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Abstract
Atmosphere is a complex dynamical system. Here, we investigated the causal links between aerosols, water vapor, and clouds,
using the convergent cross mapping (CCM) method, which is based on nonlinear state space reconstruction. We utilized remote
sensing data of aerosol optical depth at 550 nm (AOD), water vapor (WV), cloud cover (CC), cloud optical depth (COD), cloud
effective radius-ice (CERI), and cloud effective radius-liquid (CERL) from Moderate Resolution Imaging Spectro-radiometer
(MODIS) sensor over East Asia, for the period 2003–2018. Our analysis shows that there is a bidirectional forcing between AOD,
CC, and COD which could be attributed to the invigoration effect of aerosols on clouds. In addition, there is a bidirectional
forcing between AOD and WV and AOD and CERL, which could be attributed to the first indirect effect of aerosols on clouds,
while there is no causality among AOD and CERI, probably because of strong coupling among aerosols and ice nuclei. Based on
our analysis, we conclude that CCM method can effectively be used in all aerosol–cloud interactions’ studies, searching for
causality among the parameters.

1 Introduction

The intricate impact of aerosols on climate has drawn the
attention of the scientific community for decades, stimulating
efforts to disentangle their role in climate change (Koren et al.
2005; Andreae and Rosenfeld 2008; Grandey et al. 2013; Kant
et al. 2019). Aerosols absorb and scatter radiation, which is
denoted as “direct aerosol effect” (Haywood and Boucher
2000). In addition, aerosols can modify cloud properties by
acting as cloud condensation nuclei (CCN), leading to smaller

and more numerous cloud droplets, increasing cloud albedo, a
process known as “first aerosol indirect effect” or “Twomey
effect” (Twomey 1974; Liu and Li 2018). These cloud drop-
lets may delay the onset of collision–coalescence mechanisms
inside the cloud, inhibiting precipitation and increasing their
lifetime, a process known as “second aerosol indirect effect”
(Albrecht 1989; Jones and Christopher 2010). Furthermore,
absorbing aerosols such as soot, dust, and black carbon, can
suppress cloud formation by warming the atmosphere,
resulting into the increase of water vapor evaporation, thin-
ning the clouds, a process known as “semi-direct aerosol ef-
fect” (Hansen et al. 1997; Ackerman et al. 2000; Huang et al.
2006).

Researchers have used a lot of different approaches to in-
vestigate the aerosol–cloud interactions, either by using re-
mote sensing and ground-based measurements (Zhang et al.
2015; Zhao et al. 2018a; Shi et al. 2019), or by utilizing cli-
mate models (Park et al. 2018; Hodzic and Duvel 2018;
Kudzotsa et al. 2019), or even by couplingmeasurements with
climate models (Eck et al. 2018; Solomos et al. 2019). Our
research is based on a different approach. It utilizes remote
sensing data from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) sensor, onboard Aqua satellite, with the
convergent cross mapping (CCM) method (Sugihara et al.
2012). CCM is a data-based method that can detect causality
in complex nonlinear systems with low computational cost
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(Clark et al. 2015). It has been used successively in many
different scientific areas, detecting bidirectional or synchro-
nous forcings between historical time series of different vari-
ables (Heskamp et al. 2014; Tsonis et al. 2015; Zhang et al.
2019). Here, we employed CCMmethod to investigate causal
relations between aerosols, water vapor, and clouds over East
Asia (20°–45° N, 105°–122.5° E).

East Asia (EA) region is characterized by high level of air
pollution due to its fast-economic growth and population in-
crease in the last decades (Li et al. 2011). It is strongly affected
by substantial anthropogenic emissions, which deteriorates
the air quality and has a detrimental impact on population’s
health (Wang et al. 2014b). EA region is dominated by min-
eral dust, mainly transported from Taklimakan and Gobi de-
serts during late winter and early spring seasons (Huang et al.
2008), as well as from sea salts, transported from the nearby
Pacific Ocean (Wang et al. 2014a).

