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1. Introduction

A recurring theme in geometric topology is the importance of the 1-ULC
property. For example, if E is an (n 1)-sphere topologically embedded in
S" (n 4), then E is fiat if and only if S" E is 1-ULC. (See [23, ]-8-], and
[5].) If U is a component of S E, it is natural to ask: For which sets T c E
is it true that U u T is 1-ULC? (Of course, T E always works.) For
n 3, R. H. Bing has shown [33 that for some 0-dimensional T c E, U u T
is 1-ULC. For n _> 5, Robert J. Daverman has found [6 a 1-dimensional
T E such that U w T is 1-ULC. (It is suspected that the dimension of
Daverman’s set cannot, in general, be lowered but no example is yet at hand.)

In Theorem 1 we extend Daverman’s result to cover the case n 4. More-
over, as constructed our 1-dimensional set T is easily seen to have embedding
dimension at most 1 relative to E ("demy. T _< 1"), in the sense of [13 and [103.
We cannot hope to strengthen Daverman’s high-dimensional result to obtain
demzT_< 1, when n_> 5. For in Theorem 2 we observe that whenn_> 6,
if T can be found with demz T _< 1, then T can be chosen so that demr. T _< 0.
But in [73, Daverman constructs embeddings of E in S, for all n _> 4, for which
T can never be chosen to have demz T <_ 0. In fact, in these examples T must
satisfy demz T >_ n- 3.
We account for our inability to obtain demy. T _< 1 when n > 4 by re-

marking that for a a-compactum T in E, "demz T < 1" is a stronger statement
when dime > 3 than when dim E 3. For when dime > 3, demzT_< 1
implies E T is 1-ULC. No such implication holds when dim E 3. We
can appreciate the relative weakness of the statement "demz T < 1" when
dim E--3 in another way: James W. Cannon has observed that when
dim E 3, "demy. T _< 1" is equivalent to the existence of a 0-dimensional
subset S of T such that (E T) S is 1-ULC. However when dim E > 3,
any codimension 2 a-compactum T in E contains a 0-dimensional subset S for
which (E T) w S is 1-ULC.
Examples are easily constructed in all dimensions n >_ 3 with the property

that any subset T of Z for which U w T is 1-ULC must be dense in Z. Thus
the subset T constructed by Daverman and the present authors is, in general,
noncompact. In fact, Carl Pixley has noted that for n _> 5, if T is a compact
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1-dimensional subset of Z for which U w T is 1-ULC, then three is a (possibly
noncompact) 0-dimensional subset T’ of T for which U t3 T’ is 1-ULC. A
proof of Pixley’s observation can be based on the last statement of the previous
paragraph. The extension of this proof to the case n 4 seems to require the
stronger hypothesis "demz T _< 1." This suggests that for n 4, "demr. T <
1" is an important part of the conclusion of Theorem 1.
Throughout the paper, Z will denote an (n 1)-sphere topologically em-

bedded in S’. Let Ube a component of S"- Z, and put C C1U. (C1
denotes closure.) We will denote an n-simplex by A", with c3A"+1 S".
Suppose Y and Y’ are metric spaces, Y = ’. Let k >_ 0 be an integer. Then
Y is k-ULC in ’ if for each e > 0 there is a 6 > 0 such that each mapping
(-- continuous function) of c3Ak + into a subset of Y of diameter less than 6 can
be extended to a map of Ak+ into an z-subset of Y’. (Usually, Y U,
Y’ U w T, and k 0 or 1.) Also we would say " is k-ULC" rather than
"Y is k-ULC in ".
Here is a summary of some basic facts.

PROPOSITION 1. The notation is as above.
(a) C is 0-ULC and 1-ULC. (In fact, C is a compact absolute retract and

hence is uniformly locally contractible.)
(b) U is O-ULC.
(c) Iff: A2 C is a map, P is a closed 1-dimensional subpolyhedron of A2

and > O, then there is a mapf" A2 C such thatf’(P) U and d(f,f’) < 5.

(d) lf T Z, then U T is 0-ULC.
(e) lf T E and U is 1-ULC in U T, then U T is 1-ULC.
(f) If T E and U T is 1-ULC, then there is a a-compact subset T’ of

T such that U T’ is 1-ULC.

