mathscr{C} and an open e-mapping cylinder neighborhood G with a 1 -spine in Σ such that $d\left(f, f^{\prime}\right)<\varepsilon$ and $f^{\prime}\left(\Delta^{2}\right) \cap \Sigma \subset G$.

Proof. Invoke Corollary 5 to obtain a $\delta>0$ so that if $X_{1}, X_{2}, \ldots, X_{r}$ are disjoint, compact topologically planar subsets of Σ each of dimension at most 1 and each of diameter less than δ, then there is an open $\varepsilon / 3$-mapping cylinder neighborhood G with a 1 -spine in Σ such that for $i=1,2, \ldots, r, X_{i} \subset G$ and X_{i} contracts to a point in a subset of G of diameter less than $\varepsilon / 3$.

There is a complex K triangulating Δ^{2} and there is a general position map

$$
g:\left(\Delta^{2}, \partial \Delta^{2}\right) \rightarrow\left(S^{4}, U\right)
$$

such that:
(i) $d(f, g)<\varepsilon / 3$;
(ii) if $A \in K$, then $\operatorname{diam} g(A)<\min \{\delta, \varepsilon / 3\}$;
(iii) $g\left(\left|K^{1}\right|\right) \subset U$; and
(iv) $S=\left\{x \in g\left(\Delta^{2}\right): g^{-1}(x)\right.$ is not a singleton $\}$ is a finite set of points and $\Sigma \cap S=\emptyset$.
K and g are obtained via a sequence of small modifications of f. First choose K to be a triangulation of Δ^{2} of mesh so fine that $\operatorname{diam} f(A)<\min \{\delta, \varepsilon / 3\}$ for each $A \in K$. Then use Proposition $1(\mathrm{c})$ to pull $f\left(\left|K^{1}\right|\right)$ slightly into U. Take a close general position approximation (into S^{4}) to the resulting map, and push its singularities (which are a finite number of points) off Σ by a very small homeomorphism of S^{4}. It is understood that each successive modification of the map must be small enough to preserve the progress made in previous modifications.

Let $X=g^{-1}\left(S^{4}-U\right)$. Then $X \subset \Delta^{2}-\left|K^{1}\right|, \operatorname{dim} \operatorname{Bd} X \leq 1$, and g embeds $\operatorname{Bd} X$ in Σ. Hence

$$
\{g(A \cap \operatorname{Bd} X): A \in K \text { and } A \cap X \neq \emptyset\}
$$

is a finite disjoint collection of (nonempty) compact topologically planar subsets of Σ each of dimension at most 1 and each of diameter less than δ. So there is an open $\varepsilon / 3$-mapping cylinder neighborhood G with a 1 -spine in Σ such that if $A \in K$ and $A \cap X \neq \emptyset$, then $g(A \cap \operatorname{Bd} X) \subset G$ and $g(A \cap \operatorname{Bd} X)$ contracts to a point in a subset of G of diameter less than $\varepsilon / 3$. It follows that for each $A \in K$ with $A \cap X \neq \emptyset$, there is an open subset H_{A} of G of diameter less than $\varepsilon / 3$ and there is a map

$$
\phi_{A}:\{(A \cap \operatorname{Bd} X) \times[0,1]\} \cup\{(X \cap A) \times\{1\}\} \rightarrow H_{A}
$$

such that

$$
\phi_{A}(x, 0)=g(x) \quad \text { for each } x \in A \cap \operatorname{Bd} X
$$

and $\phi_{A}((X \cap A) \times\{1\})$ is a singleton. Since H_{A} is an ANR, Borsuk's homotopy extension theorem provides a map

$$
\psi_{A}:(X \cap A) \times[0,1] \rightarrow H_{A}
$$

such that

$$
\psi_{A} \mid\{(A \cap \operatorname{Bd} X) \times[0,1]\} \cup\{(X \cap A) \times\{1\}\}=\phi_{A} .
$$

Define $f^{\prime} \in \mathscr{C}$ by

$$
f^{\prime}(x)= \begin{cases}\psi_{A}(x, 0) & \text { if } A \in K \text { and } x \in A \cap X \\ g(x) & \text { if } x \in \Delta^{2}-\operatorname{Int} X\end{cases}
$$

If $A \in K$ and $A \cap X \neq \emptyset$, then

$$
\operatorname{diam} g(X \cap A)<\varepsilon / 3, \quad \operatorname{diam} \psi_{A}((X \cap A) \times\{0\})<\varepsilon / 3
$$

and

$$
g(A \cap \operatorname{Bd} X)=\psi_{A}((A \cap \operatorname{Bd} X) \times\{0\})
$$

therefore $d\left(g, f^{\prime}\right)<2 \varepsilon / 3$. Consequently $d\left(f, f^{\prime}\right)<\varepsilon$. Since

$$
f^{\prime}\left(\Delta^{2}-X\right)=g\left(\Delta^{2}-X\right) \subset U
$$

then $f^{\prime}\left(\Delta^{2}\right) \cap \Sigma \subset f^{\prime}(X) \subset G$. Theorem 1 is proven.