The aim of this paper is to investigate causality between
aerosols, water vapor, and clouds using remote sensing data
over EA region, for the period July 2003–December 2018.
This study is structured as follows: Section 2 provides infor-
mation about the utilized data, the description of CCM meth-
od, and the methodology followed for the investigation of the
causal relations between the data. The results of the analysis
are presented and discussed in Section 3. Finally, our findings
are summarized in Section 4.

2 Data and methods

2.1 MODIS aerosol, water vapor, and cloud products

TheModerate Resolution Imaging Spectro-radiometer (MODIS)
is a passive remote sensing sensor onboard two satellites, Terra
and Aqua. Aqua was launched in May 2002 at an orbit of ap-
proximately 700 km above Earth, having an overpass time at
about 13.30 local time (LT). MODIS sensor has a swath of
approximately 2300 km, covering the entire globe daily. It mea-
sures not only the reflected solar radiance but also the terestrial
radiation in 36 spectral bands (Levy et al. 2007), providing prod-
ucts at different spatial and temporal resolutions. In particular, the
user can choose from the Level-2 (L2) (daily products at 10-km
and 3-km resolutions) and the Level-3 (L3) (daily, 8-day,
monthly) products at 1° × 1° horizontal resolution. L3 are derived
from the L2 products, after being spatiotemporarely aggregated
(Platnick et al. 2015; Hubanks et al. 2019).

Aerosol products from MODIS are provided in three differ-
ent datasets, namely the Dark Target (DT), Deep Blue (DB) and
the combined Dark Target–Deep Blue (DTB) datasets. The DT
and DB aerosol datasets are generated from the updated second-

generation DT algorithm (Levy et al. 2013) and the enhanced
DB algorithm (Hsu et al. 2013), respectively. The DTB aerosol
dataset is generated from the merging of DT and DB aerosol
datasets, after the application of three criterias, according to the
Normalized Difference Vegetation Index (NDVI). In particular,
if NDVI is greater than 0.3, the DT retrievals are used. If NDVI
is between 0.2 and 0.3, then the average value of DB and DT
retrievals is used. Finally, if NDVI is less than 0.2, then the DB
retrievals are used (Levy et al. 2013). The water vapor and cloud
products from MODIS are derived using different retrieval al-
gorithms. The water vapor product is derived using an algorithm
that calculates the atmospheric water vapor transmittances,
based on theoretical radiative transfer calculations and Look-
Up-Table (LUT) procedures (Gao and Kaufman 1998). The
cloud cover product is derived using clear versus cloudy dis-
crimination in a given MODIS field-of-view (FOV), after
performing a numerous spectral and/or spatial variability tests
and calculating clear sky confidences for each test applied,
which are combined into a preliminary overall confidence of
clear sky for the FOV. Then, the final output confidence is
determined as one of four categories: confident clear, probability
clear, probably cloud or confident cloud, in conjunction with
statistics derived from collocated Cloud-Aerosol Lidar with
Orthogonal Polarization (CALIOP) cloud products and
MODIS radiance data (Team M C M et al. 2010). The cloud
optical depth and cloud effective radius for liquid and ice clouds
products are produced utilizing an optical/microphysical algo-
rithm that uses six visible, near-infrared, shortwave-infrared,
midwave-infrared, and several thermal MODIS channels, and
comparing these measurements with theoretical forward model
calculations as in Nakajima and King (1990) (Platnick et al.
2018). The monthly aerosol, water vapor, and cloud products
from MODIS were produced from aggregating the respective
daily products, with the samemapping grids and resolutions. On
the other hand, the L3 daily products were produced from ag-
gregating the respective L2 products in 1° × 1° spatial resolution.
The initial horizontal resolution of L2 aerosol optical depth was
10km, of L2 water vapor, cloud optical depth, and cloud
effective radius for both liquid and ice clouds 1km, and for L2
cloud fraction 5km. More details about the calculation and
derivation of the MODIS products can be found in Hubanks
et al. (2019) and Platnick et al. (2015).