Reference [4] is a compendium of information on ULC properties. In
particular, a proof of Proposition 1 can be extracted from the statements and
proofs of Propositions 2A, 2B.1, 2C.2, 2C.2.1, 2C.3, and 2C.7(2) of [4].
Suppose G is an open subset of a PL manifold Q and that there is a compact

subpolyhedron X of Q of dimension at most k such that X G, there is
a compact metric space , and there is a continuous proper surjection
p" Y x (0, 1] G such thatp-I(X) Y x {1}, p[ Y x (0, 1) is injective and

diamp({y} (0,1]) < e for everyyeY.

In this situation, we say that G is an open e-mapping cylinder neighborhood ofX
in Q and that X is a k-spine of G.
Suppose X is a nonempty compact subset of the interior of a PL manifold Q.

For an integer k >_ 0, we say that the dimension of the embedding of X in Q
is at most k (abbreviated demo X < k), if for each e > 0, X is contained in an
open e-mapping cylinder neighborhood with a k-spine in Int Q. We say that
the dimension of the embedding of X in Q is k (abbreviated demo X k) if

deme X < k but not demo X < k 1. For a nonempty a-compact subset F
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of the interior of a PL manifold Q, we define the dimension of the embedding
ofF in Q (abbreviated demQ/7) to be

max {demQ X: X is a compact subset of F}.

We put dem 0 -.
PROPOSITION 2. Suppose /7 is a a-compact subset of the interior of a PL

manifold Q (dim Q q). Then:

(a) dim/7 < dem F,
(b) Suppose k > 0 is an integer. Then demo F < k if and only iffor each

closed subpolyhedron P ofQ ofdimension at most q k 1, there is an ambient
isotopy of Q which pushes P offF, is arbitrarily close to the identity on Q and is

fixed outside an arbitrarily tight neighborhood ofP c F.
(c) Suppose F =lXi where each X is compact for 1, 2, 3,

Then

demo/7 max {demQ X: 1, 2, 3,...}.

Reference [10] is a comprehensive source about the dimension of an em-
bedding. The proof of Proposition 2 follows from Propositions 1.1(1), 1.1(4),
1.2(2’), and 2.2(2’) of [10-1.
We end this section by establishing some notation and recalling a well-

known method of obtaining an open e-mapping cylinder neighborhood with a

k-spine in the interior of a PL manifold. First suppose K is a simplicial complex:
then for 0, 1, 2,..., let K { K: dim < i}, the i-skeleton of K.
Let IKI denote the union of all the simplices of K; and let K’ stand for some
first derived subdivision of K. Second, suppose Qq is a PL q-manifold, e > 0
and k is one of the integers 0, 1,..., q 1. Let K be a simplicial complex
of mesh less than e which triangulates Qq. If L is a subcomplex such that

OQ w IK-k- l ILl,
and if we let

L. { K’: c ILl 0}

(the subcomplex of K’ which is dual to L), then L. (K’)k, IL.I c OQq 0,
and Q-ILl is an open -mapping cylinder neighborhood with a k-spine

IL.I in Int Q.

2. Topologically planar subsets of 3-manifolds

Theorem 3 of [12] is the foundation of the results of this section. Before
describing this theorem, we define a topological space to be topologically
planar if it can be embedded in the Euclidean plane, R2. Furthermore, let us

observe that Proposition 2(b) implies that a compact subset X of Euclidean
3-space R3 has the "strong arc pushing property" as defined in [12]/fand only

/f demR3 X < 1. Consequently, Theorem 3 of [12], when restricted to com-
pacta, translates into the following proposition: IfX is a compact, topologically
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planar subset of Ra and dim X <_ 1, then demR3 X _< 1. We extend this
proposition slightly to a form which is more convenient for our purposes.

PROPOSITION 3. IfX is a compact, topologically planar subset of the &terior

of a PL 3-manifoM Q3 and dim X _< 1, then demQ3 X _< 1.