4. Proof of Theorem 2

Again we return to the scene of the introduction. We assume that T is a subset of Σ such that $U \cup T$ is 1-ULC. We must show:

Theorem 2. If $n \geq 6$ and $\operatorname{dem}_{\Sigma} T \leq 1$, then there is a σ-compactum T^{\prime} in Σ with $\operatorname{dem}_{\Sigma} T^{\prime} \leq 0$ for which $U \cup T^{\prime}$ is 1-ULC.

Proof. By Proposition 1(f) we can sssume that T is σ-compact. Theorem 3 of [9] shows that it suffices to exhibit a triangulation Q of Σ of arbitrarily small mesh for which U is $1-U L C$ in $U \cup\left(\Sigma-\left|Q^{2}\right|\right)$. Moreover, this triangulation need not be $P L$ in some given $P L$ structure on Σ. Since U is $1-$ ULC in $U \cup T$, it suffices to find triangulations of Σ of arbitrarily small mesh whose 2-skeleta miss T. To this end, let $\varepsilon>0$ and let Q be a triangulation of Σ of mesh less than $\varepsilon / 3$. Since $n \geq 6$ and $\operatorname{dem}_{\Sigma} T \leq 1$, Proposition 2(b) supplies an $\varepsilon / 3-$ homeomorphism h of Σ such that $T \cap h\left(\left|Q^{2}\right|\right)=\emptyset$. Then $h(Q)=\{h(\alpha): \alpha \in Q\}$ is a triangulation of Σ of mesh less than ε whose 2 -skeleton misses T.

We remark that Theorems 1 and 2 can easily be generalized by replacing Σ and S^{n} by boundaryless connected $P L$ manifolds M^{n-1} and N^{n} of dimensions $n-1$ and n, respectively, where M^{n-1} is topologically embedded as a closed subset of N^{n} which separates N^{n}, by substituting "1-LC" for " 1 -ULC", and by making minor alterations in the proofs to accommodate the lack of compactness.

References

1. R. H. Bing, Locally tame sets are tame, Ann. of Math., vol. 59 (1954), pp. 145-158.
2. ——, A surface is tame if its complement is 1-ULC, Trans. A.M.S., vol. 101 (1961), pp. 294-305.
3. ——, Pushing a 2-sphere into its complement, Michigan Math. J., vol. 11 (1964), pp. 3345.
4. J. W. Cannon, ULC properties in neighborhoods of embedded surfaces and curves in E^{3}, Canad. J. Math., vol. 25 (1973), pp. 31-73.
5. A. V. Cernavski, The equivalence of local flatness and local one-connectedness for embeddings of $(N-1)$-dimensional manifolds in N-dimensional manifolds for $N>4$, Mat. Sbornik, vol. 91 (1973), pp. 279-286 = Math. USSR Sbornik, vol. 20 (1973), pp. 297-304.
6. Robert J. Daverman, Pushing an ($n-1$)-sphere in S^{n} almost into its complement, Duke Math. J., vol. 39 (1972), pp. 719-723.
7. ———On the scarcity of tame disks in certain wild cells, Fund. Math., vol. 79 (1973), pp. 63-77.
8. -, Locally nice codimension one manifolds are locally flat, Bull. A.M.S., vol. 79 (1973), pp. 410-413.
9. ——, Approximating polyhedra in codimension one spheres embedded in S^{n} by tame polyhedra, Pacific J. Math., vol. 51 (1974), pp. 417-426.
10. Robert D. Edwards, "Dimension theory, I," in Geometric Topology, Lecture Notes in Mathematics, no. 438, Springer-Verlag, New York, 1975, pp. 195-211.
11. D. R. McMillan, Jr., Taming Cantor sets in E^{n}, Bull. A.M.S., vol. 70 (1964), pp. 706-708.
12. ——, Non-planar embeddings of planar sets in E^{3}, Fund. Math., vol. 84 (1974), pp. 245254.
13. M. A. Štan'ko, The embedding of compacta in Euclidean space, Dokl. Akad. Nauk SSSR, vol. 186 (1969), pp. 1269-1272 = Soviet Math. Dokl., vol. 10 (1969), pp. 758-761.

University of Wisconsin
Madison, Wisconsin

[^0]: Received August 18, 1975.
 ${ }^{1}$ Research of the second author was supported in part by a National Science Foundation grant.