In this work, we utilized the monthly mean aerosol optical
depth at 550 nm (AOD) from the most recent DTB aerosol
dataset (collection 6.1, 1° × 1° spatial resolution), over East
Asia (EA) (20°–45° N, 105°–122.5°E) (Fig. 1), for the period
July 2003–December 2018. AOD fromMODIS instrument is
found to be in good agreement and well-validated with AOD
from ground-based measurements (Li et al. 2007; Xie et al.
2011; Luo et al. 2014; Wei et al. 2019). To investigate the
aerosol–water vapor–cloud relations, we also used quasi-
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coincident monthly mean data of cloud cover (CC), water
vapor at clear sky (WV), cloud optical depth (COD), cloud
effective radius-ice (CERI), and cloud effective radius-liquid
(CERL) over the same region (Table 1). According to
Gryspeerdt et al. (2014), quasi-coincident (provided in the
same grid cell) aerosol–cloud data ensure that data are close
enough to each other and represent the total time-integrated
effect of aerosols on clouds.

Monthly products provide us with continuous time se-
ries that is essential for performing CCM method, instead
of using daily products that may have missing values. In
addition, monthly products have been widely used in many
aerosol–cloud interactions studies utilizing long-term ob-
servations, since they are less noisy than daily products,
minimizing the effect of local meteorology (Remer et al.
2005; Zhao et al. 2018b; Rao and Dey 2020). On the other
hand, monthly products have the uncertainty of their partial
daily values and the one cause of the aggregation
procedure.

The above water vapor and cloud products from MODIS
have been successfully compared and/or used in conjunction
with other remote sensing data and model results and used in
numerous previous studies investigating the aerosol–cloud in-
teractions (Kumar 2013; Liu et al. 2017; Kant et al. 2019; Rao
and Dey 2020).

2.2 Convergent cross mapping algorithm

Sugihara et al. (2012) developed the convergent cross map-
ping (CCM) method to identify causality especially in non-
linear dynamic systems with weak to moderate coupling.
This method is based on Takens’s (1981) theorem, which
states that the essential information of a multidimensional
dynamical system is retained in the time series of any single
variable of that system. For example, if variables X and Y
belong to the same dynamical system, each variable can re-
construct the attractor of the underlying dynamical system.
CCM is related to simplex projection, which predicts a point
in a time series X at a time t+1 (Xt+1), by using the values
with the most similar histories to Xt (Sugihara and May 1990;
Sugihara et al. 1990). In the same way, CCM uses the values
with the most similar histories to Xt to estimate Yt. In other
words, it correlates the original time series of Y and an esti-
mate of Y, made using its convergent cross mapping with X
(McCracken and Weigel 2014). The CCM method consists
of five steps. First, given an embedding dimension E, the
shadow manifold of X (MX) is created by associating a delay
vector x(t) to each point Xt in X for 1+(E-1)τ < t < L, where L
is the library length (number of points in the time series) and
τ is the time delay. Note that E is dependent on the properties
of the data. Then, the E+1 nearest neighbors are searched for

Fig. 1 The region of East Asia
(EA) used in this study, with the
monthly mean aerosol optical
depth at 550 nm (AOD) from
MODIS Aqua, for the period
2003–2018

Table 1 MODIS/Aqua
parameters used in this study Aerosol/cloud parameters MODIS data variable

Aerosol optical depth at 550 nm (AOD) AOD_550_Dark_Target_Deep_Blue_Combined_Mean_Mean

Cloud cover (CC) Cloud_Fraction_Mean_Mean

Water vapor (WV) Atmospheric_Water_Vapor_QA_Mean_Mean

Cloud optical depth (COD) Cloud_Optical_Thickness_Combined_Mean_Mean

Cloud effective radius-ice (CERI) Cloud_Effective_Radius_Ice_Mean_Mean

Cloud effective radius-liquid (CERL) Cloud_Effective_Radius_Liquid_Mean_Mean
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eachMXt, where E+1 is the minimum number of points need-
ed for a bounding simplex in an E-dimensional space, ac-
cording to

di ¼ D x̲ tð Þ; x̲ t1ð Þ� � ð1Þ

where D[x(t), x(t1)] is the Euclidean distance between
vectors x(t) and x(t1). Each of the E+1 nearest neighbors is
used to compute the associated weight wi, based on the
distance between x(t) and its ith nearest neighbor on MX