Proof Let X= /k=lxi so that for each i= 1, 2,...,k, Xi is a com-
pactum, R is an open subset of Int Q3 which is PL homeomorphic to R3, and
Xi c Ri. Thus demR, Xi < 1 so since R Q3 implies demQ3 Xi < demR X,
we have deme3 X < 1, for 1, 2,..., k. Now Proposition 2(c) implies
demQ X _< 1.
We combine the next proposition with the preceding one to produce the

corollary which is the goal of this section. Although this result is needed
mainly for the case Q3 s 3, the proof does not seem to simplify much in the
special case.

PROPOSITION 4. Suppose Q3 is a compact PL 3-manifoM with fixed metric.
Then, for each e > O, there is a 6 > 0 such that if Xx, X2,. Xr are disjoint
compact subpolyhedra of Int Q3 each of dimension at most one and each of
diameter less than 6, then there is a connected open e-mappin9 cylinder neohbor-
hood G with a 1-spine in Int Q3 such that (J X G and each X contracts to a
point in a subset of G of diameter less than .
The idea of the proof is to take a triangulation T of Qa of small mesh, and

to choose 6 so small that each X lies in the interior of a small PL 3-cell C in
Q3. In each C we judiciously form a "singular cone" over X so that distinct
singular cones intersect nicely. We then put T in general position with respect
to the collection of singular cones. Finally we pipe IT 1[ entirely off the col-
lection of singular cones. In removing an intersection point of IT 1] with one
singular cone, it may be necessary to push other singular cones out of the way
keeping their bases fixed. G is chosen to be the complement of ]T l[ t3 tQ.
Then G is an open e-mapping cylinder neighborhood of an appropriate sub-
complex of the 1-skeleton of a first derived subdivision of T, and G contains
all the singular cones.

Proof Let T be a triangulation of Q3 of mesh less than /3. Let 6 > 0 be
so that any subset of Int Qa of diameter less than 6 lies in the interior of a
PL 3-cell in Q3 of diameter less than e/3.
Suppose X1, X2,..., Xr are disjoint compact subpolyhedra of Int Q3 each of

dimension at most 1 and each of diameter less than 6. For each 1, 2,..., r,
there is a PL 3-cell C in Q3 of diameter less than e/3 such that X c Int C.
If v e C, let v X denote the set obtained by joining v to the points of X by
straight line segments in the linear structure of C. For each 1, 2,..., r we



COMPLEMENTARY 1-ULC PROPERTIES 673

can successively choose a point vi Int Ci and a triangulation K of X which
is linear in the linear structure of C such that"

(i) If and fl are distinct 1-simplices of K, then

(vi, Int ) c (vi * Int fl) {vi};

(ii) (v, X) Xj is a finite set of points for 1 < j < r, j i;
(iii) (v Xi) (vj Xj) is a subpolyhedron of v X of dimension at most

lforl <j< i- 1.

General position techniques provide a small PL homeomorphism ha of Q3
such that:

(ii) h(IZl) c UT= (v,, s,) o;
(iii) h(ITal) c UT--a(vi. x) is a finite set of points, at each of which

ha(ITal) pierces UT=a (v. x);
(iv) ha(T) {h(): T} is a triangulation of Q3 of mesh less than e/3;
(v) ha identity on tQ3.

For 1, 2,..., r, let

hl(lTl) c (vi * Xi) {Pil,..., Pis(i)}.
Then for 1 < k < s(i), there is a 1-simplex ik e Ks such that

Pik

Now we can find a disjoint collection

{’ik: 1 < < r, 1 <_ k <_ s(i)}

of PL arcs in 03 satisfying"

(i) Int 2ik Int (vi * ik); Pik is one endpoint of 2ik; and the other end-
point lies in Int

(ii) "ik ha(lTal) {Pik}
(iii) 2ikCX 0forl <j< r,j- i;
(iv) 2ik C (V * Xj) is a finite set of points not containing Pik for 1 < j < r,

ji.