according to

wi ¼ ui=Σ uj ; j ¼ 1…E þ 1 ð2Þ

where

ui ¼ exp −d x̲ tð Þ; x̲ tið Þ� �
=d x̲ tð Þ; x̲ t1ð Þ� �� � ð3Þ

Yt is then estimated in Y, from a locally weighted mean of
the E+1 Y(ti) values, according to

bY tð Þ jMX ¼ Σ wi Y tið Þ i ¼ 1…E þ 1 ð4Þ

Finally, the CCM correlation between Yt and Ŷ(t)|MX,
expressed with Pearson’s correlation coefficient (ρ), is calcu-
lated (Fig. S2, Supplementary Material).

Note that a key property of CCM is convergence; that is,
cross-mapped estimates improve in estimation skill with
time series length L (sample size used to construct a li-
brary) (Packard et al. 1980; Sugihara and May 1990;
Ascioti et al. 1993; Deyle and Sugihara 2011; Tsonis
et al. 2015). For example, CCM tests for causation by
measuring the extent to which the historical record of the
affected variable Y reliably estimates states of a causal
variable X, which is quantified by calculating the correla-
tion coefficient ρ between predicted and observed X. If the
estimation skill ρ increases with the length of the time
series, it can be inferred that there is a direct or indirect
causal effect of X on Y. We call this Y cross-maps X. For
more details, see Supplementary Material.

CCM has been used successfully to identify causality
in many cases where a weak to moderate forcing is the
case (Sugihara et al. 2012 and references therein). In such
cases, other approaches to infer causality such as Granger
causality (Granger 1969) fail to establish directional influ-
ences. More details about CCM method can be found in
Sugihara et al. (2012) and its respective Supplementary
Materials.

In this work, the rEDM (Version 0.7.5) R package was
used for applying the CCM method (https://cran.r-project.
org/web/packages/rEDM/index.html), which is ideal for
reconstructing the behavior of dynamic systems using time
series data.

2.3 Methods and procedures

Since CCM is based on Takens’s theorem, it requires that the
time series we use are part of a nonlinear dynamical system.
Thus, before we proceed with CCM, we first test the signals
for nonlinearity. To determine whether a time series reflects
linear or nonlinear processes, we compared the out-of-sample
forecast skill of a linear model (AR) versus an equivalent
nonlinear model. To do this, we applied a two-step procedure.
Firstly, we used simplex projection (Sugihara and May 1990)
to identify the best embedding dimension (E), based on pre-
diction skill. Simplex projection is a nearest-neighbor fore-
casting algorithm that involves tracking the forward trajectory
of nearby points in a lag coordinate embedding. The selection
of the best E was made by using an exploratory series of 20
different embedding dimensions to evaluate the prediction.
Secondly, we used this embedding in the S-map procedure
(Sugihara 1994) to assess the nonlinearity of the time series,
calculating the nonlinear tuning parameter θ, which defines
the strength of the weighting when fitting the local linear
map (see Supplementary Material for details). Then, we ap-
plied the CCM method to investigate the causality between
AOD, WV, CC, COD, CERI, and CERL.

To examine the statistical significance of the CCM results,
we generated randomized surrogate data (1000 values for each
time series), following Ebisuzaki (1997), and we cross-
mapped each time series with the surrogate one, generating a
null distribution for ρ, against which the actual cross map ρ
can be compared (e.g., AOD cross-maps surrogate CC, CC
cross-maps surrogate AOD). In this way, we were able to
calculate a p value for rejecting the null hypothesis that
cross-mapped skill is driven by common seasonality.

Finally, to investigate if the causality between the parame-
ters was truly bidirectional or just synchronous interactions,
we calculated the cross-mapped skill of the time delay predic-
tion parameter of CCM method (tp), which denotes the time
delay by which Y information is encoded in the time series of
X. tp values less than zero (tp < 0) correspond to estimating the
past values of X, using the reconstructed states of Y (i.e., Y
causes X), while tp values greater than zero (tp > 0) correspond
to the fact that there is no causality in the reverse direction
(i.e., Y does not cause X). tp values equal to zero (tp = 0) states
synchronous interactions between the variables. The method-
ology used in our work can be summarized in Fig. 2.