Each 2k serves as the core of a pipe Pik. Indeed, we can construct a disjoint
collection

(Pik: 1 < < r; 1 <_ k <_ s(i)}

of PL 3-cells in Q3 such that:

(i) "ik C Int Pig;
(ii) Pig
(iii) Pig c
(iv) PikX Oforl <j < r,j i;
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(v) there is a PL homeomorphism of quintuples from

(Pik, ’ik, Pik f’ (Vi * )(i), Pik (ik, Pik
to

([0, 3] x [-1, l] x [-1, 1], [1, 2] x {0} x {O), [0, 2] x [-1, 1] x {0},

(2) [-1, 13 (0), (1) (0) [-1, 13).
Consequently there is a PL homeomorphism gik of Pik such that

(vi) 9ik(Pik C hx(ITa]) c (v * X) 0 and
(vii) gik identity on OPik.
Define the PL homeomorphism h2 of Q3 by

h2 gik on Pik for 1 < < r, 1 < k <_ s(i),
[identity onQ3 {intPig. 1 < < r, 1 <_ k < s(i)).

For each l, 2,..., r, define the PL homeomorphism gi of Q3 by

on Pjk for 1 < j < r, j v i, 1 < k < s(j).
Yi-

(identity onQ3- (intPk.1 <j < r,j i, 1 < k < s(j)}.

Then:

(i) ]/2 and each gi (1 < < r) are PL e/3-homeomorphisms of Q3 which are
the identity on OQ3. Hence hEh(T) {hEh(a): T} is a triangulation of
Q3 of mesh less than e.

(ii) For 1 < < r, gi(Xi) Xi; thus Xi contracts to a point in gi(vi
and diam gi(vi * Xi) <

(iii) Forl <_ <_ r, gi(vi, Xi) c (OQa w h2hl([TX[)) O.

Observe that we need to shift vi * Xi to gi(vi * Xi). For ifj va and 1 _< k _<
s(j), then even though h(lT l) misses vi * Xi inside Pjk, nevertheless h2 Pjk
may push hx([Tl[) onto vi * Xi. However hzhl([TX[) misses gi(vi * Xi) inside
Pjk because h2 Pjk gilPjk

Let T* { T: either dim _< 1 or = OQ3}. Then

gi(ui * Xi) hh([T*[) 0

If T’ is a first derived subdivision of T and

forl _< i_< r.

T, { e T’: c [T*I O}

--the subcomplex of T’ which is dual to T*--then G Qa h2hx(iT,[) is
an open e-mapping cylinder neighborhood with a 1-spine hzh([T,[) in Int Q3.
Moreover, for 1 < < r, Xi c gi(vi * Xi) G, Xi contracts to a point in
9i(vi * Xi) and diam gi(vi * Xi) < e.

Finally we combine the previous two propositions to produce the main result
of this section.
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COROLLARY 5. Suppose Q3 is a compact PL 3-manifold with fixed metric.
Then, for each e > O, there is a 6 > 0 such that if X1, X2,. Xr are disjoint
compact topologically planar subsets of Int Q3 each of dimension at most 1 and
each ofdiameter less than , then there is an open e-mapping cylinder neighborhood
G with a 1-spine in Int Q3 such that J x c G and Xi contracts to a point in a
subset of G of diameter less than e.

Proof Given e > 0, Proposition 4 supplies a 0 < 6 < e/4 such that if
Y1, Y2,. Y are disjoint compact subpolyhedra of Int Q3 each of dimension
at most 1 and each of diameter less than 6, then there is an open e/4-mapping
cylinder neighborhood H with a 1-spine in Int Q3 such that for 1, 2,..., s,
Yi c H and Yi contracts to a point in a subset of H of diameter less than e/4.
Suppose X1, X2,..., Xr are disjoint compact topologically planar subsets of
Int Q3 each of dimension at most 1 and each of diameter less than 6. Then there
are compact PL 3-manifolds Q3, Q23,..., Q,3 embedded disjointly as PL sub-
manifolds of Q3 such that for 1, 2,..., r, Xi c Int Q and diam Q < 6.
Proposition 3 implies demQ,3 Xi < 1 for 1, 2,..., r. Thus for each
1, 2,..., r, Xi is contained in an open 6-mapping cylinder neighborhood G
with a 1-spine Y in Int Q. Then Y1, Yz,..., Y, are disjoint compact sub-
polyhedra of Int Q3 each of dimension at most and each of diameter less than
6. It follows that there is an open e]4-mapping cylinder neighborhood H with
a 1-spine Z in Int Q3 such that for 1, 2,..., r, Yi H and Y contracts
to a point in a subset of H of diameter less than e/4.
For each 1, 2,..., r, if T denotes the track of the homotopy pulling Xi