3 Results and discussion

To study the causality between aerosols, water vapor, and
cloud parameters, we utilized monthly mean AOD, CC,
WV, COD, CERI, and CERL data from MODIS/Aqua, over
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EA region, from July 2003–December 2018. The time series
of the data are illustrated in Fig. S1 (Supplementary Material).
To gain a first insight into the correlation of the variables, we
applied a simple regression statistical analysis to the data (Fig.

3). A weak correlation was observed between AOD and CC
(Pearson’s correlation coefficient, ρ = 0.2), AOD andWV (ρ =
0.094), AOD and CERI (ρ = −0.015), and AOD and CERL (ρ
= −0.124). A stronger correlation was observed betweenAOD
and COD (ρ = −0.413), which is statistically significant at the
95% confidence level. Note that weak correlations do not
necessarily imply no causality especially when we are dealing
with nonlinear systems. For validation reasons, we also per-
formed a Spearman statistical analysis, which is used in non-
linear systems, calculating Spearman’s correlation coefficient
(ρs) for the same pairs of variables. The results were similar to
the ones that were found previously, using the regression anal-
ysis (Table S1, Supplementary Material).

To identify the best embedding dimension (E), we per-
formed the simplex projection method (Sugihara and May
1990). The results of the simplex projection for AOD are
shown in Fig. 4. The E with the maximum forecast skill
(expressed with Pearson’s correlation coefficient, ρ) was
found to be 16 (E = 16, ρ = 0.821), based on 170 predictions.
However, significant correlations were present for lower em-
beddings, as well, which is more desirable, especially for
small data sizes, to preserve the sample size and avoid over-
fitting the model (Clark et al. 2015). For this reason, we chose
E = 7 (ρ = 0.702), which was based on 179 predictions. We
also conducted the same analysis for the other parameters

Fig. 2 Flowchart illustrating the methodology followed in this study

Fig. 3 Scatterplot of monthly mean aerosol optical depth at 550 nm
(AOD), cloud cover (CC), water vapor in cm (WV), cloud optical depth
(COD), cloud effective radius-ice in μm (CERI), and cloud effective
radius-liquid in μm (CERL) from MODIS/Aqua, over East Asia (EA),
for the period 2003–2018. The blue line represents the linear fit of the data

Fig. 4 Forecast skill expressed with Pearson’s correlation coefficient (ρ)
of the embedding dimension (E) for aerosol optical depth at 550 nm
(AOD) time series

Fig. 5 Forecast skill expressed with Pearson’s correlation coefficient (ρ)
of the time delay embedding lag parameter (tau, τ) for embedding
dimension (E) equals to 7, for aerosol optical depth at 550 nm (AOD)
time series
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(CC, WV, COD, CERI, CERL) and found that the optimum
embedding dimension was equal to 7 (Fig. S3, Supplementary
Material). The next step was to calculate the optimum time
delay embedding lag (tau, τ) for E = 7, using the same method
as before (simplex projection). The best τ value for E = 7 was
found to be τ = 2 (ρ = 0.771) for AOD (Fig. 5), as well as for
the other parameters (Fig. S4, Supplementary Material).

The results for the S-map analysis for AOD and for the rest
of the parameters are shown in Figs. 6 and S5 (Supplementary
Material), respectively. This analysis is a simple test for non-
linear dynamics based on the relative ability to predict based
on a linear stochastic (AR model) versus an analogous non-
linear model (Sugihara 1994). Evidence for nonlinear dynam-
ics is demonstrated if forecast performance improves as the S-
map model is tuned toward nonlinear solutions (θ > 0)
(Supplementary Material). As shown in Figs. 6 and S5
(Supplementary Material), this is indeed the case here. Thus,
we can conclude that our system is nonlinear.