down the fibers of G into Yi, then there is a fiber-preserving homeomorphism
g of G which is fixed on Y and outside a compact neighborhood of Y in G
such that Ti gi(Gg c H). Define the homeomorphism g of Q3 by

on Gi for 1, 2,..., r.
g

identity on Q3 Gi.
i=1

Then g is an e/4-homeomorphism of Q3 which fixes

Y1 k) Yz w...w Y OQ3.

Thus g(H) is an open 3e/4-mapping cylinder neighborhood of g(Z) in Int 03

such that for 1, 2,..., r, X = Ti w g(), X contracts to a point in

T w g(i) and
diam (Ti w g(i)) < e,.

Unfortunately, g(Z) may not be a subpolyhedron of Q3. We remedy this by
invoking Theorem 3 of [1] to obtain a PL homeomorphism g’:H g(H)
such that d(gl H, g’) < e/8. Then g’(Z) is a subpolyhedron of Q3. It follows
that g’(H) is an open e-mapping cylinder neighborhood with a 1-spine g’(Z) in
Int Q3, and for each 1, 2,..., r, X g’(H) and X contracts to a point
in the subset Ti w g(fi) of g’(H) of diameter less than e.
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3. Proof of theorem

We return to the situation and notation of the introduction, with n 4.
Our goal is to establish:

THEOREM 1. Let g be a 3-sphere topologically embedded in S4. Let U be a
complementary domain of Z, with closure C. Then there is a a-compact T c E
such that demr T < 1 and U w T is 1-ULC.

Let cg denote the separable metric space of all maps

f: (A2, tA2) -+ (C, U)

with the supremum metric. Let

N {f e off: demr. (f(A2) ) _< 1 }.

The following lemma implies that is a dense subset of cg. So we may select
a countable subset {fl,fE, f3,...} of which is dense in cg. Let T
Ui=l (fi(A2) E). Then U is 1-ULC in U w T. Hence Proposition l(e)
implies U w T is 1-ULC, while Proposition 2(c) implies dem: T < 1. The
proof of Theorem 1 is complete modulo a few lemmas.

THE DENSITY LEMMA. is a dense G subset of oK.

If for 1, 2, 3,..., q/ denotes the set of all f cg such that f(A) c Z
lies in an open 1/i-mapping cylinder neighborhood with a 1-spine in Z, then
q/i is an open subset of , and
Letfbe a map in and let e > 0. We must construct a mapf’ in ff such that

d(f,f’) < e and dem (f’(A2) c Z) < 1. To obtain f’, we construct three
sequences: fo, fl,f2,..., where each fi is a map in if; Co, el, e2,..., where
each e. > 0; and Go, G1, Gz,..., where each Gi (i 0) is an open ecmapping
cylinder neighborhood with a 1-spine in Z. The sequences {fi}, {ei}, and {G}
satisfy

(i) fo=f;
(ii) Go Z;
(iii) eo e;

and for 1, 2, 3,...
(iv) e 1/2 min {e_ 1, d(f_ 1(A2), E G_I)};
(v) d(f_ 1, f) < el; and
(vi) fi(A2) E c Gi.

Once we have these sequences, (i) through (vi) imply that there is a map f’ in
cg defined by f’ limi_oo f such that d(f,f’) < e and f’(A2) c Z Gi for

1, 2, 3,.... Thus, demy. (f’(A2) c Z) _< 1.
Clearly the following lemma is exactly the tool needed to perform the con-

struction of the sequences {Gi}, {f/}, and {ei} inductively.
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THE APPROXIMATION LEMMA. Iff is a map in (g and e > 0, then there is a
map f’ in (g and an open -mappin9 cylinder neighborhood G with a 1-spine in E
such that d(f,f’) < e andf’(A2) )2 c G.

Proof. Invoke Corollary 5 to obtain a 6 > 0 so that if Xx, X2,..., Xr are
disjoint, compact topologically planar subsets of E each of dimension at most
1 and each of diameter less than 6, then there is an open e/3-mapping cylinder
neighborhood G with a 1-spine in E such that for l, 2,..., r, X c G and
X contracts to a point in a subset of G of diameter less than e/3.

There is a complex K triangulating A2 and there is a general position map

g:(A, zX) - (S, U)
such that:

(i) d(f, 9) < e/3;
(ii) if A K, then diam 9(A) < min (6, e/3};
(iii) (IKI) U; and
(iv) S (X q(A2):9 -l(x) is not a singleton} is a finite set of points and

ZcS= 0.
K and 9 are obtained via a sequence of small modifications off. First choose
K to be a triangulation of A2 of mesh so fine that diamf(A) < min {6, e/3}
for each A K. Then use Proposition l(c) to pull f(lgl) slightly into U.
Take a close general position approximation (into S4) to the resulting map, and
push its singularities (which are a finite number of points) off Z by a very small
homeomorphism of S4. It is understood that each successive modification
of the map must be small enough to preserve the progress made in previous
modifications.

Let X 9-(S4- U). Then X A2- IKI, dim Bd X _< 1, and g
embeds Bd X in E. Hence

{g(A Bd X):A K and A c X - 0}

is a finite disjoint collection of (nonempty) compact topologically planar
subsets of E each of dimension at most 1 and each of diameter less than 6. So
there is an open e/3-mapping cylinder neighborhood G with a 1-spine in E
such that if A K and A c X = 0, then 9(A c Bd X) G and g(A c Bd X)
contracts to a point in a subset of G of diameter less than e/3. It follows that
for each A K with A c X - 0, there is an open subset Ha of G of diameter
less than e/3 and there is a map

ba {(A c Bd X) x [0, 1]} w {(X c A) x {1}} Ha
such that

Sa(x, 0) 9(x) for each x A c Bd X

and Sa((X c A) x {1 }) is a singleton. Since Ha is an ANR, Borsuk’s homotopy
extension theorem provides a map

qta:(Xc A) x [0, 1] Ha
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such that

a ]{(A c Bd X) [0, 1]} w {(X c A) {1}}
Define f’ e cd by

(x, o)f’(x)
((x)

IfAKandA c X ,then

diam g(X A) < el3,
and

g(A c Bd X) Oa((A Bd X) {0});

therefore d(g,f’) < 2e/3. Consequently d(f, f’) < e. Since

f’(Az X) g(A X) U,

then f’(A) c Z = f’(X) G. Theorem 1 is proven.

ifAeK and xeAcX.
if x e A2 Int X.

diam Oa((X r A) x {0}) < /3

4. Proof of Theorem 2

Again we return to the scene of the introduction. We assume that T is a
subset of Z such that U w T is 1-ULC. We must show:

THEOREM 2. If n >_ 6 and dem; T < 1, then there is a a-compactum T’ in
Z with demy T’ < Ofor which U w T’ is 1-ULC.

Proof By Proposition l(f) we can sssume that T is a-compact. Theorem 3
of [9] shows that it suffices to exhibit a triangulation Q of Z of arbitrarily small
mesh for which U is 1-ULC in U w (E IQ21). Moreover, this triangulation
need not be PL in some given PL structure on E. Since U is 1-ULC in U w T,
it suffices to find triangulations of E of arbitrarily small mesh whose 2-skeleta
miss T. To this end, let e > 0 and let Q be a triangulation of E of mesh less
than e/3. Since n >_ 6 and demr. T < 1, Proposition 2(b) supplies an e/3-
homeomorphism h of Z such that T c h(IQZl) 0. Then h(Q) {h(a): a e Q}
is a triangulation of E of mesh less than e whose 2-skeleton misses T.
We remark that Theorems 1 and 2 can easily be generalized by replacing Z

and S" by boundaryless connected PL manifolds M and N of dimensions
n and n, respectively, where M"-1 is topologically embedded as a closed
subset of N" which separates N", by substituting "I-LC" for "I-ULC", and by
making minor alterations in the proofs to accommodate the lack ofcompactness.
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