Finally, to test causality between AOD, CC, WV, COD,
CERI, and CERL, we applied the CCMmethod for AODwith
WV and with each cloud parameter separately (CC, COD,
CERI, CERL), using the full time series as library, for E = 7
and τ = 2 (Table S2, Supplementary Material). In addition, for
comparison purposes and to investigate if seasonality affects
the correlation between the parameters, we computed the
lagged cross-correlation between the time series, allowing lags
for up to ± 3 months (Table S3, Supplementary Material).

It was found that the cross-mapped results between the var-
iables are higher than the correlation results, indicating that there
is a causal effect between them. An exception was observed
between AOD and COD, where the correlation (maximum ab-
solute Pearson’s correlation coefficient, |ρmax| = 0.413) is higher
than the cross-mapped skill (ρ = 0.373 for AOD cross mapping
COD and ρ = 0.360 for COD cross mapping AOD). This could
be a sign that AOD and COD share a common seasonality
which hinders disentangling their cause-and-effect relation using
CCM method. On the other hand, we cannot rule out that this

might be a retrieval artifact of the MODIS sensor (Alam et al.
2014).

To quantify the convergence between the time series, we
calculated the cross-mapped skill, using 80 different random
libraries (L) for each variable, where each of them was com-
prised from 300 random subsamples of the time series.
Figure 7 illustrates the mean cross-mapped skill expressed
with Pearson’s correlation coefficient (ρ) for each library size,
among the time series, for E = 7 and τ = 2. Note that CCM
method cannot present the positive or the negative effect be-
tween the driving and the response variables clearly. It only
states if there is a connection among them and the direction of
the forcing.

It was found that AOD cross-maps CC (CC has an effect on
AOD), as well as CC cross-maps AOD (AOD has an effect on
CC), since ρ increases as L is increasing (Fig. 7a). The effect
of aerosols on CC has been observed in many previous studies
(Kourtidis et al. 2015; Stathopoulos et al. 2017; Kudzotsa
et al. 2019). In particular, aerosols can serve as cloud conden-
sation nuclei (CCN), causing an increase in the number of
cloud droplets, affecting cloud formation and cloud cover.
On the other hand, the effect of CC on AOD can be attributed
to the misclassification of AOD as CC from MODIS instru-
ment (Ten Hoeve et al. 2011). It seems to exist a bidirectional
cause-and-effect relation between AOD and WV (Fig. 7b).
When aerosols are found inside a water vapor laden environ-
ment, a fraction of them becomes activated as CCN, growing
in size, which may increase the AOD (Feingold et al. 2003).
When more aerosol particles are inserted in this environment,
the already activated large particles suppress supersaturation
at the early stages of activation, altering the available amount
of water vapor for further condensational growth (Feingold
et al. 2001). In addition, a bidirectional causality was found
between AOD and COD (Fig. 7c). An increase of aerosol
concentration can result in an increase of COD, through the
invigoration effect of aerosols on clouds mechanism (Koren
et al. 2014). On the other hand, dark aerosols above the clouds
can reduce the reflectance observed by MODIS sensor, lead-
ing to a retrieval artifact (Alam et al. 2014). This may explain
the convergence between COD and AOD (AOD cross-maps
COD). CERI was found to influence AOD (AOD cross-maps
CERI), as well as AOD was found to affect CERI (CERI
cross-maps AOD) (Fig. 7d). According to Stevens and
Feingold (2009), as AOD increases (higher aerosol loading),
more smaller droplets are produced that delay the ability of
clouds to precipitate. This delay allows the droplets to be
transported higher in the atmosphere, where a fraction of them
transforms into ice particles. This amount of ice nuclei can
possibly increase the growth of ice crystals which, in turn,
can increase the scattering of shortwave radiation (Kant
et al. 2019). Finally, we found a bidirectional cause-and-

Fig. 6 Forecast skill expressed with Pearson’s correlation coefficient (ρ)
of the nonlinearity parameter (θ) for embedding dimension (E) equals to 7
and for time delay embedding lag parameter (τ) equals to 2, for aerosol
optical depth at 550 nm (AOD) time series
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effect relation between AOD and CERL (Fig. 7e). This may
be a sign of first indirect effect of aerosols on clouds (Twomey
1974), since aerosols, acting as CCN, can increase cloud drop-
let number, with a simultaneous decrease in cloud effective
radius (CER). To validate our results, we conducted sensitiv-
ity tests for the same time series for E = 6 and E = 8 (Figs. S6,
S7, Supplementary Material). Note that the behavior of the
variables is identical as in Fig. 7.

To examine the statistical significance of the results,
we generated randomized surrogate data (1000 values
for each time series), following Ebisuzaki (1997), and
we cross-mapped each time series with the surrogate
one. Our investigation showed that not only the cross-
mapped skills calculated for the real time series are
better than the median expectation, under the null hy-
pothesis, but also they are statistically significant at
95% confidence level (p < 0.05). In addition, this is
an indication that eventually, AOD and COD do not
share a common seasonality and that there is indeed
causality between the two parameters, even though the

|ρmax| was previously found to be higher than the cross-
mapped skill.

Since atmosphere is a dynamic system, the remaining
question is how many of the above cause-and-effect
relations are truly bidirectional or just synchronous in-
teractions. To investigate this aspect, we calculated the
cross-mapped skill of the time delay prediction parame-
ter of CCM method (tp) (Fig. 8). For validation pur-
poses, we performed sensitivity tests with the same
method, for E = 6 (Fig. S8, Supplementary Material)
and E = 8 (Fig. S9, Supplementary Material). The max-
imum ρ (ρmax) for each pair of parameters and for the
different embedding dimensions (E = 6–8) is listed in
Table 2.

From the sensitivity analysis, it is obvious that there is a
bidirectional forcing among AOD–CC, AOD–WV, AOD–
COD, and AOD–CERL, since the corresponding tp values
were less or equal to zero (Fig. 8, Table 2). Note that, for
certain E, the closer the negative tp values is to zero, the
faster the causal interaction is between the parameters. For

Fig. 7 Cross-mapped skill
expressed with Pearson’s
correlation coefficient (ρ) as a
function of library size (L) a for
aerosol optical depth at 550 nm
(AOD)–cloud cover (CC), b for
AOD–water vapor (WV), c for
AOD–cloud optical depth (COD),
d for AOD–cloud effective
radius-ice (CERI), and e for
AOD–cloud effective radius-
liquid (CERL), for embedding
dimension (E) equals to 7 and for
time delay embedding lag param-
eter (τ) equals to 2. xmap denotes
cross mapping which is translated
as Y parameter affects X
parameter
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example, the effect of WV on AOD (AOD cross-maps
WV, tp = −4 for E = 7) and the effect of CERL on AOD
(AOD cross-maps CERL, tp = −8 for E = 7) are found to be
faster than the effect of AOD on WV (WV cross-maps
AOD, tp = −10 for E = 7) and the effect of AOD on
CERL (CERL cross-maps AOD, tp = −9 for E = 7), respec-
tively (Fig. 8b, e, Table 2). Nonetheless, in some cases, tp
was found to be greater than zero (CC cross-maps AOD for
E = 7, AOD cross-maps COD for E = 7, and AOD cross-
maps CERL for E = 8), but the total forcing from the
sensitivity analyses (2/3 of the results) indicate a bidirec-
tional cause-and-effect relation, with the effect of AOD on
CC to be faster than the effect of CC on AOD, the effect of
AOD on COD to be faster than the effect of COD on AOD
and the effect of CERL on AOD to be faster than the effect
of AOD on CERL (as mentioned before). Surprisingly, tp
for AOD–CERI was found to be greater than zero, even
though it seemed to exist a convergence between them
(Figs. 7d and 8d). Hence, there is no causality between
the two time series, probably because of strong coupling
between aerosols and ice nuclei (Wang et al. 2019). In
general, when strong coupling exists between two vari-
ables (X, Y), then the Y variable is completely controlled
by X and the feature of Y variable is exactly similar to X
variable, which may lead to erroneous bidirectional detec-
tion (Rulkov et al. 1995; Josic 2000).

4 Conclusions

In this work, we investigated the cause-and-effect relations
between aerosols, water vapor, and clouds over East Asia
(20°–45° N, 105°–122.5° E), utilizing remote sensing data
from the Moderate Resolution Imaging Spectro-radiometer
(MODIS) sensor onboard Aqua satellite. In particular, we
used monthly mean data of aerosol optical depth at 550 nm
(AOD) with quasi-coincident monthly mean data of water
vapor at clear sky (WV), cloud cover (CC), cloud optical
depth (COD), cloud effective radius-ice (CERI), and cloud
effective radius-liquid (CERL), for the period July 2003–
December 2018, using convergent cross mapping (CCM)
method. To detect the causality between the time series, we
calculated the cross-mapped skill for each pair of variables,
expressed with Pearson’s correlation coefficient (ρ). In addi-
tion, we examined the direction of the forcing using the time
delay prediction parameter of CCM.

AOD–CC and AOD–COD variables were found to have a
bidirectional forcing, with the effect of AOD on CC and COD
to be faster than the effect of CC and COD on AOD, which
could be attributed to the invigoration effect of aerosols on
clouds (AOD affects CC and COD) and probably to retrieval
artifact from MODIS sensor (CC and COD affect AOD).
AOD–WV variables were also found to have a bidirectional
cause-and-effect relation, with the effect ofWV onAOD to be

Table 2 Maximum Pearson’s
correlation coefficient (ρmax) and
the corresponding time delay
prediction parameter (tp) value for
the AOD–CC–WV–COD–
CERI–CERL cross mapping
relations for embedding
dimensions 6–8 (E=6–8). xmap
denotes cross mapping which is
translated as Y parameter affects X
parameter

Ε=6 Ε=7 Ε=8

Time
prediction
(tp)

Maximum
Pearson’s
correlation
coefficient
(ρmax)

Time
prediction
(tp)

Maximum
Pearson’s
correlation
coefficient
(ρmax)

Time
prediction
(tp)

Maximum
Pearson’s
correlation
coefficient
(ρmax)

AOD xmap CC −10 0.381 −10 0.386 −2 0.398

CC xmap AOD −2 0.375 +2 0.404 0 0.423

AOD xmap
WV

−9 0.876 −4 0.893 −5 0.888

WV xmap
AOD

−10 0.610 −10 0.612 −10 0.613

AOD xmap
COD

−10 0.315 +4 0.322 −10 0.324

COD xmap
AOD

−9 0.262 0 0.274 0 0.278

AOD xmap
CERI

+8 0.508 +10 0.518 +8 0.520

CERI xmap
AOD

+2 0.454 +2 0.480 +2 0.485

AOD xmap
CERL

−10 0.806 −8 0.826 +5 0.827

CERL xmap
AOD

−9 0.613 −9 0.616 −9 0.622
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faster than the effect of AOD on WV. This relation can be
ascribed to the fact that WV can activate aerosols to conden-
sate, transforming to cloud condensation nuclei (CCN) (WV
affects AOD), while these large CCN can alter the available
amount of water vapor for further condensational growth
(AOD affects WV). Furthermore, AOD–CERL time series
present a bidirectional forcing, as well (with the effect of
CERL on AOD to be faster than the effect of AOD on

CERL), which could be attributed to the first indirect effect
of aerosols on clouds. Finally, we didn’t find causality be-
tween AOD and CERI, probably because of strong coupling
among aerosols and ice nuclei. The above inter-relations are
illustrated in Fig. 9.

To conclude, and based on the above findings, CCMmeth-
od can effectively be used in all aerosol–cloud interactions’
studies, searching for causality among the parameters.

Fig. 8 Cross-mapped skill expressed with Pearson’s correlation
coefficient (ρ) as a function of convergent cross mapping’s (CCM) time
delay prediction parameter (tp) a for aerosol optical depth at 550 nm
(AOD)–cloud cover (CC), b for AOD–water vapor (WV), c for AOD–
cloud optical depth (COD), d for AOD–cloud effective radius-ice

(CERI), and e for AOD–cloud effective radius-liquid (CERL), for em-
bedding dimension (E) equals to 7 and for time delay embedding lag
parameter (τ) equals to 2. xmap denotes cross mappingwhich is translated
as Y parameter affects X parameter. Note that each sub-figure has different
y-axis for clarity
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